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Abstract. Let X be a geometrically connected smooth projective curve of
genus gX ≥ 2 over R. Let M(r, ξ) be the coarse moduli space of geometrically
stable vector bundles E over X of rank r and determinant ξ, where ξ is a real
point of the Picard variety Picd(X). If gX = r = 2, then let d be odd. We

compute the Brauer group of M(r, ξ).

1. Introduction

Let XC be a connected smooth projective curve of genus gX ≥ 2 over C. Fix
integers r ≥ 2 and d. Given a line bundle ξC of degree d over XC, we denote by
M(r, ξC) the coarse moduli space of stable vector bundles over XC of rank r and
determinant ξC.

The Picard group of such moduli spaces has been studied intensively; see for
example [DN, KN, LS, So, BLS, Fa, Te, BHo1]. We view the Brauer group as a
natural higher order analogue of the Picard group. It is related to the classical
rationality problem [CS].

We assume that d is odd if gX = r = 2; otherwise d is arbitrary. The Brauer
group of M(r, ξC) has been computed in [BBGN]; the result is a canonical isomor-
phism

Br(M(r, ξC)) ∼= Z/gcd(r, d).

The corresponding generator βC ∈ Br(M(r, ξC)) can be viewed as the obstruc-
tion against the existence of a Poincaré bundle, or universal vector bundle, over
M(r, ξC)×XC.

Now suppose XC = X ⊗RC for a smooth projective curve X over R. Then some
of the above moduli spaces carry interesting real algebraic structures, and there has
been a growing interest in understanding these structures [BhB, BHH, BHu, Sch].
In this paper we compute the Brauer group of such real algebraic moduli spaces.

More precisely, assume that the line bundle ξC comes from a real point ξ of the
Picard variety Picd(X). Let M(r, ξ) be the coarse moduli space of geometrically
stable vector bundles E over X of rank r and determinant ξ. It is a smooth
quasiprojective variety over R, with M(r, ξ) ⊗R C ∼= M(r, ξC); see Section 2. Our
main result, Theorem 3.3, describes the Brauer group of M(r, ξ) as follows.
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Theorem 1.1. With χ := r(1− gX) + d, there is a canonical isomorphism

Br(M(r, ξ)) ∼=
{
Z/gcd(r, χ)⊕ Z/2 if ξ comes from a line bundle defined over R,

Z/gcd(2r, χ) otherwise.

Note that gcd(r, χ) = gcd(r, d). The groups Z/gcd(r, χ) and Z/gcd(2r, χ) are
generated by a canonical class β ∈ Br(M(r, ξ)), the obstruction against a Poincaré
bundle over M(r, ξ) × X. The order of this obstruction class β is computed in
Proposition 3.2. The remaining direct summand Z/2 comes from the Brauer group
of R.

2. Moduli of vector bundles over a real curve

Let X be a geometrically connected smooth projective algebraic curve of genus
gX ≥ 2 defined over R. We will denote the base change from R to C by a subscript
C. In particular, XC := X ⊗R C is the associated algebraic curve over C.

Let σ : C −→ C denote complex conjugation. The involutive morphism of
schemes

σX := idX ⊗ σ : XC −→ XC

lies over σ : C −→ C. The closed points of XC fixed by σX are the real points of
X.

Let ξ be a real point of the Picard variety Pic(X). Viewing the associated
complex point ξC of Pic(XC) as a line bundle over XC, we have ξC ∼= σ∗

X(ξC).
A real (respectively, quaternionic) structure on ξC is by definition an isomor-

phism

η : ξC −→ σ∗
X(ξC)

of line bundles over XC with σ∗
Xη ◦ η = idξC (respectively, σ∗

Xη ◦ η = −idξC). The
line bundle ξC admits either a real structure η or a quaternionic structure η, and in
both cases the resulting pair (ξC, η) is uniquely determined up to an isomorphism;
cf. for example [Ve, Proposition 2.5] or [BHH, Proposition 3.1].

The real point ξ of Pic(X) is called quaternionic if ξC admits a quaternionic
structure. Otherwise, ξC admits a real structure, so we can view ξ as a real line
bundle over X.

A vector bundle E over X is called geometrically stable if the vector bundle EC

over XC is stable. Not every stable vector bundle E over X is geometrically stable,
but it is always geometrically polystable. Fix integers r ≥ 2 and d. We denote by

(2.1) M(r, d) ⊃ M(r, d)s −→ M(r, d)

the moduli stack of vector bundles E over X of rank r and degree d, the open
substack of geometrically stable E, and their coarse moduli scheme, respectively.
Since geometrically stable E have only scalar automorphisms, M(r, d)s is a gerbe
with band Gm over M(r, d).

Let L(det) denote the determinant of the cohomology line bundle over M(r, d).
Its fiber over the moduli point of a vector bundle E is by definition detH0(E) ⊗
det−1 H1(E).

All three moduli spaces or stacks in (2.1) come with a determinant map to the

Picard variety Picd(X). Given a real point ξ of Picd(X), we denote by

M(r, ξ) ⊃ M(r, ξ)s −→ M(r, ξ)
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the corresponding fibers over ξ. So M(r, ξ) is a smooth quasiprojective variety over
R, whose base change M(r, ξ)C is the moduli space of stable vector bundles over
XC of rank r and determinant ξC. By restriction, M(r, ξ)s is a gerbe with band
Gm over M(r, ξ).

Suppose for the moment that ξ is a real line bundle. Then we can define a line
bundle L(ξ) over M(r, ξ) whose fiber over the moduli point of a vector bundle E
is Hom(ξ, detE). To state this more precisely, let S be a scheme over R. Then the
pullback of L(ξ) along the classifying morphism S −→ M(r, ξ) of a vector bundle
E over X × S is by definition the line bundle pr2,∗(pr

∗
1ξ

−1 ⊗ det E) over S. This
defines a line bundle L(ξ) over M(r, ξ).

Now suppose that ξ is quaternionic. Then the same recipe defines a line bundle
over M(r, ξ)C endowed with a quaternionic structure. We denote this pair again
by L(ξ).

In both cases, L(ξ) gives us a line bundle L(ξ)C over M(r, ξ)C. If we trivialize
the fiber of ξC over one closed point x0 ∈ XC, we can identify L(ξ)C with the line
bundle whose fiber at the moduli point of a vector bundle EC over XC is the fiber
of detEC over x0.

Proposition 2.1. The Picard group Pic(M(r, ξ)) is generated by

i) L(det) and L(ξ) if ξ is a real line bundle,
ii) L(det) and L(ξ)⊗2 if ξ is quaternionic.

The restrictions of these line bundles also generate Pic(M(r, ξ)s).

Proof. Let M̃(r, ξC) denote the moduli stack of vector bundles E of rank r over XC

together with an isomorphism ξC ∼= detE. The forgetful map

π : M̃(r, ξC) −→ M(r, ξ)C

is the Gm-torsor given by the line bundle L(ξ)C. It is easy to check that the kernel
of

π∗ : Pic(M(r, ξ)C) −→ Pic(M̃(r, ξC))

is generated by L(ξ)C; cf. the proof of [BL, Lemma 7.8]. The Picard group of

M̃(r, ξC) is generated by π∗(L(det)C), according to [BL, Remark 7.11 and Propo-
sition 9.2].

This shows that Pic(M(r, ξ)C) is generated by L(det)C and L(ξ)C. We have just
seen that all these line bundles admit a real or quaternionic structure. This real
or quaternionic structure is unique, since Γ(M(r, ξ)C,O∗) = C∗. It follows that
Pic(M(r, ξ)) is the subgroup of line bundles in Pic(M(r, ξ)C) which are real, not
quaternionic. Hence Pic(M(r, ξ)) is generated by the line bundles as claimed.

As M(r, ξ) is smooth, the restriction map Pic(M(r, ξ)) −→ Pic(M(r, ξ)s) is
surjective; cf. for example [BHo2, Lemma 7.3]. So these line bundles also generate
Pic(M(r, ξ)s). �

Now let M −→ M be a gerbe with band Gm over an irreducible Noetherian
scheme M . As a basic example, we have the gerbe M(r, d)s −→ M(r, d) in mind.

Definition 2.2. Let L be a line bundle over M. Then the automorphism groups
Gm in M act on the fibers of L. These Gm act by the same power w ∈ Z on every
fiber of L, since M is connected. The integer w is called the weight of L.
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The weight of a quaternionic line bundle L is by definition the weight of the
associated complex line bundle LC. For example, the real or quaternionic line
bundle L(ξ) over M(r, ξ)s has weight r. The real line bundle L(det) over M(r, d)s

has weight

χ := r(1− gX) + d

according to Riemann-Roch. Consider the integers

χ′ := χ/gcd(r, χ) and r′ := r/gcd(r, χ).

The real or quaternionic line bundle

L(Θ) := L(det)⊗−r′ ⊗ L(ξ)⊗χ′

over M(r, ξ)s has weight 0. Hence it descends to a real or quaternionic line bundle
over M(r, ξ), which we again denote by L(Θ). The line bundle L(Θ)C is ample
on M(r, ξ)C, and it generates the Picard group Pic(M(r, ξ)C) according to [DN,
Théorèmes A & B].

Proposition 2.3. The Picard group Pic(M(r, ξ)) is generated by

i) L(Θ) if ξ is a real line bundle or χ′ is even,
ii) L(Θ)⊗2 if ξ is quaternionic and χ′ is odd.

Proof. The line bundles over M(r, ξ) are the line bundles of weight 0 over M(r, ξ)s.
According to Proposition 2.1, these are of the form L(det)⊗a⊗L(ξ)⊗b with aχ+br =
0, where moreover b has to be even if ξ is quaternionic. �

3. The Brauer group

The Brauer group Br(S) of a Noetherian scheme S is by definition the abelian
group of Azumaya algebras over S up to Morita equivalence. It is a torsion group,
and it embeds canonically into the étale cohomology group H2

ét(S,Gm).
If S is smooth and quasiprojective over a field, then H2

ét(S,Gm) is also a torsion
group [Gr, Proposition 1.4], and the embedding of Br(S) into H2

ét(S,Gm) is an
isomorphism [dJ].

Our aim is to compute the Brauer group of the real moduli space M(r, ξ). Let

(3.1) β ∈ H2
ét(M(r, ξ),Gm) = Br(M(r, ξ))

denote the class given by the gerbe M(r, ξ)s −→ M(r, ξ) with band Gm. Since a
section of this gerbe would yield a Poincaré bundle over M(r, ξ)×X, we can view
the class β as the obstruction against the existence of such a Poincaré bundle.

Remark 3.1. Choose an effective divisor D ⊂ X defined over R, for example a
closed point in X. The Brauer class β over M(r, ξ) can also be described by the
Azumaya algebra with fibers EndH0(D,E|D), or by the projective bundle with
fibers PH0(D,E|D).

We first compute the exponent of β, i.e., the order of β as an element in the tor-
sion group Br(M(r, ξ)). This will in particular re-prove results of [BHu, Section 5].

Proposition 3.2. Let ξ be a real point of the Picard variety Picd(X).

i) If ξ is a real line bundle, then β ∈ Br(M(r, ξ)) has exponent gcd(r, χ).
ii) If ξ is quaternionic, then β ∈ Br(M(r, ξ)) has exponent gcd(2r, χ).
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Proof. An integer n ∈ Z annihilates the class β ∈ H2
ét(M(r, ξ),Gm) of the gerbe

M(r, ξ)s if and only if there is a line bundle L over M(r, ξ)s which has weight n;
see for example [Ho, Lemma 4.9]. Hence the claim follows from Proposition 2.1. �

We denote by Z ·β ⊆ Br(M(r, ξ)) the subgroup generated by the class β in (3.1).
Let

(3.2) f : M(r, ξ) −→ Spec(R)

be the structure morphism. Recall that Br(R) ∼= Z/2, the nontrivial element being
the class [H] ∈ Br(R) of the quaternion algebra H = R⊕ R · i⊕ R · j ⊕ R · k.

Theorem 3.3. Let ξ be a real point of Picd(X), with d odd if gX = r = 2. We
have

Br(M(r, ξ)) =

{
Z · β ⊕ f∗(Br(R)) ∼= Z/gcd(r, χ)⊕ Z/2 if ξ is a real line bundle,

Z · β ∼= Z/gcd(2r, χ) if ξ is quaternionic.

Proof. The structure morphism f in (3.2) yields a Leray spectral sequence

(3.3) Ep,q
2 = Hp

ét(R,R
qf∗Gm) ⇒ Hp+q

ét (M(r, ξ),Gm).

We have R1f∗Gm = Pic(M(r, ξ)C) ∼= Z. The action of Gal(C/R) = Z/2 on it is
trivial, for example because it preserves ampleness. From this we deduce

E1,1
2 = H1

ét(R,Z) = Hom(Z/2,Z) = 0.

Hence the spectral sequence (3.3) provides in particular an exact sequence

H1
ét(M(r, ξ),Gm) −→ E0,1

2 −→ E2,0
2 −→ H2

ét(M(r, ξ),Gm) −→ E0,2
2 .

Using f∗Gm = Gm and R2f∗Gm = Br(M(r, ξ)C), we thus obtain an exact sequence

Pic(M(r, ξ))
g1

−→ Pic(M(r, ξ)C) −→ Br(R)
f∗

−→ Br(M(r, ξ))
g2

−→ Br(M(r, ξ)C),

where g1 and g2 are pullback maps along the projection g : M(r, ξ)C −→ M(r, ξ).
Note that g2 is surjective, since g2(β) = βC generates Br(M(r, ξ)C) by [BBGN].

Suppose that ξ is a real line bundle. Then g1 is surjective due to Proposition 2.3,
so f∗ is injective. Since β has the same exponent as its image βC by Proposition 3.2,
it follows that Br(M(r, ξ)) is the direct sum of its subgroups Z · β and f∗(Br(R)),
as required.

Now suppose that ξ is quaternionic and that χ′ = χ/gcd(r, χ) is even. Then
f∗ is injective as before, but the exponent gcd(2r, χ) of β is twice the exponent
gcd(r, χ) of its image βC. Hence gcd(r, χ) · β = f∗([H]), and the class β generates
Br(M(r, ξ)).

Finally, suppose that ξ is quaternionic and that χ′ is odd. Then the cokernel of
g1 has two elements according to Proposition 2.3, so f∗ is the zero map, and g2 is
an isomorphism. In particular, the class β again generates Br(M(r, ξ)). �
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[BHo2] I. Biswas and N. Hoffmann, Poincaré families of G-bundles on a curve, preprint
arXiv:1001.2123, available at www.arXiv.org, to appear in Math. Ann.

[BHH] I. Biswas, J. Huisman and J. Hurtubise, The moduli space of stable vector bundles over
a real algebraic curve, Math. Ann. 347 (2010), 201–233. MR2593289

[BHu] I. Biswas and J. Hurtubise, Universal vector bundle over the reals, preprint arXiv:
0909.0041, available at www.arXiv.org, to appear in Trans. Amer. Math. Soc.

[CS] J.-L. Colliot-Thélène and J.-J. Sansuc, The rationality problem for fields of invariants
under linear algebraic groups (with special regard to the Brauer group), in: V. Mehta,
editor, Algebraic groups and homogeneous spaces (Mumbai, 2004), pages 113–186, 2007.
MR2348904 (2008m:13010)

[dJ] A. de Jong: A result of Gabber, preprint, http://www.math.columbia.edu/~dejong/
[DN] J.-M. Drezet and M. S. Narasimhan, Groupe de Picard des variétés de modules de fibrés
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