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3 The Boden-Hu conjecture holds precisely up to

rank eight

Norbert Hoffmann
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Introduction

LetX be a smooth projective algebraic curve of genus g ≥ 2 over an algebraically
closed field, and fix a point P on X . This text deals with vector bundles over X
endowed with parabolic structures over P in the sense of Mehta and Seshadri.
More specifically, we consider weights 0 < α1 < . . . < αN < 1 with sum s ∈ N

and study the projective moduli scheme M(1)α of semistable parabolic bundles
of rank N and parabolic degree zero with all multiplicities equal to one.

H. Boden and Y. Hu observed in [2] that a slight variation of the weights
leads to a desingularisation of the moduli scheme, and they conjectured that
one can always obtain a small resolution this way. The present text determines
all pairs (N, s) for which this holds. The conjecture is proved in the following
four cases: s ∈ {1, N−1} (trivial), s ∈ {2, N−2} (corollary 4.4), s ∈ {3, N−3}
and N ≤ 10 (theorem 6.4.ii), N ≤ 8 (theorem 6.4.i). Proposition 5.1 gives
counterexamples in all other cases.

The main tool here are multiple extensions of quasiparabolic bundles. By
an extension of bundles E1, . . . , EL, we mean a bundle E together with a chain
of subbundles and isomorphisms between the resulting subquotients of E and
the given bundles. Compared to the well-known case L = 2, the study of such
extensions is more delicate for L ≥ 3. But under some hypothesis, we can still
prove that the extensions are parameterised by an affine space of computable
dimension.

Now these extension spaces are closely related to the fibres of the Boden-Hu
desingularising map; this allows us to determine the irreducible components of
these fibres and their dimensions in theorem 3.4. As a consequence, we obtain
the purely combinatorial criterion 4.3 for the Boden-Hu conjecture in terms of
the weight vector α. Surprisingly, this criterion is independent of the curve
X and does not involve the weights near α. The positive and negative results
mentioned above are all deduced from 4.3.

This paper consists of six parts. In section 1, we summarise the relevant
terminology about parabolic bundles and formulate the Boden-Hu conjecture.
Section 2 is devoted to the study of multiple quasiparabolic extensions. The
fibres of the Boden-Hu desingularising map are the subject of section 3, and
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section 4 translates the Boden-Hu conjecture into combinatorics. The resulting
elementary problem is solved in the last two parts: Section 5 gives the coun-
terexamples, and section 6 contains the proof of the conjecture for low ranks.

The text is an abridged and slightly improved part of the author’s Ph. D.
thesis [5]. I would like to thank my adviser G. Faltings for his support and
encouragement. I also had many fruitful discussions with my colleagues in
Bonn. The work was supported by a grant of the Max-Planck-Institut in Bonn.

1 Parabolic bundles and their moduli

In this section, we recall some basic notions concerning (quasi-)parabolic bundles
and their moduli as introduced by Mehta and Seshadri in [7]. We mention the
variation of the weights as studied by Boden and Hu in [2], in particular stating
their smallness conjecture. The main purpose is to fix notation and to collect
some basic facts.

Once and for all, we fix a smooth connected projective curveX of genus g ≥ 2
over an algebraically closed field k and a closed point P ∈ X(k). Furthermore,
we fix a positive integer N which will later become the number of weights.

A vector bundle over a scheme is a locally free coherent sheaf. A subbundle
of it is a coherent subsheaf that is locally a direct summand.

Definition 1.1. A quasiparabolic bundle E over X is a vector bundle Ě over
X together with a filtration of its fibre ĚP over P by vector subspaces

ĚP = F0ĚP ⊇ F1ĚP ⊇ . . . ⊇ FN ĚP = 0.

A family E of quasiparabolic bundles parameterised by a k-scheme S is a
vector bundle Ě over X ×k S together with a length N chain of subbundles
in Ě |{P}×S . For each point s ∈ S(k), such a family has a fibre Es which is a
quasiparabolic bundle over X .

Definition 1.2. A multiplicity vector m is a sequence of integers

m = (r, ď,m1, . . . ,mN )

with mn ≥ 0 for all n and r = m1 + . . .+mN > 0.

The multiplicity vector of a nonzero quasiparabolic bundle E over X consists
of its rank rk(Ě), its underlying degree deg(Ě) and the multiplicities

m1 := dim(ĚP /F1ĚP ),m2 := dim(F1ĚP /F2ĚP ), . . . ,mN := dim(FN−1ĚP ).

Observe that multiplicities may be zero. This might seem unusual, but we
have to allow it because we have fixed the filtration length N .

A morphism φ : E → E′ of quasiparabolic bundles E and E′ overX is a mor-
phism of vector bundles φ̌ : Ě → Ě′ whose restriction φ̌P : ĚP → Ě′

P respects
the given filtrations, i. e. satisfies φ̌P (FnĚP ) ⊆ FnĚ

′
P for all n. Hom(E,E′) is

the vector space of all morphisms from E to E′. Note that E and E′ cannot
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be isomorphic if their multiplicity vectors m and m′ are different, even if they
have the same nonzero multiplicities like m = (1, ď, 1, 0) and m′ = (1, ď, 0, 1).

More generally, a morphism from E to E′ over an open subset U ⊆ X is a
morphism from Ě|U to Ě′|U that respects the filtrations if P ∈ U . This defines
the sheaf Hom(E,E′) of morphisms from E to E′. It is a vector bundle over X
of rank r · r′ and degree

degHom(E,E′) = rď′ − r′ď−
∑

1≤b<a≤N

mam
′
b (1)

if (r, ď,m1, . . . ,mN ) and (r′, ď′,m′
1, . . . ,m

′
N ) are the multiplicity vectors of E

and E′, respectively.
Let E and E ′ be families of quasiparabolic bundles parameterised by a

common k-scheme S. The same conditions as above define the vector space
Hom(E , E ′) and the coherent OX×S-module sheaf Hom(E , E ′) of morphisms
from E to E ′. This sheaf is flat over S and restricts to Hom(Es, E

′
s) for each

s ∈ S(k), so it is a vector bundle over X × S.

Definition 1.3. A collection of quasiparabolic bundles over X and morphisms

0→ E1 → E → E2 → 0

is a (short) exact sequence if the induced sequences 0 → Ě1 → Ě → Ě2 → 0
and 0→ FnĚ

1
P → FnĚP → FnĚ

2
P → 0 are all exact.

If El has multiplicity vector ml in this exact sequence, then the multiplicity
vector of E is m1 +m2.

The functors Hom(E, ) and Hom( , E) are exact for every quasiparabolic
bundle E over X , i. e. they transform short exact sequences of quasiparabolic
bundles into short exact sequences of vector bundles. Consequently, Hom(E, )
and Hom( , E) are left exact functors.

We say that a quasiparabolic bundle E′ is a subbundle of a quasiparabolic
bundle E if Ě′ is a subbundle of Ě and the condition FnĚ

′
P = Ě′

P ∩ FnĚP

is satisfied for all n ≤ N . Then we can define the (quasiparabolic) quotient
bundle E/E′ by the vector bundle Ě/Ě′ and the induced filtration over P , thus
obtaining an exact sequence 0→ E′ → E → E/E′ → 0.

A morphism of quasiparabolic bundles φ : E → E′′ is called surjective if the
induced maps φ̌ : Ě → Ě′′ and φ̌P : FnĚP → FnĚ

′′
P are all surjective. In this

case, the kernel of φ is a subbundle E′ of E, and 0 → E′ → E → E′′ → 0 is
again exact.

The same condition defines surjectivity for morphisms of families φ : E → E ′′.
If φ is surjective, then its kernel is a family of quasiparabolic bundles E ′ whose
fibre E ′s is the kernel of the restriction φs : Es → E ′′s for all s.

Definition 1.4. A weight vector α = (α1, . . . , αN ) is a sequence of real numbers
satisfying 0 ≤ α1 < . . . < αN < 1. We define

degα(m) := ď+m1α1 + · · ·+mNαN

for every multiplicity vector m = (r, ď,m1, . . . ,mN ).
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Definition 1.5. A parabolic bundle E = (E,α) over X is a quasiparabolic
bundle E together with a weight vector α. If E is nonzero with multiplicity
vector m = (r, . . .), then the (parabolic) degree of E is degα(E) := degα(m),
and the (parabolic) slope of E is µα(E) := degα(m)/r.

Whenever we refer to (the sheaf of) morphisms between parabolic bundles
E and E′, we mean morphisms of the underlying quasiparabolic bundles. (This
coincides with the standard terminology because E and E′ have the same weight
vector in all our situations.)

For nonzero quasiparabolic bundles E,E′ and a weight vector α, the degree
formula (1) implies the estimate

degHom(E,E′) ≤ rk(E) · degα(E′)− rk(E′) · degα(E). (2)

Definition 1.6. A nonzero parabolic bundle (E,α) is called stable (resp. semi-
stable) if µα(E′) < µα(E) (resp. ≤) holds for all proper quasiparabolic subbun-
dles E′ of E.

Whenever we want to mention α, we refer to these properties as α-stability
and α-semistability.

There is a coarse moduli scheme M(m)α−stab of stable parabolic bundles
with multiplicity vector m = (r, ď,m1, . . . ,mN ) and weight vector α; see [7],
[8] or [1] for its construction. This quasi-projective scheme over k is nonempty
(because g ≥ 2) and smooth of dimension

dimM(m)α−stab =

(

g −
1

2

)

r2 −
1

2

(
N∑

n=1

m2
n

)

+ 1. (3)

It is a dense open subscheme of the projective moduli scheme M(m)α of semi-
stable parabolic bundles with multiplicity vector m and weight vector α. The
k-points of M(m)α correspond bijectively to S-equivalence classes of such bun-
dles; we will recall the notion of S-equivalence in section 3.

Following [2], we vary the weight vector α. We restrict ourselves to weight
vectors lying in the interior of the weight space

W (N, s)◦ := {α ∈ R
N : 0 < α1 < . . . < αN < 1 and

N∑

n=1

αn = s}.

Here s is a fixed integer with 0 < s < N . We also fix the multiplicity vector

1 := (N,−s, 1, . . . , 1);

in particular we restrict to the case of parabolic degree degα(1) = 0. One should
keep in mind that the vector 1 depends on the global parameters N and s.

If m and m′ are multiplicity vectors with m+m′ = 1, then the set of all α
with degα(m) = 0 is a hyperplane in W (N, s)◦. It is easy to check that only
finitely many of these hyperplanes are nonempty; they are sometimes called
walls. The moduli scheme M(1)α changes only if α crosses a wall.
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Definition 1.7. A weight vector α ∈ W (N, s)◦ is generic if degα(m) 6= 0 for
all multiplicity vectors m,m′ with m+m′ = 1.

This implies that there is no strictly α-semistable quasiparabolic bundle with
multiplicity vector 1, so M(1)α = M(1)α−stab is both smooth and projective.

Definition 1.8. Let α, β ∈ W (N, s)◦ be given. β is near α if degα(m) < 0
implies degβ(m) < 0 for all multiplicity vectors m,m′ with m+m′ = 1.

Replacing m by 1−m, we also get that degβ(m) ≤ 0 implies degα(m) ≤ 0.
This means that β-semistability implies α-semistability and α-stability implies
β-stability for quasiparabolic bundles with multiplicity vector 1. Thus the iden-
tity functor induces a canonical morphism

φβ : M(1)β −→M(1)α

which is an isomorphism over M(1)α−stab. In particular, φβ is a resolution of
singularities if β is generic near α.

Conjecture 1.9 (Boden–Hu). Near every α ∈ W (N, s)◦, there is a generic
β ∈ W (N, s)◦ such that φβ is a small map.

Recall from [3] that φβ is called small (resp. semismall) if the locus where
its fibres have dimension ≥ d has codimension > 2d (resp. ≥ 2d) in M(1)α

for all positive integers d. In the case k = C, smallness would imply that the
intersection homology of M(1)α is equal to the ordinary homology of M(1)β ;
the latter has been computed in [6].

Note that the Boden-Hu conjecture is trivial for s ∈ {1, N − 1}: Here every
α ∈ W (N, s)◦ is generic itself, so β := α does the trick.

2 Multiple extensions of quasiparabolic bundles

Definition 2.1. An extension E = (E, {F lE}, {ηl}) of quasiparabolic bundles
E1, . . . , EL over X is a quasiparabolic bundle E over X together with

• a chain of subbundles 0 = F 0E ⊆ F 1E ⊆ . . . ⊆ FLE = E and

• isomorphisms ηl : F lE/F l−1E → El for l = 1, . . . , L.

An isomorphism of extensions E and E′ of E1, . . . , EL is an isomorphism
of quasiparabolic bundles E → E′ respecting the given subbundles and isomor-
phisms. We denote the set of isomorphism classes of extensions by

Ext(EL, . . . , E1).

If L = 2, then this is the usual (Yoneda) Ext1-group of homological algebra.
But for L ≥ 3, there seems to be no natural group structure on this set.
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Example 2.2. The trivial extension of E1, . . ., EL is the quasiparabolic bundle

Etriv := E1 ⊕ E2 ⊕ . . .⊕ EL

together with the subbundles F lEtriv := E1 ⊕ . . . ⊕ El and the canonical iso-
morphisms ηl : F lEtriv/F l−1Etriv → El.

Note that the notion of an isomorphism of extensions also makes sense over
open subschemes U of X .

Lemma 2.3. If U is an affine open subscheme of X, then every extension E
of E1, . . . , EL is over U isomorphic to the trivial one Etriv.

Proof. The extension structure gives us a morphism ηl : F lE → El. Its restric-
tion to U can be extended to ψl ∈ Γ(U,Hom(E,El)) using the exactness of the
functor Hom( , El). The direct sum ψ ∈ Γ(U,Hom(E,Etriv)) of the ψl is the
required isomorphism of extensions.

Fix an open affine covering X = U ∪ V of our curve X . Then the Čech
cochains C0(F) := Γ(U,F) × Γ(V,F) and C1(F) := Γ(U ∩ V,F) compute the
Zariski cohomology of coherent sheaves F on X .

If E,E′ are quasiparabolic bundles over X and φ is an isomorphism from
E′ to E over U ∩ V , then one can glue and obtain a quasiparabolic bundle
E
∣
∣
U
∪φ E

′
∣
∣
V

. It is an extension of E1, . . . , EL if E and E′ are and φ is an
isomorphism of extensions. Consequently, we get a natural map

ex :
∏

1≤l1<l2≤L

C1
(
Hom(El2 , El1)

)
−→ Ext(EL, . . . , E1)

that sends a cochain γ to the extension class of Etriv
∣
∣
U
∪id+γE

triv
∣
∣
V

. According
to lemma 2.3, ex is surjective.

Theorem 2.4. Let E1, . . . , EL be quasiparabolic bundles over our curve X. For
all l1 < l2, we assume Hom(El2 , El1) = 0 and choose a vector subspace

H̃1(l2, l1) ⊆ C1
(
Hom(El2 , El1)

)

whose map to H1
(
Hom(El2 , El1)

)
is bijective. Then ex restricts to a bijection

ex :
∏

l1<l2

H̃1(l2, l1)
∼
−→ Ext(EL, . . . , E1).

Proof. Given an extension class ex(γ), we have to show that there is a unique
cochain ω ∈

∏

l1<l2
H̃1(l2, l1) such that ex(ω) = ex(γ), i. e. such that there is an

isomorphism of extensions

Etriv
∣
∣
U
∪id+γ E

triv
∣
∣
V

∼
−→ Etriv

∣
∣
U
∪id+ω E

triv
∣
∣
V
.

Such an isomorphism restricts to automorphisms id + ϕU and id + ϕV of the
trivial extension over U and over V ; here (ϕU , ϕV ) ∈

∏

l1<l2
C0(Hom(El2 , El1)).

Since the two restricted isomorphisms agree on U ∩ V , we have

(id + ω) ◦ (id + ϕV ) = (id + ϕU ) ◦ (id + γ) (4)
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over U ∩ V . Conversely, if there is a 0-cochain ϕ = (ϕU , ϕV ) satisfying this
equation, then ex(ω) = ex(γ).

The quasiparabolic bundle Etriv has a natural grading. The equation (4) has

one component in
⊕L−d

l=1 Hom(El+d, El) for each d ∈ {1, . . . , L− 1}, namely

ωd − δ(ϕd) = γd +

d−1∑

e=1

(
ϕe

U ◦ γ
d−e − ωd−e ◦ ϕe

V

)
(5)

where δ is the Čech coboundary, defined by δ(ϕ) = ϕU − ϕV .
If γ and ω1, ϕ1, . . . , ωd−1, ϕd−1 are given, then the right hand side of (5) is

determined, and this equation has a unique solution (ωd, ϕd) ∈ H̃1×C0 because
δ is injective and H̃1 is mapped isomorphically onto its cokernel.

Component by component, this finally shows that (4) has a unique solution
(ω, ϕ). Hence there is a unique ω ∈

∏

l1<l2
H̃1(l2, l1) with ex(ω) = ex(γ).

Remark 2.5. If L = 2, then ex(γ) depends only on the cohomology class of γ,
so ex induces a canonical bijection H1

(
Hom(E2, E1)

) ∼
−→ Ext(E2, E1). For

L ≥ 3, the theorem gives us — under some hypothesis — a bijection

∏

l1<l2

H1
(
Hom(El2 , El1)

) ∼
−→ Ext(EL, . . . , E1)

that is not canonical as it depends on the choice of the H̃1(l2, l1).

Remark 2.6. The bijection ex in theorem 2.4 is algebraic in the following sense:
The cochains γ ∈

∏

l1<l2
H̃1(l2, l1) are the k-points of the affine space

Ext(EL, . . . , E1) :=
∏

l1<l2

Spec Sym H̃1(l2, l1)
dual.

There is a family Euniv parameterised by this affine space whose fibre over a
point γ is the underlying quasiparabolic bundle of the extension ex(γ). (To
construct Euniv, glue constant families of trivial extensions over U and over V
by id + γuniv where γuniv is a universal family of cochains.)

Remark 2.7. The assumption Hom(El2 , El1) = 0 in theorem 2.4 means that
extensions of E1, . . . , EL have no automorphisms. Then Ext(EL, . . . , E1) is a
fine moduli scheme of extensions; cf. section 1.2 of [5] for a proof.

In general, an extension (E, {F lE}, {ηl}) of E1, . . . , EL is not determined
by the quasiparabolic bundle E alone. But in some cases, at least the F lE are:

Lemma 2.8. Suppose that E1, . . . , EL are stable of parabolic degree zero with
respect to a common weight vector α and pairwise nonisomorphic.

i) If (E, {F lE}, {ηl}) is an extension of E1, . . . , EL and 1 ≤ l ≤ L, then
F l−1E is the only subbundle of F lE with quotient isomorphic to El.

ii) There is an extension (E, {F lE}, {ηl}) of E1, . . . , EL such that the only
proper subbundles of E with nonnegative α-degree are F 1E, . . . , FL−1E.

7



Proof. i) Stability yields End(El) = k and Hom(El′ , El) = 0 for all l′ 6= l.
Hence there are no nonzero morphisms from F l−1E or E/F lE to El. Thus π∗

is bijective and ι∗ is injective in the diagram of induced maps

Hom
(
E,El

) ι∗

−→ Hom
(
F lE,El

) π∗

←− Hom
(
F lE

/
F l−1E,El

)
= k · ηl. (6)

So all surjective morphisms from F lE to El have the same kernel F l−1E.
ii) Inequality (2) yields degHom(El+1, El) ≤ 0 for all l. Using g ≥ 2, we get

H1(Hom(El+1, El)) 6= 0, so there is a cochain γ ∈
∏

l1<l2
C1(Hom(El2 , El1))

with nonzero image in all these cohomology groups.
Denote the extension ex(γ) corresponding to γ by (E, {F lE}, {ηl}); we claim

that it has the desired property. E is semistable of degree zero; using induction
on L, it suffices to show that FL−1E contains all proper subbundles E′ of E
with degα(E′) = 0. Here E/E′ is automatically semistable; we may assume
without loss of generality that E/E′ is stable, i. e. E/E′ ∼= El for some l.

For l < L, the extension F l+1E
/
F l−1E of El, El+1 is nontrivial by the choice

of γ. This implies that π∗ηl is not in the image of ι∗ in (6), so Hom(E,El) = 0
follows. Hence E/E′ can only be isomorphic to EL, and E′ = FL−1E by i.

3 The fibres of the Boden-Hu map

Definition 3.1. Let α be a weight vector. A sequence (m1, . . . ,mL) of multi-
plicity vectors with degα(m1+. . .+mL) = 0 is α-stable if degα(m1+. . .+ml) < 0
holds for all l ∈ {1, . . . , L− 1}.

Lemma 3.2. Let α ∈ W (N, s)◦ be generic, and let m1, . . . ,mL be multiplicity
vectors with sum 1. Then there is a unique l ∈ {0, 1, . . . , L − 1} such that the
cyclicly permuted sequence (ml+1, . . . ,mL,m1, . . . ,ml) is α-stable.

Proof. Put d(l) := degα(m1 + · · · + ml) for all l. One checks easily that the
cyclicly permuted sequence (ml+1, . . . ,mL,m1, . . . ,ml) is α-stable if and only if
d(l) > d(l′) for all l′ ∈ {0, 1, . . . , L− 1} \ {l}. But no two d(l) are equal because
α is generic, so there is a unique maximum among them.

Recall that any semistable parabolic bundle (E,α) (say of degree zero) has
a stable composition series. More precisely, there is a finite set {Ei : i ∈ I} of
degree zero α-stable quasiparabolic bundles and a bijection σ : {1, . . . , L} → I
such that E is an extension of Eσ(1), . . . , Eσ(L).

By Jordan-Hölder, the set {Ei : i ∈ I} is uniquely determined by (E,α).
We call it the set of stable composition factors of E. Two semistable parabolic
bundles are S-equivalent if they have the same set of stable composition factors.

Proposition 3.3. Let E be a family of quasiparabolic bundles parameterised by
a k-scheme S of finite type such that all fibres Es, s ∈ S(k), are degree zero
α-semistable and S-equivalent. Assume that their common stable composition
factors Ei, i ∈ I, are pairwise nonisomorphic.

For each bijection σ : {1, . . . , L} → I, there is a closed subset Sσ ⊆ S such
that s ∈ S(k) is in Sσ if and only if Es is an extension of Eσ(1), . . . , Eσ(L).
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Proof. Applying the semicontinuity theorem to the sheafHom(E , E
σ(L)
S ) of mor-

phisms from E to the constant family E
σ(L)
S , we get a closed subset Z ⊆ S

such that a point s ∈ S(k) is in Z if and only if there is a nonzero morphism
φs : Es → Eσ(L). Without loss of generality, we replace S by an irreducible
component of Z; then S is integral.

All such φs are automatically surjective because Es and Eσ(L) are degree
zero α-semistable and -stable. So each Es is an extension of Eσs(1), . . . , Eσs(L)

for some bijection σs : {1, . . . , L} → I with σs(L) = σ(L).
By lemma 2.8.i, the dimension of Hom(Es, E

σ(L)) is one for all s. According

to corollary III.12.9 in [4], the direct image p∗Hom(E , E
σ(L)
S ) along the projec-

tion p : X × S → S is a line bundle L over S with fibres Ls = Hom(Es, Eσ(L)).
Twisting E by L defines a family of quasiparabolic bundles L ⊗ E together

with a canonical morphism L⊗E → E
σ(L)
S . The latter is a nonzero multiple of φs

over each s ∈ S(k), so it is surjective, and its kernel is a family of quasiparabolic
bundles E ′. According to lemma 2.8.i, Es is an extension of Eσ(1), . . . , Eσ(L) if
and only if E ′s is an extension of Eσ(1), . . . , Eσ(L−1); now use induction on L.

Theorem 3.4. Assume that β ∈ W (N, s)◦ is generic near α ∈ W (N, s)◦. Let F
be the fibre of the Boden-Hu map φβ : M(1)β →M(1)α over the S-equivalence
class of α-semistable bundles with stable composition factors Ei, i ∈ I. Denote
the multiplicity vector of Ei by mi and put L := |I|.

i) F has (L − 1)! irreducible components.

ii) There is a canonical bijection σ ↔ Fσ between irreducible components Fσ

of F and bijections σ : {1, . . . , L} → I such that (mσ(1), . . . ,mσ(L)) is
β-stable.

iii) The component of F corresponding to σ has dimension

dimFσ = 1− L+
∑

1≤l1<l2≤L

dim H1
(

Hom(Eσ(l2), Eσ(l1))
)

.

Proof. i) follows from ii and lemma 3.2.
ii) We have

∑

i m
i = 1 and hence mi 6= mj for i 6= j; thus Ei 6∼= Ej . So

proposition 3.3 defines a decomposition into closed subsets F =
⋃

σ Fσ where a
closed point of F is in Fσ if and only if the corresponding β-stable quasiparabolic
bundle is an extension of Eσ(1), . . . , Eσ(L).

Like in section 2, we use Čech cochains with respect to a fixed open affine
covering X = U ∪ V . For each i 6= j ∈ I, we choose a vector subspace

H̃1(i, j) ⊆ C1
(
Hom(Ei, Ej)

)

that maps isomorphically onto H1
(
Hom(Ei, Ej)

)
. The space of extensions

Ext(Eσ(L), . . . , Eσ(1)) =
∏

l1<l2

Spec Sym H̃1(σ(l2), σ(l1))
dual

9



parameterises a universal family Euniv, cf. remark 2.6. Restricting to the open
subscheme where Euniv is β-stable, we get a classifying morphism to M(1)β

which factors through a map

cl : Ext(Eσ(L), . . . , Eσ(1))β−stab −→ Fσ.

By construction, this map is surjective on k-points. Hence Fσ is irreducible if
it is nonempty.

If (mσ(1), . . . ,mσ(L)) is not β-stable, then no extension of Eσ(1), . . . , Eσ(L) is
β-stable, so Fσ is empty. Otherwise, we use lemma 2.8.ii to obtain an extension
(E, {F lE}, {ηl}) of Eσ(1), . . . , Eσ(L) such that the only proper subbundles of E
with nonnegative α-degree are F 1E, . . . , FL−1E. These have negative β-degree
by definition 3.1, and all other proper subbundles of E have negative β-degree
since β is near α. So E is β-stable, thus defining a point in Fσ. By the choice
of E, its point is not in Fτ for any τ 6= σ. This proves ii.

iii) The group
∏

i∈I Aut(Ei) ∼= (k∗)I acts on the set Ext(Eσ(L), . . . , Eσ(1))

of isomorphism classes of extensions (E, {F lE}, {ηl}) by changing the isomor-
phisms ηl; this is in fact an algebraic action on the extension space. The diagonal
k∗ ⊆ (k∗)I acts trivially. If E is β-stable, then Aut(E) = k∗, so the stabiliser
of (E, {F lE}, {ηl}) is just the diagonal, and its orbit has dimension L− 1. But
these orbits coincide with the fibres of the map cl by lemma 2.8.i. Thus

dimFσ = 1− L+ dimExt(Eσ(L), . . . , Eσ(1))

if Fσ 6= ∅. The dimension of the extension space follows from theorem 2.4.

Remark 3.5. The following explicit description of F is proved in [5]:
We let (k∗)I act linearly on H̃1(i, j) in such a way that (λi)i∈I acts as the

scalar λi/λj . This defines an algebraic action of the torus T := GI
m/Gm on the

affine space
∏

i6=j Spec Sym H̃1(i, j)dual. On its locally closed invariant subset

⋃

σ

Ext(Eσ(L), . . . , Eσ(1)) \
⋃

(mσ(1),...,mσ(L))
not β-stable

Ext(Eσ(L), . . . , Eσ(1)),

T acts freely, and the quotient is isomorphic to the fibre F in question.
In particular, the fibre components Fσ are smooth projective toric varieties;

one way to make them toric is to choose bases of the H̃1(i, j).

Remark 3.6. Theorem 3.4.i contradicts theorem 4.5 of [2]; the latter states that
all fibres of φβ are irreducible. What’s wrong with the argument given in [2]?

On page 554, line 8, it is claimed that the number of γ-stable composition
factors of a γ-semistable parabolic bundle E cannot exceed the number of its
β-stable composition factors by more than one if β covers γ in the sense defined
on page 553 of [2]. Here is a counterexample to that claim:

Let E be a generic extension of three bundles E1, E2, E3 that are γ-stable
of degree zero. Let β cover γ in such a way that degβ(E1) < 0, degβ(E2) = 0
and degβ(E3) > 0 hold. Then E is β-stable (because E2 is neither a subbundle
nor a quotient of E, just a subquotient), but it has three γ-stable composition
factors.
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4 Smallness and weights

The aim of this section is to reduce the Boden-Hu conjecture to combinatorics.
To that end, we need to express some ingredients of the fibre description 3.4 in
terms of weight and multiplicity vectors.

Definition 4.1. For each pair of multiplicity vectors m = (r, ď,m1, . . . ,mN )
and m′ = (r′, ď′,m′

1, . . . ,m
′
N ), we define

∆(m,m′) := 2rď′ +
∑

1≤a<b≤N

mam
′
b − 2r′ď−

∑

1≤b<a≤N

mam
′
b.

The bilinear form ∆ comes up as the antisymmetric part in the degree of
Hom(E,E′). More precisely, formula (1) in section 1 implies

deg(Hom(E,E′)) = −
rr′

2
+

N∑

n=1

mnm
′
n

2
+

1

2
∆(m,m′)

if m and m′ are the multiplicity vectors of quasiparabolic bundles E and E′. If
furthermore Hom(E,E′) = 0, then Riemann-Roch yields

dimH1(Hom(E,E′)) =

(

g −
1

2

)

rr′ −
N∑

n=1

mnm
′
n

2
−

1

2
∆(m,m′).

For a sequence of multiplicity vectors m1, . . . ,mL, we use the shorthand

∆(m1, . . . ,mL) :=
∑

1≤l1<l2≤L

∆(ml1 ,ml2).

Following [2], we recall the Jordan-Hölder stratification of M(1)α.

Definition 4.2. Assume given a weight vector α ∈ W (N, s)◦. An α-partition
is a finite set ξ = {mi : i ∈ I} of multiplicity vectors mi with degα(mi) = 0 and
∑

i∈I m
i = 1.

Note that the latter implies mi 6= mj for i 6= j. We have a locally closed sub-
set Σα

ξ ⊆M(1)α corresponding to semistable bundles whose stable composition

factors have multiplicity vectors mi. Σα
ξ is isomorphic to

∏

i∈I M(mi)α−stab, in
particular nonempty (since g ≥ 2). Each k-point of M(1)α lies in precisely one
stratum Σα

ξ .
The length of ξ is the cardinality |ξ| = |I| =: L. An ordered α-partition

is a sequence (m1, . . . ,mL) of multiplicity vectors ml with degα(ml) = 0 and
m1 + . . . +mL = 1. So it is the same thing as an α-partition ξ = {mi : i ∈ I}
together with a bijection σ : {1, . . . , L} → I.
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Theorem 4.3. The following two conditions on a weight vector α ∈ W (N, s)◦

are equivalent:

i) There is a generic weight vector β ∈ W (N, s)◦ near α such that the Boden-
Hu map φβ : M(1)β →M(1)α is small.

ii) For every ordered α-partition (m1, . . . ,mL) of length L ≥ 3, there is an
l ∈ {0, 1, . . . , L− 1} with ∆(ml+1,ml+2, . . . ,mL,m1, . . . ,ml) < L− 1.

The same holds if we replace ‘small’ by ‘semismall’ and ‘<’ by ‘≤’.

Proof. Consider an ordered α-partition (m1, . . . ,mL). With ml = (rl, . . .) and
ξ := {m1, . . . ,mL}, the dimension formula (3) yields

codim
(

Σα
ξ ⊆M(1)α

)

= 1− L+ (2g − 1)
∑

l1<l2

rl1rl2 .

Let β be generic near α and assume that (m1, . . . ,mL) is β-stable. Then the
corresponding fibre components Fσ of the Boden-Hu map φβ over Σα

ξ satisfy

dimFσ = 1− L+
∆(m1, . . . ,mL)

2
+

(

g −
1

2

)
∑

l1<l2

rl1rl2

by theorem 3.4; hence we conclude

codimΣα
ξ − 2 dimFσ = L− 1−∆(m1, . . . ,mL). (7)

i ⇒ ii: Suppose that φβ is small. Then the right hand side of (7) is positive
whenever (m1, . . . ,mL) is β-stable. ii thus follows from lemma 3.2.

ii⇒ i: Define v = (v1, . . . , vN ) ∈ RN by vn := 2Nαn−2s+N−2n+1. Then
v1 + . . . + vN = 0, so α + εv is in W (N, s)◦ and near α if ε > 0 is sufficiently
small. Choose β ∈W (N, s)◦ generic near α+ εv; we will show that φβ is small
if ii holds.

Let (m1, . . . ,mL) still be an ordered α-partition which is β-stable. We claim
∆(m1, . . . ,mL) ≤ ∆(ml+1, . . . ,mL,m1, . . . ,ml) for all l; this means that the
right hand side of (7) is positive and φβ is small if ii holds.

(It suffices to assume ii for L ≥ 3 because ii is always true for L = 2: At
least one of the integers ∆(m1,m2) and ∆(m2,m1) is always less than one since
their sum is zero.)

To prove the claim, assume 1 ≤ l ≤ L − 1 and put m := m1 + . . . + ml.
Because ∆( , ) is alternating and bilinear, we have

∆(m1, . . . ,mL)−∆(ml+1, . . . ,mL,m1, . . . ,ml) = 2∆(m,1−m) = 2∆(m,1).

Recall that degα(m) = 0 and
∑
mn = r if we write m = (r, ď,m1, . . . ,mN ).

An easy calculation using these shows m1v1 + . . . + mNvN = ∆(m,1), hence
degα+εv(m) = ε∆(m,1). But degβ(m) < 0 by stability, so degα+εv(m) ≤ 0 by
the choice of β; this implies ∆(m,1) ≤ 0, thus proving the claim. It follows that
ii implies i. The statement about semismallness is proved analogously.
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Corollary 4.4. If s ∈ {2, N−2}, then the Boden-Hu conjecture holds for every
weight vector α ∈W (N, s)◦.

Proof. For such a weight sum s, there is no α-partition of length L ≥ 3, so the
criterion ii above is trivially satisfied.

Remark 4.5. The Boden-Hu conjecture for α ∈ W (N, s)◦ is equivalent to the
same conjecture for the dual weight vector

αdual := (1− αN , . . . , 1− α1) ∈ W (N,N − s)◦.

One way to see this is to replace every multiplicity vectorm = (r, ď,m1, . . . ,mN )
by its dual

mdual := (r,−r − ď,mN , . . . ,m1)

and to check that the criterion ii above is preserved. (The moduli schemes

M(m)α and M(mdual)αdual

are in fact canonically isomorphic; the isomorphism
sends a quasiparabolic bundle E to the vector bundle Ědual⊗OX(−P ) endowed
with the induced quasiparabolic structure.)

Remark 4.6. The Boden-Hu desingularisation φβ : M(1)β → M(1)α is in fact
a Zariski-locally trivial fibration over each stratum Σα

ξ ; cf. [5] for a proof.

5 Counterexamples

Proposition 5.1. If the integers N and s satisfy one of the two conditions

i) N ≥ 9 and 4 ≤ s ≤ N − 4,

ii) N ≥ 11 and s ∈ {3, N − 3},

then there exists a weight vector α ∈ W (N, s)◦ such that the Boden-Hu map
φβ : M(1)β →M(1)α is not semismall for any generic β ∈ W (N, s)◦ near α.

Proof. By duality 4.5, we may assume s = 3 in case ii. We construct the weights
0 < α1 < . . . < αN < 1 as follows:

i) Choose a positive integer t ≤ N/9 with 3t < s < N − 3t, e. g. t = 1.
Let α1, . . . , αN−s−3t be close to 0 with a sufficiently small sum ε. Choose
αN−s−3t+1, . . . , αN−s close to 1/3 with sum t and αN−s+1, . . . , αN−s+3t

close to 2/3 with sum 2t. Finally, let αN−s+3t+1, . . . , αN be close to 1
with sum s− 3t− ε.

ii) Choose α1, . . . , αN−7 close to 0 with ε :=
∑N−7

n=2 αn sufficiently small. Let
αN−6, . . . , αN−3 be close to 1/3 with αN−6+αN−4+αN−3 = 1. Take αN−2

and αN−1 close to 1/2 with sum 1−α1. Finally, put αN := 1−αN−5− ε.

Here are explicit examples for these constructions:

i) α = ( 1
15 ,

2
15 ,

1
7 ,

2
7 ,

4
7 ,

7
12 ,

2
3 ,

3
4 ,

4
5 ) ∈W (9, 4)◦

ii) α = ( 1
26 ,

1
20 ,

1
15 ,

1
12 ,

2
11 ,

1
5 ,

4
11 ,

5
11 ,

6
13 ,

1
2 ,

3
5 ) ∈W (11, 3)◦
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In general, we have constructed a weight vector α ∈ W (N, s)◦ such that the
following three multiplicity vectors form an ordered α-partition (m1,m2,m3):

i) m1 = (N − 6t, 3t− s, 1, . . . , 1, 0, . . . , 0, 0, . . . , 0, 1, . . . , 1),
m2 = ( 3t, −t, 0, . . . , 0, 1, . . . , 1, 0, . . . , 0, 0, . . . , 0),
m3 = ( 3t, −2t, 0, . . . , 0

︸ ︷︷ ︸

N−s−3t

, 0, . . . , 0
︸ ︷︷ ︸

3t

, 1, . . . , 1
︸ ︷︷ ︸

3t

, 0, . . . , 0
︸ ︷︷ ︸

s−3t

)

ii) m1 = (N − 6, −1, 0, 1, . . . , 1, 0, 1, 0, 0, 0, 0, 1),
m2 = ( 3, −1, 0, 0, . . . , 0, 1, 0, 1, 1, 0, 0, 0),
m3 = ( 3, −1, 1, 0, . . . , 0

︸ ︷︷ ︸

N−8

, 0, 0, 0, 0, 1, 1, 0)

Directly from the definition 4.1 of ∆, we get

i) ∆(m1,m2,m3) = ∆(m2,m3,m1) = 3t2 ≤ t(2N − 15) = ∆(m3,m1,m2).

ii) ∆(m1,m2,m3) = ∆(m2,m3,m1) = 3 ≤ 2N − 19 = ∆(m3,m1,m2).

So φβ is not semismall for any generic β near α by theorem 4.3.

Remark 5.2. Choosing t maximal, these examples show that ∆(m1,m2,m3),
∆(m2,m3,m1) and ∆(m3,m1,m2) can all be as large as N2/27 for an ordered
α-partition (m1,m2,m3). One can deduce from lemma 6.1.i below that they
cannot all three be larger. Together with theorem 4.3, this boundN2/27 roughly
explains why the Boden-Hu conjecture holds only up to N ≈ 7 or 8.

6 Low rank proof

Lemma 6.1. Let three multiplicity vectors m, m′ and m′′ be given. Write
m = (r, ď,m1, . . . ,mN) and µ̌ := ď/r, similarly for m′ and m′′.

i) ∆(m,m′)
rr′

+ ∆(m′,m′′)
r′r′′

+ ∆(m′′,m)
r′′r

≤ 1.

ii) If 1
3 6∈ {µ̌− µ̌

′, µ̌′− µ̌′′, µ̌′′− µ̌}, then ∆(m,m′) < rr′

3 or ∆(m′,m′′) < r′r′′

3

or ∆(m′′,m) < r′′r
3 .

Proof. The definition 4.1 of ∆ yields

∆(m,m′)

rr′
= 2µ̌′ − 2µ̌+

N∑

a,b=1

ma

r
·
m′

b

r′
· sgn(b− a)

where sgn(x) is 1 for x > 0, 0 for x = 0 and −1 for x < 0. Consequently, the
left hand side of i equals

N∑

a,b,c=1

ma

r

m′
b

r′
m′′

c

r′′
(sgn(b − a) + sgn(c− b) + sgn(a− c)).
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But we always have sgn(b − a) + sgn(c− b) + sgn(a− c) ≤ 1, so i follows.
Assume that ii is false. Then we have equality in i, and all summands on

the left hand side of i are equal to 1/3. In particular, all indices a, b, c with
ma,m

′
b,m

′′
c 6= 0 must satisfy sgn(b − a) + sgn(c − b) + sgn(a − c) = 1, i. e.

a < b < c or b < c < a or c < a < b.
Now let n be maximal with mn+m′

n+m′′
n 6= 0; permuting m,m′,m′′ cyclicly

if necessary, we may assume m′′
n 6= 0. The previous argument with c := n shows

a < b wheneverma,m
′
b 6= 0; hence ∆(m,m′)/rr′ = 2µ̌′−2µ̌+1. This contradicts

the hypothesis µ̌− µ̌′ 6= 1/3, thereby proving ii.

Lemma 6.2. Let {m,m′,m′′, . . .} be an α-partition for some α ∈ W (N, s)◦.
Write m = (r, ď,m1, . . . ,mN ) and similarly for m′, m′′.

i) If r = r′ = 2, then ∆(m,m′) = 0.

ii) If ď = ď′ = ď′′ = −1 and r′′ = 2, then ∆(m,m′) ≤ (r − 4)(r′ − 2)− 2 or
∆(m′,m′′) ≤ 0 or ∆(m′′,m) ≤ 0.

Proof. i) Note that ď = ď′ = −1. Let a1 < a2 (resp. b1 < b2) be the two indices
with ma1 = ma2 = 1 (resp. m′

b1
= m′

b2
= 1); then αa1 + αa2 = αb1 + αb2 = 1.

As the αn are numbered by their size, this implies a1 < b1 < b2 < a2 or
b1 < a1 < a2 < b2; in both cases, definition 4.1 yields ∆(m,m′) = 0.

ii) Let c1 < c2 denote the two indices with m′′
c1

= m′′
c2

= 1. Put

mlow :=

c1−1∑

n=1

mn, mmid :=

c2−1∑

n=c1+1

mn, mhigh :=

N∑

n=c2+1

mn,

and define m′
low, m′

mid, m
′
high similarly. The definition 4.1 of ∆ yields

∆(m ,m′ ) ≤ 2r′ − 2r + rr′ − 2mmidm
′
low,

∆(m′ ,m′′) = 4− 4m′
high − 2m′

mid,

∆(m′′,m ) = 4mhigh + 2mmid − 4.

On the other hand, m and m′′ have α-degree zero, so

αc1 + αc2 = 1 =

N∑

n=1

mnαn > mmidαc1 +mhighαc2 .

Since we have 0 < αc1 < αc2 , this implies mhigh = 0 or (mhigh,mmid) = (1, 0).
Consequently, ∆(m′′,m) can only be positive if mmid ≥ 3. If this is the case
and ∆(m′,m′′) is also positive, then m′

high = 0 and m′
mid ≤ 1, hence

∆(m,m′) ≤ 2r′ − 2r + rr′ − 2 · 3(r′ − 1) = (r − 4)(r′ − 2)− 2.

Lemma 6.3. Let m = (r, ď,m1, . . . ,mN) and m′ = (r′, ď′,m′
1, . . . ,m

′
N) be

multiplicity vectors with mn +m′
n ≤ 1 for all n. Then ∆(m,m′) ≡ rr′ mod 2.
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Proof. The sum in the definition 4.1 of ∆ contains rr′ odd summands.

Theorem 6.4. If the integers N and s satisfy one of the two conditions

i) N ≤ 8,

ii) N ≤ 10 and s ∈ {3, N − 3},

then the Boden-Hu conjecture holds for every weight vector α ∈W (N, s)◦.

Proof. We check that every ordered α-partition (m1, . . . ,mL) of length L ≥ 3
satisfies the criterion in 4.3.ii. Write ml = (rl, ďl, . . .); then rl ≥ 2 since no
weight is an integer, and r1 + . . .+ rL = N .

In case ii of the theorem, we may assume s = 3 by duality 4.5; then L = 3
and ď1 = ď2 = ď3 = −1 because the ďl are negative and have sum −s.

The only case with L ≥ 4 is L = 4 and rl = 2 for all l; here lemma 6.2.i
yields ∆(m1, . . . ,m4) = 0 < L − 1. It remains to consider L = 3. Because
∆( , ) is alternating, we have ∆(m1,m2,m3) + ∆(m2,m3,m1) = 2∆(m2,m3)
and similar cyclicly permuted identities, so it suffices to prove

∆(m1,m2) < 2 or ∆(m2,m3) < 2 or ∆(m3,m1) < 2. (8)

If at least two of the three numbers r1, r2, r3 are odd, then ∆(m1,m2,m3),
∆(m2,m3,m1) and ∆(m3,m1,m2) are odd by lemma 6.3, so it suffices to prove

∆(m1,m2) < 3 or ∆(m2,m3) < 3 or ∆(m3,m1) < 3. (9)

If r1, r2 are odd and r3 is even, then ∆(m2,m3) and ∆(m3,m1) are even by
lemma 6.3, so it even suffices to prove

∆(m1,m2) < 3 or ∆(m2,m3) < 4 or ∆(m3,m1) < 4. (10)

We use the lemmas 6.1 and 6.2 to obtain such inequalities. Because we may
permute m1,m2,m3 cyclicly, there are four cases:

1) r1 = r2 = 2. Here (8) follows from 6.2.i.

2) r1 = 2, r2 = r3 = 3. Here (9) follows from 6.1.i.

3) s = 3, r1 = 2. Here (8) follows from 6.2.ii.

4) s = 3, r1 = r2 = 3, r3 ∈ {3, 4}. Here (9) resp. (10) follows from 6.1.ii.

References

[1] U. N. Bhosle. Parabolic vector bundles on curves. Ark. Mat., 27(1):15–22,
1989.

[2] H. U. Boden and Y. Hu. Variations of moduli of parabolic bundles. Math.
Ann., 301(3):539–559, 1995.

16



[3] M. Goresky and R. MacPherson. Intersection homology. II. Invent. Math.,
72(1):77–129, 1983.

[4] R. Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977.

[5] N. Hoffmann. On vector bundles over algebraic and arithmetic curves. PhD
thesis, University of Bonn, 2002. Bonner Mathematische Schriften 351.
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