TRACE FORMS OF SYMBOL ALGEBRAS

RONAN FLATLEY

AsstracT. Let S be a symbol algebra. The trace form $fis computed and it is
shown how this form can be used to determine whethisra division algebra or not.
In addition, the exterior powers of the trace formSare computed.

1. INTRODUCTION

Let n be an arbitrary positive integer and Ktbe a field containing a primitive-th
root of unityw. Unless stated otherwise, we assume throughout this paper thahar(
is different from 2 and does not dividge Let K* = K\{0}. Leta,b € K* and letS be
the algebra oveK generated by elementsandy where

X'=a, y"=b and yx=owxy.

We call this algebra aymbol algebrgsee [4, Chapter 1§2]). Note that in[[2,§11],
Draxl calls such an algebrgomwer norm residue algebyaenoting it as4, b; n, K, w)
and shows it to be a central simple algebra d¢esf degreen. Quaternion algebras
are the symbol algebras of degree 2.

Let Abe a central simple algebra of degreever a fieldK of characteristic dierent
from 2. We writeTx: A — K for the quadratic trace form

Ta(2 = Trda(Z2) forze A

where Trdl is the reduced trace & The main purpose of this paper is to compute the
trace form of a symbol algebi@ and to show how the form determines if the algebra
is division.

Notation and terminology is borrowed from Lam’s book [5] and Scharlau’s book
[11]. A diagonalised quadratic form ov&r with codficientsay,...,a, € K* is de-
noted by(ay,...,an). The hyperbolic planél, —1) is denoted byH. If ¢ andy are
forms overK theny ~ i means that these forms are isometric. The Witt index isf
denoted by (¢) and the anisotropic part gfby ¢a,, SO that we have ~ ¢,y L (i x H)
wherei = iyw(¢). The tensor product of the 1-dimensional fofm) with ¢ is denoted
(N to be distinguished from copies ofy which is written as x ¢.

Date November 27, 2008.
2000Mathematics Subject ClassificatioRrimary: 11E81; Secondary: 16K20.
Key words and phrasesymbol algebra, trace form, exterior power.

1



2 RONAN FLATLEY

2. SYMBOL ALGEBRAS AND THEIR TRACE FORMS
Let S be the symbol algebrayb; K, n, w) with basis{x'y!}, 0 <i,j <n-1.

Proposition 2.1. We have
2

(i) Ts=(nL n x H for n odd.

n? -4

(i) Ts=(n¥1 ab,(-1)"2aby L x H for n even.
Proof. Let ¢1, be the symmetric bilinear form associated witg. Consider{x'y'},
0 <i,j < n-1, the set ol basis elements dd. Consider the left regular matrix
representation of each such element under the isomorplgsdhin the definition of
the trace map. Easy, but tedious arguments, and switctongtfre trace to the reduced
trace show that o o

¢1s(Xy!, Xy') = Trds((X'y')?) = 0
unless we have of the following cases:

i=]=0, in which case the reduced tracenis
I=0andj = g in which case the reduced tracenis
I = 2 andj =0, in which case the reduced traceng;
I = r_21 andj = r_21 in which case the reduced trace islj?nah

Clearly, the latter three cases only ariseri@ven.
(i) Lei = ] = 0. Theng¢r (1, 1) = n, as mentioned above. Now letli, j < n— 1.
There are52 pairs Ky/, X" 'y"J) and we have
P (Xy!, X1y 1) = Trds(Xy! X 'y"™) = Trdg ('™ x"y") = nwab.
Each pair contributes ax22 block in the Gram matrix ofr, as follows:
o15(=-) | Xy Xy

Xyl |0 nw'ab
X'y | nw™ab 0

Each such block corresponds to a 2-dimensional hyperbtdmmepwhich is a direct
summand offs. The Gram matrix will have exactly one non-zero entry in edmi
HenceTs ~(n) L %‘1 x H.

(i) The subsetl, xV?, y"?, xV?y"/?} of basis elements & gives rise to the quadratic
form (n)(1, a, b, (-=1)"2ab). By placing the othen? — 4 basis elements into ordered
pairs of the form 'y!, x*y"1), we get thatpr, maps each pair tow™"/ab as seen
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in the proof of(i). So we get”zT‘4 hyperbolic planes as direct summands. Hence
Ts ~ (NX1,a b, (-1)"2ab) L -4 x H. .

By way of example, the matrix dfs whenn = 3 is as follows:

3a 0
3b
0

w
[

0 3wlab
3wlab 0
0 3wab

3wab 0

The matrix is computed for the basis elemefitsx, X2, y, y?, Xy, X2y?, X2y, xy?} and
each blank entry in the matrix is zero.

3. FURTHER RESULTS WHEN deg S 1s obp

We now return to the case wheris odd and show that we can improve upon the
formula deduced fofs. We require the following two propositions.

Proposition 3.1. Let n be odd. Thetn) =~ ((-1)"2).

Proof. We recall the following definitions from classical numbeeahy: for p an odd
prime

Where('a) is the Legendre symbol and

We have the theorems (sée [8], for example)
p* =15 and (_—1) = (-1)7
p
and the facts
pi=1 (mod4)e pi=p1 and p,=3 (Mod4)s p, =—ps,.

Suppose is prime. Thent? = n* = (%)n = (—1)";21 n. On the other hand suppose
is compound. Write = Htj:l pj where thep; are primes, not all necessarilyfidirent
andt > 1. 1fn=1 (mod 4) then
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Otherwise, ifn = 3 (mod 4) then

t

t t 2
n=-[]p=C07]]p :(—1)“;21( n] -
j=1 j=1

j=1
Hence(n) =~ ((-1)"2). -
Proposition 3.2. Let n be odd. Thenr (1) ~ <(—1)”;21> 1 ”;21 X H.

Proof. Recall that thdevelof a field F, denoteds(F), is the least number of squares
required to sumte-1in F or « if no such number exists. Sinéecontains a primitive
n-th root of unity,s(K) € {1,2,4}. If n= 3 or 5 (mod 8), them has a prime divisop
such thatp = 3 or 5 (mod 8). In this case we hag) = 2 by [3]. Thus, 2x (1) ~

2 x (—1) which implies

n><<1>:3><<1>¢n%1><H ifn=3 (mod 8)

~(-1) L n%l x H

n-7 ,

n><<1>25><<1>J_T><H ifn=5 (mod 8)

~ (1)L n%l x H.

In the remaining cases of interest we ha{i€) < 4, i.e. 4x (1) ~ 4x(-1). Therefore,

n><<1>:(l)J_n%1><H ifn=1 (mod 8)
n><<1>:7><<1>¢n%7><H ifn=7 (mod 8)

1
:<—1>¢nTxH.

Corollary 3.3. For n odd, | ~ n? x ((=1)' ).
Proof. Proposition§ 2ii) and 3.1 show that fan odd,

2

Ts={(n) L x H

n-1
x H.

= (-1)7) 1
Then by Proposition 3l2 and the fact that
P x((-1)7) = nx((-1)7) @ nx (1),

we getTs = N2 x ((=1)'7). "
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Remark 3.4. For n odd, we could also writds ~ nx (1) L iz‘” x H which can
be deduced from the calculation in the split case, see [@fther with Springer's
Theorem on odd degree extensions (5ee [5, p.194], for ex@ampl

4. TRACE FORM CRITERIA TO DETERMINE IF A SYMBOL ALGEBRA IS DIVISION

Proposition 4.1. If n = 2 (mod 4)then the quaternion algebi@, b)k is contained in
S.

. 2 2
Proof. Consider the elementg’?, y"? ¢ S. Then(x”/z) = a, (y”/z) = b and
LN (wn/z)”/2 X202 = _x/2y /2 .

Proposition 4.2.1f n = 2 (mod 4)and Ts is hyperbolic ther-1 is a square in K and
S is not a division algebra.

Proof. Suppose€Tls is hyperbolic. By Proposition 4.1Q := (a,b)x ¢ S. Sincenis
even we have from Proposition Xif) that

2 _ 2 _
n _ < H =~ ()L ab,-ab) L " > 4
Thus, by our assumptiol, a, b, —ab) ~ 2 x H and by evaluating determinants we
get(-1) =~ (1). Thus, the norm form 0@, Ng := (1, —a, —b, ab) is hyperbolic. This
implies thatQ, and thusS, contains zero divisors. Therefoi®js not division. ]

Ts = (n)(1,a, b, (-1)"2aby L x H.

Proposition 4.3. Let K be a field such thatl € K*2. Let A be any central simple
algebra over K. Let n= deg, A be a power of. If T, is not hyperbolic, then Ais a
division algebra.

Proof. SupposéA is not a division algebra. TheA = M, (D) for some integer > 1
and some division algebia overK. Now Ta = Ty, o) = Twm,(k)exd = Tmx) ® Tp =
r x (1) ® Tp by [6, Lemma 1.2]. Sincen is a 2-power,r must be even and since
-1 € K*?, we have thaT , is hyperbolic. .

5. EXTERIOR POWERS OF THE TRACE FORM OF A SYMBOL ALGEBRA

Bourbaki defined the concept of exterior power of a symmaéiificear form in
[1, 1X, §1, (37)]. McGarraghy derived basic properties of such formghe Witt-
Grothendieck ring of a field if_[7]. We present some key deéing and results for
exterior powers from McGarraghy’s paper as well as some esuits. In all cases
denotes a field of characteristididirent from 2.

Definition 5.1. Let ¢ : V xV — K be a bilinear form and lét be a positive integer
not greater tham. We define thé-fold exterior powenof ¢,

AXp : AWV x ARV - K

by
AkSO(Xl A A Xy A Ayy) = det(e(x, Uj))lgi,jgk-
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We defineA%y := (1), the identity form of dimension 1. Fdr> m, we defineAXp to
be the zero form, sinc&*V = 0 for allk > m.

Let V be a vector space of dimensianoverK. If kis a non-negative integer then
thek-fold exterior power ofV, AV, has dimensioffy), where we tak¢}) to be 0 for

all k > m. In particular, if{vs, . . ., vy} is a basis fol, then a basis foAV is given by
the set ofk-fold wedge productési, A --- Av;, : 1<i; <--- <ix < m}and there are

(V) such expressions.

Remark 5.2. We haveAly ~ ¢. It is easily seen thanky is a bilinear form and is
symmetric ife is symmetric. Also, ifg is the quadratic form associatedgpwe write
AXq for the quadratic form associated .

Proposition 5.3.[7, Proposition 4.1] et V be a vector space over K wilimy¢V = m.
Let ¢ be a symmetric bilinear form over K with ~ (a,,...,an. ThenAXp is a
symmetric bilinear form of dimensic(@) and

No~ L @,..a)

1<ip<--<ig<m

In particular, A¥(mx (1)) ~ (T) x (1).

Remark 5.4. We also have that*(mx (-1)) = (T) X ((=1)1).

Proposition 5.5. [[7, Proposition 7.3].ety andy be symmetric bilinear forms over K
and let ke N. Then _ .
Np 1) = L Aponly
i+j=

5.1. Exterior powers of hyperbolic forms. We now compute exterior powers of a
hyperbolic form¢ ~ h x H whereh € N.
Proposition 5.6. Let¢ ~ h x H where he N and k odd withl < k < 2h - 1. Then

Ak ~ %(Zkh) x H.

Proof.

A*¢ = A(hx (1) L hx (-1))

i+j=k

~ 1 (?) x (1) ® (T) X ((—=1)'

i+ j=k

= 2@ SN

i odd i even

~ L Al(hx (D)@ al(hx (-1)
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Since
)= 2 )
mzd:d(l k—i ién k-1
for k odd and sinceé\*g has dimensioffy), the result follows. n

Proposition 5.7. Let¢ ~ h x H where he N, k=20 and0 < ¢ < h. Then

. (h . 1{(2h\ (h
o[ B )

Proof. We use induction ot and¢. Let P(h, ¢) be the statement in the proposition.
P(h, 1) is true for allh since

2. _ofh h
A¢_2(2)><<1>J_(1) X (1)
h 1/((2h h
- o)x s 3((Z)- ())<=

ConsiderP(1, ¢). Here¢ ~ H and? € {0, 1}. Now

AH = (1) ~ (é) x ((-1)% L % ((g) - (cl))) x H

and

e ol 333

SoP(L,¢) is true.

Inductive step Let m,n be integers, O< m < h. AssumeP(m,n — 1) is true for
0 < n-1 < mor, equivalently, I n < m+ 1. The cas@ = m+ 1 givesA?™?D := (0.

Also, assume tha®(m — 1, n) is true for 0< n < m—- 1. We proveP(m, n) to be true
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forO<n<m

A"¢ = A*(mx H)

= A”'((m-1)x H L H)

1R

1 Aim-1)xmeAn

i+j=2n

~ A”'((m- 1) x H) L A*™Y((m- 1) x H) @ H L A**((m- 1) x H)
. (m; 1) X (1)) L ;((Z“‘; 1>) - (m; 1)) X H L (Zg‘j: 1“) < H
S8 ERCE{oe

(i 530 ()

by P(m- 1, n), P(m,n - 1) and Proposition 516. .

Remark 5.8. The above proposition has been proved for ordered fields, iArpposi-
tion 11.8]. The proof uses the signaturefofvith respect to an ordering.

Remark 5.9. In [[7] it was shown that wheK is an ordered field and a hyperbolic
form thenAX¢ is hyperbolic if and only ik is odd. Proposition 517 shows that this is
not true for fields in general. For example, for a figld¢ontainingy—1 andg ~ 4xH,
we haveA2p = (‘1‘) x(-1) 11 ((g) - (‘1‘)) x H = 14x H.

5.2. Some properties of binomial cofficients. We use some properties of binomial
codficients in the subsequent section. Some of them are wellHknotkers not. All
of them can be derived from first principles or by using idéedito be found in([9,
Chapter 1], for example. We list the properties here:
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a5

(rs _(sil :%_128(11)’
(5= (5)-45)
|

r r+2-2sfr+2
s—2 r+2 s J

5.3. Computation of exterior powers of the trace form of a symbol dgebra. Let

K andS be as in Section 1. From Propositiéns|2.1] 3.1[and 3.2, wethav¢he trace
formof Sis

C[nx(D) LB X H = ((-1)7) L T2 xH, if nis odd;
7 lnx L a b, (-1)%ab) L ”27‘4 x H, if nis even.

For the remainder of this section, we shall use “Hyp” to derast unspecified number
of hyperbolic planes. Thus we may restate the computed toageof S as

_[nx(1) L Hyp = ((-1)7) L Hyp, if nis odd;
® 7 JnxL a, b, (-1)2ab) L Hyp, if nis even.

Proposition 5.10. Let n be odd and k an integer such tifat k < n?. Then

=3
N

-1

x ((-1)T") L Hyp, ifkis odd;

2
k—

[uN

AkTS =

=
S
-

x ((-1)2) L Hyp, ifkis even.

NIx N‘
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Proof. Let k be odd. Then

ARTs = Ak(n < H L <(—1)"—zl>)

2 _ _ L
~ LA (n 5 1 xH)®A1<(—1)"T>

~ A 5 XxH| LA TXH

-1 -
= (k_zl ) x((-1)7) L Hyp.
2
A similar computation for evek yields the result. ]

Proposition 5.11.Let n be even. We writesT~ gs L mx Hwhere @ ~ (n)(1, a, b, (-1)2ab)

and m= T Then, for0 < k < n?,

H

T x (- 1)“7ygs L Hyp, if k is odd;

INEJN :"’N

r ) x (1) L Hyp, ifkisevenandi= 0 (mod 4)
A g =

(
(
(1-

)(E) x ((-1)%) L Hyp, ifkiseven, ks @ and n=2 (mod 4)
2

(% - )@) x ((-1)'*) L Hyp, ifkiseven, k- % andn=2 (mod 4)

n2
Proof. Case (i) Letk be odd. Then
AXTs = AK(Mx H L gs)
~ AN mxH)®gs L A3(mxH) ® Asgs L Hyp

o (k_ml) x(-1)7)®gs L (k_mg) x ((-1)'7) ® ((~1)?)qgs L Hyp.
2 2

Whenn = 0 (mod 4) we have-1 € K*? and so

m m m+1
AT ~ ((ﬂ) +( )) X Qs L Hyp = ( 1 )x ds L Hyp.
2 2

2
On the other hand, whan= 2 (mod 4),

m+1

AKTg ~ (
2

) ((-1)7)as L Hyp.
Hence, fom even andk odd, we have

n?-2

é) X ((-1)"7)ds L Hyp.

AkTS = (
2
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Case (ii) Letk be even. Then
A¥Ts = A¥(Mx H 1 gs)
~ AKmx H) L A2 (mx H) ® A%gs L A¥*(mx H) ® A*gs L Hyp

= (T) X ((-1)%) L (k_”l) x ((~1)2)(~1)) L Hyp.
2 2
Whenn = 0 (mod 4) we have-1 € K*? and so

AKTs = (T) + (k_”l)) x (1) L Hyp
2

2

m+ 2

= « )x (1) L Hyp
- 2

= i)x<1> L Hyp.
2

On the other hand, when= 2 (mod 4) we have thg{-1)2) ~ (—1) and so

((’g‘) - ( ”‘)) x ((-1)%) L Hyp, ifk<2;
x ((-1)¥) L Hyp, ifk>12

AKTg ~

x ((-1)%) L Hyp, ifk<Z;

|I\)
™l

~—
—

2
n2

x ((-1)'F) L Hyp, ifk> 2.

(%)
(-3
<

NEINEENTINES N'r

|
H
N—
—

]
Example 5.12.By Propositiori 5.111 witm = 4 andk odd, we get\kTg ~ (k;l) X (s L
Hyp. Since(f) is odd for 0< | < 7, it follows thatAXTs ~ gs L Hyp for k odd,
1 < k < 15. Forn = 4 andk even we getA\KTg =~ (’g) x (1) L Hyp. Since(?) is

even for 1< | < 7 it follows thatAkTs is hyperbolic. These conclusions confirm][10,
Corollaire 2].

Remark 5.13. In general, fom = 0 (mod 4) andk even, it is not true thad Ts is
hyperbolic. For example, with = 12, A1®Tg ~ (1) 1 Hyp.

Remark 5.14. From Proposition 5.11 it follows that“Ts is hyperbolic fom even and
k € {n,%}. For, whem =0 (mod 4) we have

2

|’12 n_
AZTg =~ (nzz)x<1> L Hyp
4

n2-2
:2( 2_)><<1>J_Hyp
a4
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and whem = 2 (mod 4) the result follows directly from the formula fafTs.

Remark 5.15. It follows from Propositioi 5.2/1 thah™Ts is anisotropic whem is
even.

Remark 5.16. As a consequence of Proposition 3.AfTs is hyperbolic whem = 0
(mod 4),pis an odd prime divisor afi andk € {2, 4, 8, 2p, 4p, 8p}.
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