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Abstract 
 

Title of thesis: Construction of TP Quantitative Models Based on Diatoms and 

Cladocera for the Irish Ecoregion Using Palaeolimnological Techniques 

 

Author of thesis: Guangjie Chen 

 

 

This study uses palaeolimnological techniques and numerical methods to construct TP 
transfer functions for the Irish Ecoregion based on both phytoplankton (diatoms) and 
zooplankton (Cladocera) remains and applies them to the sediments of seven impacted 
lakes to identify the pre-impacted reference conditions and help inform lake restoration 
targets.  
 
A 72-lake diatom training-set and a 33-lake Cladocera training-set were developed 
along a TP gradient (max. 142.3 μg l-1 TP). Seventeen related environmental variables 
were available for data exploration. A variety of exploratory and multivariate data 
analyses were used to investigate environmental and biological data structure and their 
relationships using the R program. Detrended Correspondence Analysis (DCA) revealed 
a high degree of species heterogeneity in the diatom data compared to the Cladocera 
data. Both datasets were used to assess the viability of the Irish Lake Typology physico-
chemical classification scheme using hierarchical clustering method and both organisms 
provided good biological verification. 
 
Ordination analyses showed that nutrient gradient was among the most significant 
variables in determining both the diatom assemblages of 72 lakes and the Cladocera 
assemblages of 33 lakes. TP transfer functions were constructed using Weighted 
Averaging (WA)-related and linear modelling methods. A diatom TP transfer function 
produced a jack-knifed coefficient of determination (r2

jack) of 0.743 with a root mean 
squared error (RMSEP) of 0.213 based on untransformed diatom data from 70 lakes. A 
TP transfer function built on square root transformed Cladocera data from 31 lakes 
yielded an r2

jack of 0.729 with a RMSEP of 0.206. A sub-set of lakes where both diatom 
and Cladocera data were available were examined to compare the predicted TP from 
both models and they displayed a strong correlation (r = 0.685) for log-transformed TP. 
 
TP models based on both indicators were applied in top-bottom analyses of seven 
impacted lakes. Diatom and Cladocera results indicated a similar trend of nutrient 
enrichment between the current (top samples) and reference status (bottom samples) for 
most of the lakes. Therefore the use of combined TP transfer functions based on diatom 
and Cladocera provided a comprehensive insight into the reference conditions and 
ecological status for lake restoration due to their differential positions in the community 
dynamics and distinctive sensitivity to water quality of lakes.  
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Chapter 1: Introduction 

 

 

1.1 EU-Water Framework Directive (WFD)  

 

The deterioration of surface water quality, degradation of aquatic ecosystems and 

unsustainable use of water resources have become serious environmental problems at 

both regional and global scales. Effective water policy and legislation are urgently 

needed to protect the water quality and ensure the sustainable use of water resources. 

The establishment and implementation of the European Union Water Framework 

Directive (WFD) aims to improve the water quality throughout Europe and achieve 

good water status for all surface waters of member states by 2015 (European Council, 

2000). Ecological status, an expression of the quality of the structure and functioning of 

aquatic ecosystems associated with surface waters, is adopted by this Directive to assess 

the quality of surface waters. This criterion of ecological quality is composed of three 

integrated groups of quality elements: physico-chemical, hydromorphological and 

biological. All three quality elements are required for the monitoring and assessment of 

water quality, however, more emphasis is placed on the biological elements which are 

supported by physico-chemical and hydromorphological elements (Pollard & Huxham, 

1998; Irvine et al., 2002). The ecological status of surface waters are categorised on the 

basis of the degree of deviation from the type-specific pre-impact status under 

undisturbed conditions (European Council, 2000). Therefore characterisation of surface 

water body types and the determination of pre-impact reference conditions are the two 

important steps in the ecological assessment of surface waters. 

 

Lakes are important components of inland surface waters and they play significant roles 

in freshwater ecosystem and biodiversity. Principal factors used for classifying lakes are 

physical and chemical factors that determine the characteristics of the lake and hence 

the biological population structure and composition (European Council, 2000). Several 

physical and chemical factors have been outlined as significant for establishing lake 

types in Ecoregion 17 (Ireland and North Ireland) on the basis of Annex II and XI of the 

WFD (Irvine et al., 2002). An Irish Lake Typology scheme comprising 13 typology 

classes was proposed by the Irish Environmental Protection Agency (EPA) mainly based 

on alkalinity, mean depth and lake area (Free et al., 2005). Establishment of reference 
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conditions for type-specific lakes can be achieved through several methods, including 

the use of historical records, hindcasting models and palaeolimnological techniques 

(European Council, 2000; Irvine et al., 2002). In particular palaeolimnological methods 

have been recognised and applied as vigorous tools in tracking the history of water 

quality (e.g. Anderson, 1995b; Smol, 2002). They also have been used for identifying 

reference lakes and determining reference conditions (e.g. Pollard & Huxham, 1998; 

Bennion et al., 2004a). The IN-SIGHT project, Identification of Reference Status for 

Irish Lake Typologies using Palaeolimnological Methods and Techniques, was initiated 

to aid the implementation of the WFD in Ireland. It aims to verify and establish type-

specific biological reference conditions of 35 Irish lakes covering the majority of Irish 

lake types using palaeolimnological methods (Taylor et al., 2006).  

 

1.2 Palaeolimnological Methods 

 

Palaeolimnology is the study of lake sediments to reconstruct the history of lake 

environment, catchment development and climate change. Lake deposits are reliable 

archives of the physical, chemical and biological environments of lakes (Cohen, 2003). 

Included in the lake sediments are remains of organisms that lived in the water (Frey, 

1988b). The biological remains in lake sediments can represent the integrated 

communities of the whole lake habitats as seasonal and spatial variation of biological 

elements are reduced (Frey, 1988a; Smol, 2002). Diatoms and Cladocera are among the 

most important organisms in lake sediments in terms of abundance, diversity and 

indicator sensitivity.  

 

Biological elements for assessing the ecological status of lakes include the composition 

and abundance of phytoplankton and benthic invertebrate fauna (European Council, 

2000). Diatoms are significant components of phytoplankton in lake systems (Round, 

1981; Reynolds, 1984; Wetzel, 2001) and they have become one of the most important 

environmental proxies during recent decades because of their sensitivity to habitat 

environment, relatively high productivity and diversity, and also well-defined taxonomy 

(Dixit et al., 1992; Cox, 1996; Battarbee et al., 2001; Mackay et al., 2003). Therefore 

different diatom communities in lake sediments can indicate the hydrochemical 

conditions where they lived, including pH (Birks et al., 1990; Stevenson et al., 1991), 

nutrients (Hall & Smol, 1999), alkalinity (Brugam, 1983) and salinity (Fritz, 1990). 
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Cladocera are small crustaceans living in both pelagic and benthic habitats and they are 

found in most lakes and ponds (Wetzel, 2001; Brönmark & Hansson, 2005). Chydorids, 

the benthic and littoral Cladocera, are attached to vegetation or bottom-dwelling and 

they have been used in ecological quality monitoring of lakes (de Eyto & Irvine, 2002; 

de Eyto et al., 2003). Planktonic cladocerans, such as Danphia, are significant for the 

ecology of lakes as they can both reduce the amount of phytoplankton and serve as prey 

for invertebrate and vertebrate predators (Lampert & Sommer, 1997; Dodson & Frey, 

2001). Cladocera remains in lake sediments have been used to reconstruct 

eutrophication (Whiteside, 1970; Hofmann, 1996), acidification (Nilssen & Sandoy, 

1990; Simpson, 2005a), fish density (Jeppesen et al., 1996) and submerged macrophytes 

(Thoms et al., 1999).  

 

With the development of advanced multivariate statistics and their application in 

ecological and environmental data, numerical methods, particularly the transfer function 

method, has been successfully applied in palaeolimnology. They can provide 

quantitative information on environmental reconstruction (including coefficient of 

determination and error estimates) in addition to the indicator species and assemblage 

approach (Birks, 1995; ter Braak, 1995; Birks, 2005b). A transfer function is a 

multivariate calibration model to predict the environmental conditions from the 

biological remains in surface sediments of lakes. Transfer functions based on diatoms 

have been successfully developed to infer pH (ter Braak & van Dam, 1989; Birks et al., 

1990; Dixit et al., 1993), TP (Hall & Smol, 1992; Bennion, 1994; Dixit & Smol, 1994), 

air temperature (Lotter et al., 1997) and salinity (Fritz, 1990; Sylvestre et al., 2001). 

Other biological indicators are also used to quantify species-environment relationships, 

including algae (King et al., 2000; DeNicola et al., 2004), chrysophycean cysts (Facher 

& Schmidt, 1996), zooplankton (Jeppesen et al., 1996; Davidson, 2005), Cladocera 

(Brodersen et al., 1998; Bos & Cumming, 2003), Chironomids (Lotter et al., 1999; 

Brooks et al., 2001) and non-marine Ostracoda (Mezquita et al., 2005). 

 

Each biotic indicator can provide an independent line of ecological information but one 

single indicator may give misleading environmental information. This can be caused by 

complex physical processes during sedimentation (e.g. taphonomy) and differential 

sensitivity and responses to the environmental gradients of interest (Lowe & Walker, 

1997; Lotter, 2005). The use of two or more indicators (multi-proxy), instead of only 

one indicator (single-proxy), can provide consensus results through cross-validation and 
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also help to identify the weakness of each proxy as every proxy has its own strength and 

weakness in palaeolimnology and environmental reconstruction (Lotter, 2005). Diatom 

assemblages in surface sediments can represent all the habitats in the lake (DeNicola, 

1986; Cameron, 1995) and can also provide integrated information on water quality of 

the lake (Anderson, 1990). However, surface sediment diatoms can display spatial and 

temporal variability (Owen & Crossley, 1992) and dissimilarity to live diatoms in their 

asynchronous responses and inconsistent magnitudes of response to changes in water 

quality (Cameron, 1995; Dokulil & Teubner, 2005). Also disproportional abundance of 

certain diatom groups in surface sediments can reduce the credibility of the sediment 

diatom community (Haberyan, 1990), e.g. the overabundance of small Fragilaria sp. In 

sediments of shallow lakes (Bennion et al., 1996; Sayer, 2001). Faithful representation 

of live littoral and planktonic Cladocera has also been revealed by surface sediments in 

several studies (Frey, 1960; Davidson, 2005; Kattel et al., 2006). However, due to 

complex in situ physical and chemical processes affecting the distribution and 

abundance of Cladocera remains (Korhola & Rautio, 2001), differential habitat 

preferences (particularly for chydorids) (Hofmann, 1987b; Hann, 1989) and differential 

preservation between the different taxonomic groups of Cladocera (Frey, 1986), caution 

should be taken in interpretation of sedimentary Cladocera data. Therefore the 

combination of two or more biological indicators can help reinforce the credibility of 

other indicator(s) and improve the accuracy of environmental reconstruction (Jeppesen 

et al., 2001; Bennion et al., 2004b; Lotter, 2005). Thus in the same lake environment 

different biological organisms (e.g. diatoms and Cladocera) can show inconsistency in 

environmental reconstruction and the use of two or more biological indicators can 

reduce the danger of misinterpretation of their assemblage changes.  

 

The use of palaeolimnological methods can be used to directly reconstruct past 

biological assemblages and indirectly to reconstruct past nutrient levels quantitatively 

through transfer functions (Battarbee et al., 2005). When a large number of lakes are 

included for ecological assessment, down-core analysis of lake sediments would be 

time- and labour-intensive. The use of top and bottom approach is a viable alternative 

method with the assumption that the top and bottom samples of the core can represent 

the present-day and reference conditions respectively (Cumming et al., 1992). Bottom 

samples (e.g. from >30 cm sediment depth of lakes) may represent pre-industrial (i.e., 

pre-1850) conditions (Dixit et al., 1999). As biological assemblages from different 

habitats of the lakes are integrated and accumulated continuously in the sediment 
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samples, spatial and temporal variability can be minimised in the top-bottom analysis. 

This method has been successfully applied in 257 lakes in U.S. (Dixit et al., 1999), 50 

lakes in Canada (Reavie et al., 2002), 219 lakes in U.K. (Bennion et al., 2004a) and 35 

lakes in Ireland (Leira et al., 2006).  

 

1.3 Eutrophication of Irish Lakes 

 

Surface waters account for around 2% of Irish lands in comparison with ca. 1% for 

Europe (Reynolds, 1998). The geographical distribution of Irish lakes is very uneven 

with ca. 70% of lakes located in the western counties and ca. 22% of lakes in the north 

midlands (Allott et al., 1998). Only 100 Irish lakes have a surface area greater than 1 

km2 (100 ha) with the majority of lakes less than 0.05 km2 (5 ha) (Toner et al., 2005). 

Comprehensive water quality monitoring of Irish lakes was first conducted by Flanagan 

& Toner (1975) and this survey of 53 Irish lakes revealed that eight lakes were 

excessively productive. Systematic and long-term lake monitoring has been 

implemented across Ireland by the Irish Environmental Protection Agency (EPA) since 

1982 (Toner et al., 1986; Clabby et al., 1992; Bowman et al., 1996; Lucey et al., 1999; 

McGarrigle et al., 2002; Toner et al., 2005).  

 

Water quality of Irish lakes was observed to be relatively stable during the period of 

1982-2003 and over 50% of lakes surveyed in the 2001-3 period were classified as 

oligotrophic (Toner et al., 2005). With regard to combined surface areas of lakes, an 

increase in the percentage surface area assigned to the oligotrophic group was observed 

in comparison to those surveyed in 1995-97 and 1998-00. However, among the 27 large 

lakes with surface area of above 7.5 km2, five of them still display a high degree of 

nutrient enrichment and nine of them show increased phytoplankton in the 2001-3 

period (Toner et al., 2005). As the majority of the Irish lakes are relatively shallow with 

a small surface area (Toner, 1977), they are more liable to water pollution due to their 

relatively small lake volume and strong water-sediment interaction (Scheffer, 1998; 

Wetzel, 2001).  

 

Eutrophication has been identified as the principal pressure on lake water quality in 

Ireland since 1970s (Flanagan & Toner, 1975; Toner, 1977; Bowman et al., 1996). The 

principal sources of nutrient enrichment in Ireland are diffuse agricultural activities and 
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point source discharges of domestic and industrial wastes (Bowman & Clabby, 1998). 

Over three-quarters of Irish lands are used for agriculture and forestry and around 90% 

of pasture and crop land is cultivated as grasslands (Jennings et al., 2003). The diffuse 

nutrient transport from grasslands has been identified as the biggest threat to the 

ecological status of Irish lakes (Morgan, 1977; Allott et al., 1998). Intensive cattle 

farming and high density of pig and poultry production are also responsible for the 

decline of water quality of Irish lakes (Allott et al., 1998). In summary eutrophication 

has become the main concern in protecting and improving water quality of Irish lakes 

(Irvine et al., 2002; Jennings et al., 2003; Toner et al., 2005) and is the focus of this 

study. 

 

1.4 Research Rationale and Thesis Structure 

 

The hypotheses used in this study are that biological assemblages are sensitive to and 

can be quantitatively correlated with environmental gradients in lake waters, 

particularly the nutrient gradient. The remains of biological assemblages in lake 

sediments can faithfully represent the live biotic assemblages in lake waters. This study 

aims to employ palaeolimnological and statistical methods to construct relationships 

between biological assemblages and total phosphorus (TP) for a suite of Irish lakes. 

Diatoms and Cladocera are the two biological indicators used in this study. As 

insufficient biological data were examined for verifying the Irish Lake Typology, 

biological classification of surface sediment fossil assemblages in this study will help 

assess the viability of the Irish Lake Typology classification scheme.  

 

Firstly the research background and rationale for this study are introduced in Chapter 1. 

In Chapter 2 a comprehensive literature review starts with lake nutrients and phosphorus 

is highlighted due to its significant role in the growth of aquatic organisms and lake 

eutrophication. The use of two freshwater organisms (diatoms and Cladocera) as 

indicators of nutrient levels is summarized particularly in the context of 

palaeolimnology. The transfer function technique for developing TP inference models is 

introduced and TP transfer functions based on diatoms and Cladocera are summarized 

and evaluated on the basis of the published studies. Details of the study sites and 

research methods used in this study are outlined in Chapter 3. This includes the study 

area description, sampling of 75 lakes and laboratory analyses for diatoms and 
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Cladocera. In addition the numerical methods used in this study are detailed, including 

ordination analysis, cluster analysis and transfer function modelling methods.  

 

A 72-lake diatom training set and a 33-lake Cladocera training set are developed in 

Chapters 4 and 5 respectively. The pattern and distribution of related environment and 

biological data are explored and summarized. The reliability of surface sediment 

Cladocera is assessed through comparison with contemporary Cladocera communities 

from six lakes. Relationships between environmental variables and biological 

assemblages are examined using constrained ordination analysis. Biological 

classification of lakes is produced and compared with the physico-chemical lake 

typology classification for both training sets. Lakes with similar physical and chemical 

characteristics are supposed to support aquatic organisms with similar assemblage 

structure and abundance. All the data analyses in Chapters 4 and 5 are performed in the 

R program. 

 

After examining the soundness of TP in determining the biological assemblages, three 

transfer function methods are used to develop diatom- and Cladocera-based TP 

inference models and their performances are compared and evaluated in Chapter 6. TP 

predicted by diatom and Cladocera models are compared for 29 lakes to validate the 

performances of both models. TP models based on diatoms and Cladocera are applied in 

TP reconstructions for seven lakes using top-bottom approach in Chapter 7 and this 

would help identify the pre-impact conditions and set lake restoration targets. This 

multi-proxy analysis enables the cross-validation of TP reconstructions by indicating 

consensus in reconstructed nutrient level and identifying dissimilar responses between 

both organisms to nutrient level. Lastly in Chapter 8 the research results are summarized 

and concluded and suggestions on future directions are also given.  
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Chapter 2: Literature Review 

 

 

This chapter introduces the nutrient status of lakes in the context of freshwater ecology 

and lake management. Nutrient dynamics, classification of nutrient levels and causes of 

nutrient enrichment (eutrophication) of lakes are outlined. This is followed by a review 

of responses of two biotic organisms (diatoms and Cladocera) to nutrient dynamics. 

Finally the use of the transfer function method in quantifying species-TP relationships is 

summarized. Problems and potential solutions for applying this method are also 

discussed. This literature review aims to explore the current research context before 

developing a community-based training-set for the Irish Ecoregion.  

 

2.1 Nutrient Status and Eutrophication of Lakes 

 

2.1.1 Lake Nutrients 

 

Nutrients are chemical elements that organisms require for cell growth and reproduction 

(Lampert & Sommer, 1997). The quantity of nutrients in lake water is mainly 

determined by bedrock type, vegetation cover, soils, lake size, and human activities in 

the catchment area (Brönmark & Hansson, 2005). Soils and rocks supply most of the 

ions required for organism growth (Wetzel, 2001). Primary producers including algae 

can absorb and concentrate the nutrients in their cells and they are then the providers of 

nutrients for herbivores (e.g. crustaceans) through the food web (Lampert & Sommer, 

1997). Predatory organisms, like fish, consume the herbivores and therefore, nutrients 

are transported upwards through the food chain within the lake. Nutrients are constantly 

recycled through the ecosystem by processes like decomposition, absorption and 

excretion of organisms (Wetzel, 2001).  

 

As all organisms are composed of the same major elements (C, N, P) and their balance 

affects the reproduction, nutrient cycling and food web dynamics (Elser & Urabe, 1999). 

Terrestrial food webs are carbon dependent and freshwater food webs are based on more 

nutrients (Elser et al., 2000). The relative amount of elements C, N, and P in planktonic 

organisms was 106: 16:1 (by atoms) (often called the Redfield ratio) (Brönmark & 
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Hansson, 2005). Although silicon is required by all phytoplankton in protein and 

carbohydrate synthesis, it is of major significance to diatomaceous algae, chrysophytes 

and some higher aquatic plants (Reynolds, 1984; Wetzel, 2001). A comparison of the 

relative amounts of different elements required for plant growth with supplies available 

in fresh waters illustrates the importance of phosphorus (P) and to a lesser extent 

nitrogen (N) (see Table 2.1).  

 

Table 2.1 Relative availability (A) and demand (D) of essential elements required for aquatic plant 
and algae (All the values are relative to phosphorus which has a value of 1; the higher the ratio of 
A/D, the greater the relative availability of that element; modified after Wetzel (2001) and 
Brönmark & Hansson (2005)). 
 

Element Availability(A) Demand(D) A/D Function 
P 1 1 1 DNA, RNA, ATP, enzymes 
Zn 0.07 0.04 2 Enzyme activator 
N 23 8.75 3 Amino-acids and proteins 
Ca 40 8 5 Cell membrane 
Cu 0.05 0.006 8 Enzymes 
K 20 6 11 Enzyme activator 
Mn 0.9 0.3 11 Photosynthesis, enzymes 
Mo 0.001 0.0004 11 Enzymes 
C 1200 81.25 15 Photosynthesis 
Mg 22 1.4 16 Chlorophyll, energy transfer 
Na 32 0.5 64 Cell membrane 
Co 0.02 0.0002 100 Vitamin B12 
Si 268 0.7 383 Cell wall (diatoms) 
Fe 54 0.06 900 Enzymes 
O 89000000 1006.25 88447 Basic for metabolism 

 

 

The 15 elements listed in Table 2.1 limit growth of algae and other plants in lakes. P is 

the scarcest element with the lowest availability relative to the demand (1:1). P and N 

are among the most studied elements in ecological stoichiometry and chemical 

compositions of organisms (Wetzel, 2001). Nitrogen is absorbed by algae in the 

synthesis of amino-acids and proteins and can enter the lakes by precipitation, nitrogen 

fixation and catchment drainage (Reynolds, 1984; Brönmark & Hansson, 2005). 

Nitrogen can particularly limit phytoplankton production in eutrophic lakes with relative 

high phosphate concentrations and correspondingly low N:P ratios (Reynolds, 1984). 

However, nitrogen is generally not the main limiting nutrient for freshwater organisms 

and its concentration is less strongly connected to nutrient status of lakes than 

phosphorus (Brönmark & Hansson, 2005). Phosphorus is naturally less abundant than 

nitrogen and its concentration is often reduced to very low levels by plant uptake during 

the growing season in lakes (Moss, 1998). Phosphorus is the focus in this study. 
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2.1.1.1 Phosphorus 

 

No other element has been studied as intensively as phosphorus in fresh waters, because 

of its major role in biological metabolism and also its low natural supply relative to 

demand (Wetzel, 2001). Phosphorus is essential for all organisms since it is used in 

fundamental processes such as storage and transfer of genetic information (DNA and 

RNA), cell metabolism (various enzymes), and in the energy system of the cells 

(adenosine triphosphate, ATP) (Moss, 1998; Brönmark & Hansson, 2005).  

 

Phosphorus exists in lakes not only as inorganic ions (like PO4
3-, H2PO4

- and HPO4
2-), 

but also in inorganic polymers, organic phosphorus compounds, living organisms and 

dead detritus. Phosphorus is taken up as phosphate (PO4
3-), the only inorganic fraction 

of phosphorus of importance for organisms (Moss, 1998). The majority of phosphorus, 

greater than 80%-90%, is bound up in organic phosphorus (i.e. incorporated in 

organisms). Of the total organic phosphorus, at least 70% is within the particulate 

organic fraction, and the remainder is present as dissolved or colloidal organic 

phosphorus (Wetzel, 2001). The sum of organic and inorganic phosphorus is called total 

phosphorus (TP) and it is widely used for indicating and classifying the fertility of lakes 

(Brönmark & Hansson, 2005). 

 

Lake sediments serve as phosphorus sinks, as particle detritus and dead organisms 

containing P continuously settle (Guy et al., 1994b). Generally there is more phosphorus 

in sediments than in lake waters (Wetzel, 2001). However, the exchange of phosphorus 

between sediments and the overlying water is a major component for the phosphorus 

cycling in lakes and many factors and processes can affect such exchange (Scheffer, 

1998). In shallow lakes where thermal stratification is weak or non-existent, intensive 

sediment-water interaction can enable a rapid return of nutrient materials into the water 

column and therefore increase the phosphorus loads in lake waters (Gibson et al., 1996; 

Søndergaard et al., 1999). During the summer the relatively high temperatures of 

sediments in shallow lakes can increase the mineralization rates and lead to a greater 

release of nutrients from sediments (Jeppesen et al., 1997). The flux of phosphorus 

between the surface sediment and the water is also determined by oxygen availability, 

which controls the precipitation of phosphate. In lakes where stratification occurs, the 
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oxygen concentration is low and this will lead to phosphorus release to the water 

(Wetzel, 2001). Few organisms can survive with low oxygen levels and therefore there 

is limited consumption of phosphorus in the water column. The increase of pH caused 

by the consumption of CO2 by high algal biomass in eutrophic lakes can also lead to the 

release of phosphorus from the sediment which can promote higher algae production 

(Brönmark & Hansson, 2005). However, algae are producers of oxygen through 

photosynthesis and therefore can conversely limit the release of phosphorus to the water 

(Wetzel, 2001). 

 

2.1.1.2 Classification of Nutrient Status 

 

Phosphorus generally limits the growth of algae and plants in fresh waters and thus is a 

main determinant for primary production. Its concentration is also relatively easy to 

measure. These features have led to classification of lakes mainly based on phosphorus 

concentration. The most commonly used trophic classification scheme was proposed by 

the OECD (1982). Lakes with low total phosphorus (TP) concentration (annual mean 

values below 10 µg l-1), therefore with low productivity, are classified as ‘oligotrophic’, 

and ‘ultraoligotrophic’ lakes have TP values less than 4 µg l-1. Lakes with medium 

nutrient content (annual mean TP values in the range of 10-35 µg l-1) are categorized as 

‘mesotrophic’ and those with higher TP values (between 35 and 100 µg l-1) as 

‘eutrophic’. Lakes with extremely high TP concentration (above 100 µg l-1) are 

classified as ‘hypereutrophic’.  

 

Many lakes, particularly deep stratified lakes, display a winter maximum and summer 

minimum in TP concentrations because of the continuous loss of nutrients from the 

epilimnion (the stratum of warm, well-mixed water above the thermocline) to the 

hypolimnion (the water below the thermocline) during the summer (Guy et al., 1994a). 

However, total phosphorus concentrations of some lakes, particularly shallow lakes, 

have a different seasonal regime because of their mixed water column and intensive 

sediment-water contact (Scheffer, 1998). In addition Gibson et al. (1996) found that the 

annual range of TP concentrations increases as the annual maximum TP increases. 

However, lakes often have small variation in phosphorus concentrations in comparison 

with the strong seasonality of some other indicator parameters like chlorophyll-a. TP is 
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generally a reliable indicator of the nutrient level of lakes (Bennion & Smith, 2000; 

Jennings et al., 2003).  

 

In practice this fixed OECD classification boundaries have been modified from country 

to country or for different types of lakes (Smol, 2002; Søndergaard et al., 2005). TP 

classification has been complemented by other trophic parameters like algal biomass 

(often estimated from chlorophyll a concentrations) and water transparency (OECD, 

1982). A combined classification scheme using TP and Chlorophyll-a is practiced in 

Ireland (Toner et al., 2005). An open boundary system for trophic classification was also 

proposed by OECD (1982) with probabilistic parameters. Despite its arbitrariness the 

fixed boundary system with defined boundary is easy to apply and the resultant trophic 

category can be more accurate when all the trophic parameters are considered in 

comparison to the open boundary system (OECD, 1982).   

 

2.1.2 Eutrophication 

 

Eutrophication refers to the nutrient enrichment (mainly P and N) of water bodies 

(OECD, 1982). Small concentration of nutrients can affect aquatic systems dramatically. 

Algal and cyanobacterial (blue-green algal) blooms, excessive aquatic macrophyte 

growth and deepwater oxygen depletion are the major symptoms of eutrophication 

(Smol, 2002). In Ireland eutrophication has been identified as the most common water 

quality problem (McGarrigle, 2001; Toner et al., 2005).  

 

Nutrients like P are transported into the lake water mainly from catchment areas or via 

atmospheric deposition (Jennings et al., 2003). In pristine systems, the input of 

phosphorus from the catchment is determined by the flow of water through the drainage 

system and the underlying geology. Most lakes have natural TP concentrations of 

between 10 and 100 µg l-1. Phosphorus levels in lake waters are generally lowest in 

mountain areas of crystalline bedrock and increase in lowland waters derived from 

sedimentary rock deposits (Wetzel, 2001). Atmospheric deposition can be a significant 

source of phosphorus for some freshwater systems, particularly in oligotrophic lakes 

(Gibson et al., 1995).  
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Natural eutrophication is a slow process in the geological history of a lake when the 

lake basin is gradually filled with sediments (Wetzel, 2001). The reduced volume of 

lake water leads to an increase in the trophic level, even if there is no change in nutrient 

load. Marked natural eutrophication periods are rare and can be caused by dramatic 

events, such as forest fire and tree die-off, or rapid climatic events, such as droughts. 

However, eutrophication as a result of natural disturbance is generally much less 

frequent and less pervasive compared with the anthropogenic impacts since the 

Industrial Revolution, particularly during the recent decades (Smol, 2002). 

 

Human activities have been changing the landscape of the earth over thousands of years. 

The contribution of different nutrient sources will vary with the type and intensity of 

land use and management practice in the catchment. For inland waters, the increased 

intensity of deforestation and agricultural activity has greatly changed catchment areas. 

Nutrients are mainly lost by the erosion of surface soils from cultivated lands and run-

off of animal manure and, particularly during the past decades, artificial fertilizers 

(Mason, 2002). Deforestation can increase the erosion rate of surface soils and some 

types of forest management (e.g., fertilization) increase the input of nutrients from the 

catchment (Jennings et al., 2003).  

 

During the past decades an accelerated rate of industrialization and urbanization has 

significantly increased the input of phosphorus and other nutrients into fresh waters 

around the world. Industrial wastes and storm drainage have been producing large 

amount of nutrients from the urban sources. Domestic sewage, as well as the 

widespread use of phosphorus-containing detergents, results primarily in increased 

phosphorus loading in the waters and soils (McGarrigle, 2001). However, much of the 

effluent in urban areas is from point sources, which can be controlled and managed 

through improving the wastewater treatment facilities and the introduction of nutrient-

free detergents. More challenging is the control and management of the diffuse sources 

(e.g., fertilizer run-off from agriculture) and this is the main cause of lake eutrophication 

in Ireland (Jennings et al., 2003; Toner et al., 2005). 

 

2.2 Biological Indicators of Lake Nutrient Status 
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The EU-Water Framework Directive (WFD) has emphasized the ecological monitoring, 

assessment and restoration of surface waters as its priority subject (Irvine et al., 2002). 

Biological organisms (mainly plankton, macrophytes, benthos and fish) have proven to 

be reliable and significant indicators of nutrient status of lakes (Mason, 2002), including 

both eutrophication (Smol, 2002) and oligotrophication ((Battarbee et al., 2005). At a 

regional scale, the response model of lake communities to nutrient enrichment is 

remarkably similar, and the degree of replacement of one species group by another is a 

good indication of the degree of enrichment (Stoermer, 1984). Diatoms (Hall & Smol, 

1999) and cladocerans (Korhola & Rautio, 2001) are among the most sensitive and 

reliable biological proxies for lake eutrophication and were therefore selected for this 

study. 

 

2.2.1 Diatoms (Bacillariophyceae) 

 

Diatoms are microscopic unicellular algae, with sizes ranging from approximately 5 to 

500 μm and belong to the class Bacillariophyceae (Barber & Haworth, 1981). The most 

striking feature of the diatom cell is the highly resistant siliceous wall (termed frustule 

and also described as cell or valve) enclosing the living contents (Round et al., 1990). 

Diatoms are usually composed of two valves with a series of linking bands ( or girdle) 

sitting in between the valves (Cox, 1996). These siliceous cells are commonly abundant 

and diverse in fresh waters and the cell walls are preserved long after death of the cell 

and decay of its organic contents (Barber & Haworth, 1981). Diatoms are 

photosynthetic plants and their reproduction is predominantly asexual (Barber & 

Haworth, 1981; Krammer & Lange-Bertalot, 2000). Diatoms can live in a variety of 

habitats: free-living in the open water (planktonic), mobile or immobile on the bottom 

(benthic) or attached to a substrate (epiphytic when attached to other plants and epilithic 

when attached to rocks) (Barber & Haworth, 1981; Round et al., 1990). The growth and 

behaviour of planktonic diatom populations are strongly influenced by the availability 

of silica and the stability of the water column, as well as several other factors including 

light intensity, nutrient level and grazing pressure (Reynolds, 1984; Round et al., 1990). 

The benthos is generally more diverse than the plankton in regard to species richness 

and the life forms present, and the epiphytic and epilithic diatoms are commonly best 

developed in submerged habitats (Round et al., 1990).  
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Diatoms occur either in centric or innate forms based on the cell shapes and 

arrangement of valve markings (Cox, 1996; Krammer & Lange-Bertalot, 2000). Cells in 

girdle view are usually approximately rectangular but cells in valve view can have much 

more variable outlines. In comparison with diatom valves the cell girdle is generally less 

used for taxonomic identification due to its inadequate features available under the light 

microscope (Krammer & Lange-Bertalot, 2000). The taxonomy of diatoms is mainly 

based on the morphology of silica walls, with families and genera being determined on 

symmetry, shape and the arrangement of valve markings (Barber & Haworth, 1981; Cox, 

1996). The key features for identifying diatom frustule morphology include valve 

shapes, striae patterns and features, the raphe and axial areas etc (Barber & Haworth, 

1981). The nomenclature adopted in this study mainly followed those of Krammer & 

Lange-Bertalot (2000). The Bacillariophyceae are divided into two Orders based on 

symmetry and the arrangement of the rib systems and areolae. One is the centrale, 

whose valves are either circular or showing a symmetrical centre in the middle of valve. 

The other is pennale, whose valves are always elongated and structures are oriented 

around a median axis. Most of the centrales are in planktonic forms while the pennales 

are mainly found in the littoral regions of lakes (Round et al., 1990; Krammer & Lange-

Bertalot, 2000). The first comprehensive investigation of freshwater diatoms in the Irish 

Ecoregion identified 765 taxa belonging to 48 families following the nomenclature of 

Hustedt (1927-1966, 1930) (Foged, 1977). 

 

2.2.1.1 Diatoms and Nutrient Dynamics of Lakes 

 

Diatoms have been widely applied in a broad range of subjects from environmental to 

earth sciences due to their unique features (Stoermer & Smol, 1999). Diatoms have one 

of the shortest generation times of all biological indicators and therefore they can 

respond rapidly to environmental change (Stevenson & Pan, 1999). They occur in all 

types of aquatic environments and contribute significantly to the primary productivity of 

aquatic ecosystems as photoautotrophs (Round et al., 1990). The taxonomy of diatoms 

are well documented and they can also be easily sampled and processed for 

identification (Cox, 1996).  

 

Diatoms are well suited to studies of eutrophication of surface waters (Hall & Smol, 

1999). They are early and sensitive indicators of environmental change as their growth 
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is directly controlled by nutrient and light availability (Tilman et al., 1982). Diatoms 

can respond quickly to lake eutrophication because they migrate and replicate rapidly 

(Dixit et al., 1992). Individual species of diatoms have narrow optima and tolerances for 

many environmental variables including nutrient concentrations (Van Dam et al., 1994). 

Oligotrophic lakes often have a diatom flora dominated by species of Cyclotella and 

Tabellaria, while Asterionella formosa, Fragilaria crotonensis, Stephanodiscus astraea 

and Melosira granulata are usually the dominant taxa in eutrophic lakes (Mason, 2002). 

Different diatom assemblages may prefer distinct habitats of the lake, ranging from 

plants (epiphyton), rocks (epilithon), sand (epipsammon) and mud (epipelon) of the 

littoral area to the open water (plankton). Therefore an assemblage shift from littoral to 

planktonic can be an indication of the lake eutrophication (e.g., Osborne & Moss, 1977). 

Also changes in diatom assemblages can be caused by biotic interactions with other 

algae, zooplankton and fish, and the signals of nutrient enrichment can be extracted 

from diatom assemblages through the food web and trophic structure of lakes (Dixit et 

al., 1992).  

 

2.2.1.2 The Use of Diatom Remains to Infer Past Nutrient Levels of Lakes 

 

Planktonic and benthic diatoms are sedimentated on the beds of most water bodies in 

the form of whole or broken frustules (Krammer & Lange-Bertalot, 2000). Diatoms are 

well preserved in the sediments in high abundance and diversity because their cells are 

resistant to decay (Round, 1981). One of the most common palaeolimnological 

applications of diatoms has been to investigate eutrophication history of individual lakes 

(e.g., Hall & Smol, 1999; Smol, 2002). Qualitative interpretation of eutrophication 

history can be inferred from the sedimentary diatoms based on ecological information of 

individual indicator taxa provided by contemporary phycological surveys (e.g., Van 

Dam et al., 1994). Diatoms in the sediments can be analysed to reconstruct the change 

of habitat environment during the sedimentation period based on their qualitative 

ecological information (Dixit et al., 1992).  

 

One of the most obvious features in the response of diatom assemblages to 

eutrophication is the shift of dominant species from benthic and epiphytic to planktonic. 

In the English Lake District a rise of nutrient levels from about 1850 was recorded by a 

shift away from benthic diatoms and a rise of planktonic Asterionella formosa in the 
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lake sediments, while the replacement of A. formosa with Cyclotella spp. Around 1945–

65 and return of epiphytic Achnanthes minutissima since 1990 corresponded to an 

improvement of water quality (Barker et al., 2005). Another indication of changes in 

nutrient level is the replacement of dominant diatom taxa by other taxa from lower or 

higher trophic levels in the food chain. The dominance of diatom assemblages shifted 

among the oligotrophic Cyclotella comensis and C. ocellata, to oligo-mesotrophic 

diatom taxa (e.g. Cyclotella pseudostelligera, Fragilaria crotonensis) and mesotrophic-

eutrophic taxa Stephanodiscus minutulus/parvus in lake sediments from Alaska (Finney 

et al., 2002). The succession in the diatom assemblage structure can be used to track the 

history of nutrient dynamics. A sediment core of Lough Augher in Northern Ireland, 

which has experienced eutrophication from 1900 until 1972-73, displayed a sedimentary 

diatom assemblage succession with a shift from mesotrophic planktonic forms 

(Aulacoseira ambigua, Asterionella formosa, Fragilaria crotonensis) to a variety of 

small Stephanodiscus spp., typical of very eutrophic conditions (e.g. S. parvus, S. 

hantzschii) (Anderson et al., 1990).  

 

2.2.2 Cladocera (Water Fleas) 

 

Cladocerans are a group of small, transparent and discus-shaped crustaceans with adult 

size ranging from 0.2 to 18 mm (Dodson & Frey, 2001) (see Figure 2.1). Their general 

shape and jerky swimming account for their common name, ‘water fleas’. They can live 

in almost any kind of freshwater habitat, from large lakes to small ponds. Most 

cladocerans have a transparent clear-to-yellow carapace or shell that is attached to the 

back of the neck, wrapping around the body. The shape of the shell in lateral view can 

be various: oval, circular, elongated or angular (Pennak, 1989). There are often different 

types of surface markings on the shell, like reticulation and striation. The head is usually 

more or less dome-shaped but can have long, even pointed extensions. The most 

conspicuous internal structure of the head is a large black compound eye and a small 

black ocellus (simple eye) for most species as shown in Figure 2.1. Like other 

crustaceans, cladocerans have five pairs of appendages on the head part of the body. The 

cladoceran body posterior to the head is comprised of a thorax and an abdomen hanging 

within the carapace (Scourfield & Harding, 1966). The part of the body at the end of the 

abdomen and posterior to the anus is called postabdomen and it ends in a pair of claws. 

Cladocera reproduce either sexually or asexually, depending on environmental 
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conditions (Dodson & Frey, 2001). Most species reproduce parthenogenetically most of 

the time and female offspring are most often developed. Ephippia containing resting 

eggs produced by sexual reproduction are often found in harsh environments and they 

can withstand severe conditions like drying and freezing (Lynch, 1980).  

 

appendages

carapace

clawpostabdomen

head

compound eye

simple eye 

 
Figure 2.1 Morphological features of whole body of Cladocera species (Alona guttata) 
 

 

Cladocera are now classified as an order and grouped into four suborders, in contrast to 

the previous classification scheme, which divided it into four orders, as the orders are 

probably not closely related and the recent molecular evidence suggests that cladocerans 

are descended from a common evolutionary ancestral group (Korhola & Rautio, 2001). 

The four suborders (Anomopoda, Ctenopoda, Onychophoda and Haplopoda) are 

composed of 11 well-defined families, of which three families are commonly found in 

freshwaters. Members of the Daphniidae and Bosminidae families are primarily 

planktonic (inhabiting in the open water) and they are pelagic filter feeders mainly on 

algae and to some extent on bacteria (Dodson & Frey, 2001). While members of 

Chydoridae family prefer the lake bottom surfaces (e.g. on plant, sand, mud and rock), 

and they typically feed by crawling along surfaces, scraping and filtering food particles 

(Freyer, 1968). The relatively uniform habitats in open water offer less scope of 

diversification for Daphniidae and Bosminidae in comparison to bottom-dwelling and 

crawling Chydoridae and therefore the diversity within the Chydoridae is higher than 

the other two families (Freyer, 1968). The carapace and headshield of chydorids are 

physically the strongest among all Cladocera families and this may indicate an 

evolutionary adaptation of the Chydoridae to the benthic habitats (Freyer, 1968). More 
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than 90 Cladocera taxa are known to inhabit European inland waters (Korhola & Rautio, 

2001) while 41 Chydorid and 16 planktonic Cladocera species were found in the Irish 

freshwaters (Duigan, 1992; Irvine et al., 2001).  

 

2.2.2.1 Cladocera and Nutrient Dynamics of Lakes 

 

Cladocerans are a dominant component of the zooplankton and littoral micro-

crustaceans of most freshwater lakes. They occupy an intermediate trophic status in 

food webs and nutrient dynamics. Zooplankton N:P ratio is important in understanding 

effects of food quality on secondary production in aquatic ecosystems (Sterner & 

Hessen, 1994). Freshwater zooplankton with low body N: P ratios and high phosphorus 

demands for growth, particularly Daphnia, are sensitive to the P content of their food 

and suffer decreased growth and reproduction when consuming food with low P content 

(Urabe et al., 1997). Other herbivorous cladocerans like Bosmina are less limited by 

phosphorus than Daphnia, but competition between Bosmina and Daphnia might shift 

in favour Bosmina under P-limited conditions (Sterner & Hessen, 1994; Schulz & 

Sterner, 1999). Loss of macrophyte habitat, increased predation from fish, and hypoxia 

at the sediment–water interface have been identified as potential negative effects of 

eutrophication on littoral zoobenthos like chydorids (Vadeboncouer et al., 2003). At an 

early stage of nutrient enrichment the increase in macrophyte diversity and food 

availability may produce higher abundance and species richness of chydorids (de Eyto, 

2000). With eutrophication macrophytes may die off and a shift from a plant-dominated 

lake to a phytoplankton-dominated lake can affect the littoral communities due to the 

loss of macrophytes (Scheffer, 1998).  

 

Cladocerans have proved to be sensitive to nutrient dynamics and they have been 

studied to track the patterns of lake eutrophication (Korhola & Rautio, 2001; Shumate et 

al., 2002). A shift of cladoceran taxa from Bosmina longispina to B. longirostris has 

been documented in a number of early studies and has been attributed to nutrient 

enrichment (e.g., Hasler, 1947; Edmondson et al., 1956; Beeton, 1965). Daphnia 

exhibited improved growth in response to the phosphate addition in three hypertrophic 

Dutch lakes (DeMott et al., 2001). Chydorid distribution from 66 shallow lakes across 

Europe showed that the proportional abundance of Chydorus sphaericus increased with 

decreasing water quality, while a concurrent increase in species like Alona rectangula 
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and Pleuroxus uncinatus and decrease in Alonella excisa and Alonopsis elongata could 

also be linked with eutrophication (de Eyto et al., 2003).  

 

2.2.2.2 The Use of Cladocera Remains to Infer Past Nutrient Levels 

 

Cladoceran groups are well preserved in lake sediments compared to other zooplankton 

(Harmsworth, 1968). However, Cladocera individuals rarely remain intact in the 

sediment after death and the various exoskeleton components are usually separated from 

each other (Frey, 1960). Chitin, the main component of the Cladocera skeleton, is very 

inert chemically and it is preserved due to its resistance to biological degradation 

(Korhola & Rautio, 2001). Hard-shelled forms of Cladocera, such as Chydoridae, are 

well preserved, whereas soft-shelled chitinous taxa, such as Daphniidae, are often 

represented by smaller fragments (mainly postabdominal claws) and resting eggs 

(Jeppesen et al., 2001; Korhola & Rautio, 2001). Some skeletons of Chydoridae and 

Bosminidae are completely preserved and their remains provide a good index of the 

original live assemblages (Frey, 1976). It was first demonstrated by Frey (1960) that 

cladoceran remains in lake sediments closely reflected the living population in terms of 

species presence and their relative abundance. The validity of the use of cladoceran 

remains was confirmed by other studies on fossil and live cladoceran assemblages (e.g., 

Davidson, 2005; Kattel et al., 2006).  

 

Cladocera remains have proved to be good indicators in reconstructing anthropogenic 

impacts on lake ecosystems, including nutrient enrichment (Jeppesen et al., 2001). 

Alteration in the Cladocera community structure can be a good indicator of nutrient 

level change (Hofmann, 1987b). An early study by Whiteside (1970) investigated the 

relationship between lake type and Chydorid assemblages as reflected by the chydorids 

in surface sediments from 77 Danish lakes. Good correlations between chydorids and 

three lake types (clear-water lakes, ponds and bogs, polluted lakes) were revealed. 

Broderson et al. (1998) examined the Chydorid assemblages of surface sediments from 

32 Danish lakes and confirmed that chydorid remains in surface sediments are valuable 

indicators for the trophic status of lakes. A clear community response in Cladocera to 

experimental eutrophication was demonstrated in laminated sediments (Hann et al., 

1994). In addition the indicator or dominant species of Cladocera can be used for 

disclosing the change in nutrient status. The abrupt increase of Chydorus sphaericus and 
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decrease of macrophyte-associated Alona affinis in absolute abundances corresponded 

to accelerated eutrophication in Lake Apopka, Florida (Shumate et al., 2002). In Ireland 

cladoceran assemblages from a sediment core from Lough Ennell showed significant 

changes indicating a radical alteration in trophic status of the lake (Murray & Douglas, 

1977). The relative abundance of C. sphaericus increased from 8% at 60 cm depth to 

30% at the core top with a concurrent decrease in Alonella excisa, an indicator species 

for nutrient-poor waters. 

 

However, the relationship between Cladocera communities and total phosphorus is 

likely complicated by other factors, such as fish predation and macrophyte cover (e.g. 

Jeppesen et al., 2001; Davidson, 2005). The greater the predation pressure by fish, the 

more biased is the structure and abundance of zooplankton community in comparison 

with the assemblage under no predation pressure. Fish usually select larger prey, 

whereas with invertebrate predation, small-sized individuals are effectively removed 

(Brooks & Dodson, 1965). Both live and surface sediment zooplankton assemblages 

(mainly composed of Cladocera) from 39 shallow lakes were shown to be strongly 

influenced by fish density and submerged macrophyte abundance (Davidson, 2005). 

Submerged macrophytes can have significant impact on the trophic structure, nutrient 

dynamics and water clarity of shallow lakes (Scheffer et al., 1993). It was found that the 

provision of a refuge from fish predation for large-bodied cladocerans among stands of 

submerged macropytes is an important stabilising mechanism against nutrient-induced 

phytoplankton increases in clear water shallow lakes (Stansfield et al., 1997). Also 

significant positive association of Cladocera abundance with increasing macrophyte 

coverage were apparent throughout the summer. A positive relationship was observed 

between the relative abundance of surface sediment chydorids and the average cover of 

submerged macrophytes (Thoms et al., 1999). The complicated relationship between 

cladoceran assemblages and nutrient level is one of the main reasons that cladocerans 

have not been as widely used as some other biological organisms (e.g. diatoms) for 

tracking lake eutrophication. 

 

The response of Cladocera assemblages to eutrophication may not be reflected in lake 

sediments. Cores of two North German lakes were subject to postglacial eutrophication 

as indicated by the chironomid assemblages but no such trend was reflected in the 

Cladocera assemblages (Hofmann, 1987b). Fossil Cladocera records showed that they 

were more sensitive indicators of predation than of lake trophic status although the 
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increase in nutrient level was reflected by increased abundance of C. sphaericus 

(Brugam & Speziale, 1983). Therefore further research work is needed to improve the 

confidence with which Cladocera remains can be applied in ecological investigation and 

monitoring. The combination of Cladocera and other biological records like diatoms can 

help assess the validity of the uniform responses of these indicators to the 

environmental variables (Jeppesen et al., 2001). 

 

2.3 Quantification of Species-Nutrient Relationship 

 

As the distribution and abundance of organisms are influenced by chemical, physical 

and biological characteristics of the habitat environment, the relationship between 

present-day distribution and abundance of biota and the environment can be used to 

reconstruct past environmental conditions on the basis of fossil communities. There are 

a great number of environmental variables that influence species distribution and 

abundance, as well as the number of biological taxa considered for building such 

relationships. Before environmental conditions can be reconstructed, the ecological 

optima and tolerances of these indicators have to be estimated. Several methods have 

been used to extract the ecological information between biota and environmental 

variables. Field investigation and laboratory experiment are typical approaches to 

collect data (Hall & Smol, 1999). However, the use of surface-sediment training sets has 

proved to be the most powerful one for calibrating the distribution and abundance of 

taxa (Smol, 2002). 

 

The surface-sediment transfer function method (see Figure 2.2) involves sampling a 

range of lakes (training set) for indicator species and a suite of environmental variables, 

which are then related using statistical techniques (Smol, 2002). Ecological information 

from the water column and littoral habitats are accumulated and integrated in lake 

sediments (Frey, 1986; Smol, 2002). Such accumulation of fossil assemblages in surface 

sediments over time also minimizes the effect of annual or seasonal patterns during 

biological monitoring (Brodersen et al., 1998). The profundal zone of a lake normally 

consists of exposed fine sediment free of vegetation with high variety and abundance of 

biological community remains. The sediment sample from the deepest part of lake is 

assumed to represent the general sedimentary characteristics of the lake and catchment 

(Anderson, 1995b; Smol, 2002). Transfer function can be applied in the fossil biological 
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assemblage of lake sediments to quantitatively reconstruct the environmental variables 

of interest (see Figure 2.2). 

 

 
Figure 2.2 Outline of transfer function development and their use for reconstruction. 
 

 

Several major assumptions for quantitative reconstruction based on training sets are 

discussed by Birks (1995, 1998). The taxa used in the training sets should have a 

systematic response to the habitat environment where they live. The environmental 

variable of interest must be an important determinant of the ecosystem while other 

variables have negligible influences on the system. In addition the statistical methods 

should be adequate for numerical modelling. It is assumed thta ecological optima and 

tolerances of modern and fossil taxa be the same and evolutionary processes will have 

neglectable influence on palaeolimnological assessment. The test data for model 

evaluation has to be independent of the training data (Telford & Birks, 2005). These 

assumptions have proved to be safe as shown by lots of studies on dominant biological 

indicators and important environmental variables and for the time frames of most 

environmental studies (Smol, 2002).  

 

Numerical methods for transfer function construction are depending on the species 

response along the environment gradient (Birks, 1995, 1998). The Gaussian unimodal 

model is a good approximation for biological data that span long gradients and therefore 

unimodal-based modelling techniques (e.g., Weighted Averaging (WA) and Weighted 

Averaging Partial Least Square (WA-PLS)) are appropriate for transfer function 
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development. Linear-based techniques (e.g., Partial Least Square (PLS)) are appropriate 

when species are generally behaving monotonically along a short gradient. Details of 

the numerical methods are discussed and detailed in Chapter 3.  

 

2.3.1 Diatom-based TP Transfer Functions 

 

Diatom-based TP transfer functions can provide quantitative estimates of historical 

phosphorus concentration from the sedimentary sequence of diatoms. They have been 

one of the most important palaeolimnological techniques during the last two decades 

(Anderson, 1997a). At least twenty-five diatom-based TP transfer functions have been 

constructed during the past twenty years around the world. These diatom training sets 

are generally composed of lakes from distinct eco-climatic regions, containing various 

lake types (e.g. lake depth and area) and spanning different TP gradient lengths.  

 

Different diatom training sets can incorporate various lake types in terms of lake depth, 

alkalinity, lake area, etc. Reavie & Smol (2001) selected 64 South Ontario lakes across 

the range of nutrient level from oligotrophic to eutrophic, with an average maximum 

depth of 26.5 m. Thirty-one shallow ponds with maximum depth generally smaller than 

3 m were selected in Southeast England (Bennion, 1994). Two training sets from 

Ontario, Canada (Reavie & Smol, 2001; Werner & Smol, 2005) were mainly based on 

lakes with moderate to high alkalinities. The lakes selected by Kauppila et al. (2002) 

excluded the very small or large lakes, therefore this training set was composed of 68 

medium-sized lakes with a size range of 12-973 ha. While 33 reservoirs and lakes with 

the mean size of 6240 ha and a much wider size range of 14-13 882 ha were selected in 

the diatom TP training set from Australia (Tibby, 2004), because 29 of the 33 sites have 

large dams as a result of river regulation.  

 

Lakes located within the same ecoregion generally have similar conditions like climate, 

vegetation, soil and underlying geology. Therefore a regional TP transfer function can 

be applied to lake sediments from the same ecoregion with potentially high 

predictability. However, a regional training set often has uneven distribution of sites 

along the TP gradient and has difficulty covering the full range of the environment 

gradient. The datasets from Southeast England (Bennion, 1994) and Denmark 

(Bradshaw et al., 2002) included many sites with TP over 50 µg l-1 and thus were 
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strongly biased towards eutrophic lakes. The training sets developed for such areas are 

commonly region-specific, and are less applicable to other regions with different 

physico-chemical characteristics. Some data sets selected lakes spreading over several 

ecoregions with different geology, climate, vegetation and soil (e.g., the 55 lakes 

spanning three different eco-regions investigated by Ramstack et al. (2003)). Such a 

selection can enable investigators to construct and compare the different eco-region 

models and help identify the main impact factors. The combination of several regional 

datasets, like the Northwest Europe dataset consisting of 164 lakes from 6 regional 

datasets and covering a TP range of 5-1190 µg l-1 (Bennion et al., 1996), can form a 

large-scale training set that can have a broader range of diatom species distribution and 

a longer TP gradient.  

 

It is not always true that the bigger the size of the training set or the larger the area it 

covers, the greater its robustness and predictability will be. With an increase in training 

set size and geographical distribution, the heterogeneity within it will also increase and 

the prediction errors rise. The ecological response in lakes to the same environment 

variable can vary on a continental, regional or even smaller scale. Furthermore, a short 

environmental gradient can still occur in a large-scale training set and this short gradient 

can reduce the accuracy of the transfer function produced. For example, the training set 

of 257 lakes in Northeastern United states only has a TP range of 3-48µg l-1 (Dixit et al., 

1999).  

 

2.3.2 Cladocera-based TP Transfer Functions 

 

Four transfer functions based on cladoceran assemblages have been developed to infer 

the total phosphorus (TP) in central Europe and North America. Brodersen et al. (1998) 

investigated the water chemistry and surface-sediment cladocerans in 32 Danish lakes. 

The strong relationship between species data and TP values enabled the establishment of 

a chydorid-based WA model to infer TP and estimate changes in nutrient concentrations 

in Danish lakes that have occurred since the mid-1960s. A statistically significant 

relationship between benthic cladoceran assemblages and epilimnetic TP concentrations 

was built for 68 small alpine lakes in Switzerland (Lotter et al., 1998). In central British 

Columbia in Canada, 53 lakes were sampled for water chemistry and surface sediment 

Cladocera in addition to a suit of physical and spatial explanatory variables (Bos & 
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Cumming, 2003). Total phosphorus was identified to have the most significant 

relationship with Cladocera assemblages. Predictive models were developed to estimate 

TP from species abundance data using weighted averaging techniques along a TP 

gradient of 5-146 µg l-1. All these studies confirm that Cladocera remains are reliable 

and sensitive indicators for trophic status and quantitative TP inference models based on 

Cladocera are useful tools in indicating the nutrient status of lakes quantitatively. 

 

2.3.3 Problems with and Improvements in TP Transfer Functions 

 

The transfer function method has been found powerful in quantifying the diatom-TP 

relationship but the sources of errors have been observed in many studies (e.g. 

Anderson, 1995a; Bennion et al., 1996; Sayer, 2001). Intra-annual variability in nutrient 

concentration is high and tends to be greatest in most nutrient-enriched waters (Gibson 

et al., 1996; Bennion & Smith, 2000). Strong seasonality of planktonic diatoms, with 

main growth periods in spring and autumn in meso- to eutrophic lakes were observed by 

Bradshaw et al. (2002). This implied that the measurement of TP, which is most relevant 

for diatom ecology, may not be adequately assessed by single or a few measurements 

during the year. In practice the water sampling strategy used in investigations is not 

always the same. Annual mean TP values were the most commonly used, while spring, 

summer and autumn TP measurements were also used in many training sets. Within a 

given training set, surface sediment samples are often taken randomly through the year 

and this has proved influential in the calibration models (Sayer, 2001). Improvement for 

training sets may be achieved by standardizing water chemistry and sediment sampling 

methods (Bennion & Smith, 2000; Sayer, 2001). The predictability of the models can be 

improved by conducting a whole-year water-quality monitoring program with a high 

sampling frequency (Bennion & Smith, 2000; Kauppila et al., 2002). Furthermore, 

annual means rather than winter-spring means can provide more appropriate estimates 

of TP due to the importance of internal cycling of nutrients in summer particularly for 

shallow lakes (Bennion & Smith, 2000).  

 

Lake selection is important for the robustness of the training sets. Exclusion of acidic 

and ‘brown water’ lakes could possibly reduce secondary gradients in the data set 

without compromising the applicability of the TP inference model (Kauppila et al., 

2002). Also typically at least 40 or so lakes should be included, but generally the more 
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the better (Smol, 2002). There is evidence to suggest that diatom-TP training sets may 

be much less effective when applied to shallow lakes (Bennion et al., 2001; Sayer, 

2001). In shallow lakes macrophytes can grow over the whole lake and key factors 

controlling the diatom assemblages such as light and substrate can complicate the 

relationship between diatoms and trophic status. In addition the prevalence of non-

planktonic diatoms mainly driven by habitat availability in shallow lakes is poorly 

related to phosphorus and this can reduce the accuracy of predictability of diatom-TP 

models (Bennion et al., 1995; Sayer, 2001; Bennion et al., 2005). It has been suggested 

that this conflicting influence of habitat availability in training sets might be overcome 

by developing habitat-specific datasets based on sampling contemporary planktonic, 

epiphytic and benthic communities (Bennion et al., 1995; Sayer, 2001). A planktonic 

diatom-based TP inference model was developed to minimise the influence of diatoms 

from other habitats (Bradshaw et al., 2002). 

 

To improve the accuracy and predictability of TP inference models, a full range of 

surface water TP should be included. In practice this is not always possible due to 

geological and geographical features, lake types and human activity in different training 

sets lakes. Training sets from Northwest Europe generally included a large number of 

lakes with annual mean TP above 100 µg l-1 (e.g., Bennion, 1995; Broderson et al., 

1998). Other training sets were mainly composed of lakes with relative short TP 

gradient and strong bias towards the lower end of the gradient (e.g., Hall & Smol, 1996; 

Enache & Prairie, 2002). A relatively short nutrient gradient may contribute to the low 

levels of model predictability for some training sets, such as 54 lakes from Ontario with 

a TP gradient of 2.7-24.3 µg l-1 (Hall & Smol, 1996). It is suggested that TP 

reconstructions would have better accuracy for the TP range which is near or within the 

main TP gradient of inference models (Reavie & Smol, 2001). 

 

As diatoms are not the only algal group and represent only one of several trophic levels 

in lakes, their use alone cannot determine the complex interactions among different 

communities and trophic levels (Hall & Smol, 1999). It remains unclear whether 

cladocerans are directly sensitive to TP or whether they are influenced more profoundly 

by concomitant changes in primary producer communities or substrate availability 

(Lotter et al., 1998; de Eyto & Irvine, 2002). The presence and intensity of predation 

and submerged macrophyte coverage have also proved to be significant factors in 

controlling the Cladocera assemblage structure and abundance (Brooks & Dodson, 
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1965; Thoms et al., 1999; Davidson, 2005). Cladocera-based transfer functions have 

also been successfully developed for other environmental variables, including 

submerged macrophytes and fish community (Jeppesen et al., 1996), summer 

temperature (Lotter et al., 1997) and water level (Korhola, 1999).  

 

Different organisms and their fossil counterparts can respond quite differently to 

eutrophication and it would be misleading to rely on a single proxy indicator when 

using the palaeolimnological record to infer past environmental change. Further 

investigations that compare fossil records along defined gradients of environmental 

change or within specific experimental designs were suggested to more clearly assign 

mechanistic explanations to the observed fossil trends (Jeppesen et al., 2001). Multiple-

proxy analysis could encompass multiple trophic levels, incorporate broad change in the 

overall diversity of habitats, and benefit the study of eutrophication (Sayer, 2001). This 

current project aims to combine the diatoms and Cladoceran remains to construct the TP 

inference models for the Irish Ecoregion. The combination of two or more biological 

indicators, including diatoms, cladocerans and chironomids, can improve the accuracy 

and predictability of inference models for nutrient status and dynamics in lakes (Hall & 

Smol, 1999).  
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Chapter 3: Study Sites and Methods 
 

 

This chapter first introduces the study area, site selection, lake typologies and sampling 

of 75 lakes from the Irish Ecoregion included in this study. Then details of laboratory 

analyses for both diatoms and Cladocera are described, including sample processing, 

slide preparation, species identification and counting. Then the main numerical methods 

selected for this study are summarized. Multivariate analysis and the transfer function 

method are detailed along with related software and packages.  

   

3.1 Study Sites and Samples 

 

3.1.1 Study Area and Site Selection 

 

Ireland is located between 51˚20΄-55˚20΄ N latitude and between 5˚20΄-10˚40΄ W 

longitude in the Northwest of Europe. Its climate is dominated by the moderating 

Atlantic Ocean and generally has a relative warm climate with an annual average 

temperature of around 9 °C. Minimum air temperature falls below zero on about 40 

days per year in inland areas and on less than 10 days per year in most coastal areas (see 

www.met.ie). Annual average rainfall between 1972-94 was approximately at 1200-1400 

mm year-1 in the lowland areas of Western Ireland and 800-1000 mm year-1 in Eastern 

Ireland except for the mountain areas (Jordan, 1997).  

 

Lakes were selected for sampling according to the research aim and methods, 

environmental data availability and the feasibility of fieldwork. For this study the key 

criterion for lake selection was the TP status of lake waters. Nutrient levels have been 

found to contribute significantly to the performance of the community-based transfer 

functions as reviewed in Chapter 2. Seventy-five lakes across the Irish Ecoregion were 

selected for coring in this study, including 72 lakes for the diatom training set, 33 lakes 

for the Cladocera training set and seven lakes for top-bottom analysis. Seventy-four 

lakes are included in both training sets with a TP range of 0-142.3 μg l-1 and site 

location of these training set lakes are shown in Figure 3.1. Summary information of all 

the 75 study lakes is shown in Table 3.1.  
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Figure 3.1 Location map of 74 study lakes included in the diatom and Cladocera training sets for 
the Irish Ecoregion. 
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Table 3.1 Summary information of 75 lakes included in this study (H-Area= Hydrometric Area; ● = 
analyzed by the author; ■ = analyzed by Manel Leira; - = no analysis)   
 

Lake Name County H- 
Area 

Grid 
Reference 

Sampler,  
sampling year 

Sampling 
Equipment 

Diatom 
Analysis 

Cladocera 
Analysis 

Anascaul Kerry 22 Q 585 052 Chen, 2004 Gravity Corer ● ● 
Annaghmore Roscommon 26 M 900 837 IN-SIGHT, 2003 Gravity Corer ■ - 
Arderry Galway 31 L 995 457 IN-SIGHT, 2003 Gravity Corer ■ - 
Atedaun Clare 27 R 295 885 IN-SIGHT, 2004 Gravity Corer ● ● 
Ballyallia Clare 28 R 342 809 Chen, 2004 Gravity Corer ● ● 
Ballybeg Clare 27 R 330 739 IN-SIGHT, 2004 Gravity Corer ● ● 
Ballycar Clare 27 R 414 690 Leira, 2002 Echman Grab - ● 
Ballynakill  Galway 31 L 856 225 IN-SIGHT, 2003 Gravity Corer ■ - 
Ballyteige Clare 27 R 348 888 Chen, 2004 Gravity Corer ● ● 
Bane Westmeath 7 N 550 712  IN-SIGHT, 2003 Gravity Corer ■ ● 
Barfinnihy Kerry 21 V 850 768 IN-SIGHT, 2003 Gravity Corer ■ - 
Barra Donegal 38 B 935 120 IN-SIGHT, 2003 Gravity Corer ■ - 
Beaghcauneen Galway 32 L 680 472 Chen, 2004 Gravity Corer ● ● 
Bray Lower Wicklow 10 O 137 161 EAIL, 1996-97 Echman Grab ● - 
Bunny Clare 27 R 375 967 IN-SIGHT, 2003 Gravity Corer ■ - 
Caragh Kerry 22 V 725 905 EAIL, 1996-97 Echman Grab ● - 
Carra Mayo 30 M 180 710 Leira, 2002 Echman Grab ■ - 
Castle Clare 27 R 486 690 Leira, 2002 Echman Grab ● ● 
Caum Clare 23 R 182 810 Chen, 2004 Gravity Corer ● ● 
Cloonaghlin Kerry 21 V 610 709 IN-SIGHT, 2003 Gravity Corer ■ - 
Crans Tyrone 3 H 711 568 IN-SIGHT, 2004 Gravity Corer ■ ● 
Cullaun Clare 27 R 315 905 IN-SIGHT, 2003 Gravity Corer ■ ● 
Cullaunyheeda Clare 27 R 464 747 Leira, 2002 Echman Grab ■ ● 
Dan Wicklow 10 O 150 040 IN-SIGHT, 2003 Gravity Corer ■ - 
Doo Clare 28 R 120 721 EAIL, 1996-97 Echman Grab ● - 
Doo Donegal 39 C 359 394 IN-SIGHT, 2003 Gravity Corer ■ - 
Dromore Clare 27 R 346 859 Leira, 2002 Echman Grab ● ● 
Drumanure Clare 28 R 215842 Chen, 2004 Gravity Corer ● ● 
Dunglow Donegal 38 B 782 117 IN-SIGHT, 2003 Gravity Corer ■ - 
Easky Sligo 35 G 442 225 IN-SIGHT, 2003 Gravity Corer ■ - 
Effernan Clare 27 R 222 558 Chen, 2004 Gravity Corer ● ● 
Egish Monaghan 36 H 795 132 IN-SIGHT, 2004 Gravity Corer ■ ● 
Fad Inishowen Donegal 40 C 539 439 IN-SIGHT, 2003 Gravity Corer ■ - 
Fee Galway 32 L 790 613 IN-SIGHT, 2003 Gravity Corer ■ - 
Feeagh Mayo 32 F 965 000 IN-SIGHT, 2003 Gravity Corer ■ - 
Garvillaun Clare 28 R 248 829 Chen, 2004 Gravity Corer ● ● 
Gortaganniv Clare 27 R 251 759 Chen, 2004 Gravity Corer ● ● 
Inchichronan Clare 27 R 391853 Leira, 2002 Echman Grab - ● 
Inchiquin Clare 21 R 268 897 IN-SIGHT, 2004 Gravity Corer ■ ● 
Keel Donegal 38 B 847 162 IN-SIGHT, 2003 Gravity Corer ■ - 
Kiltooris Donegal 38 G 676 972 IN-SIGHT, 2003 Gravity Corer ■ ● 
Kindrum Donegal 38 C 185 430 IN-SIGHT, 2003 Gravity Corer ■ - 
Kylemore Galway 32 L 770 552 IN-SIGHT, 2003 Gravity Corer ■ - 
Lene Westmeath 7 N 510 685 IN-SIGHT, 2003 Gravity Corer ■ ● 
Lickeen Clare 28 R 176 909 EAIL, 1996-97 Echman Grab ● - 
Lisnahan Clare 28 Q 900 617 Chen, 2004 Gravity Corer ● ● 
Maumwee Galway 30 L 977 484 EAIL, 1996-97 Echman Grab ● - 
McNean Leitrim 36 H 040 400 IN-SIGHT, 2003 Gravity Corer ■ ● 
Moanmore Clare 28 Q 979 611 Chen, 2004 Gravity Corer ● ● 
Moher Mayo 32 L 977 766 EAIL, 1996-97 Echman Grab ● - 
Mooghna Clare 28 R 137 842 Chen, 2004 Gravity Corer ● ● 
Morgans Clare 27 R 255 835 Chen, 2004 Gravity Corer ● ● 
Muckanagh Clare 27 R 370 925 IN-SIGHT, 2003 Gravity Corer ■ ● 
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Lake Name County H- 
Area 

Grid 
Reference 

Sampler,  
sampling year 

Sampling 
Equipment 

Diatom 
Analysis 

Cladocera 
Analysis 

Muckno Monaghan 6 H 856 175 EAIL, 1996-97 Echman Grab ● - 
Mullagh Cavan 7 N 677 855 IN-SIGHT, 2004 Gravity Corer ■ ● 
Nahasleam Galway 31 L 971 244 IN-SIGHT, 2003 Gravity Corer ■ - 
Nambrackkeagh Galway 32 L 821 603 IN-SIGHT, 2003 Gravity Corer ■ - 
Naminn Donegal 40 C 396 419 IN-SIGHT, 2003 Gravity Corer ■ - 
Naminna Clare 28 R 176 710 IN-SIGHT, 2003 Gravity Corer ■ - 
O'Flynn Roscommon 26 M 585 795 IN-SIGHT, 2003 Gravity Corer ■ - 
Oorid Galway 31 L 930 460 IN-SIGHT, 2003 Gravity Corer ■ - 
Oughter Cavan 36 H 342 075 EAIL, 1996-97 Echman Grab ● - 
Owel Westmeath 26 N 400 581 EAIL, 1996-97 Echman Grab ● - 
Pollaphuca Wicklow 9 N 985 086 EAIL, 1996-97 Echman Grab ● - 
Ramor Cavan 7 N 603 868 EAIL, 1996-97 Echman Grab ● - 
Rea Galway 29 M 615 155 IN-SIGHT, 2003 Gravity Corer ■ - 
Rosconnell Clare 28 R 222 793 Chen, 2004 Gravity Corer ● ● 
Rushaun Clare 28 R 253 791 Chen, 2004 Gravity Corer ● ● 
Shindilla Galway 31 L 960 460 IN-SIGHT, 2003 Gravity Corer ■ - 
Sillan Monaghan 36 H 700 070 IN-SIGHT, 2004 Gravity Corer ■ ● 
Talt Sligo 34 G 398 150 IN-SIGHT, 2003 Gravity Corer ■ - 
Tay Wicklow 10 O 160 750  IN-SIGHT, 2003 Gravity Corer ■ ● 
Tullabrack Clare 28 R 018 597 Chen, 2004 Gravity Corer ● ● 
Upper Kerry 22 V 900 817 IN-SIGHT, 2003 Gravity Corer ■ - 
Veagh Donegal 38 C 022 215 IN-SIGHT, 2003 Gravity Corer ■ - 

 

 

 

Geographically these 75 lakes are widely located in 12 counties of Ireland but most of 

the lakes are situated along the west coast, including 28 in Co. Clare, 11 in Co. Galway 

and 9 in Co. Donegal (see Figure 3.1 and Table 3.1). Geologically the most common 

bedrock types are Carboniferous Limestone, Granite, Shale, Silurian Quartzite and 

Sandstone. In Co. Clare Carboniferous Limestone and Shale are the two dominant 

bedrock types in the catchment area of study lakes. For lakes from Co. Galway the 

catchment areas are dominated by several bedrock types including Granite, Ordovician 

and Schist and Gneiss. The Geology of Co. Donegal lakes is dominated by Granite, 

Schist and Quartzite. Sandstone is predominant in the catchment areas of lakes in Co. 

Kerry. Silurian Quartzite and Granite are prevalent in the catchment areas of Co. Caven 

and Co. Wicklow respectively. The 75 lakes are located in 21 of the 40 Hydrometric 

Areas across the Irish Ecoregion (see Table 3.1). Each  Hydrometric area comprises a 

single river catchment or a group of smaller catchments (Toner et al., 2005). Several 

Hydrometric Areas are well represented like Area 27 (14 lakes), Area 28 (12 lakes), 

Area 32 (6 lakes) and Area 38 (6 lakes). While the Hydrometric Areas 3, 6, 9, 18, 34 

and 39 only contain one lake each.  
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Twelve commonly used and potentially significant physico-chemical variables including 

TP were used in this study, including total phosphorus (TP), Chlorophyll-a, pH, 

alkalinity, conductivity, catchment area, lake area and catchment area: lake area ratio, 

mean and maximum depth and altitude. All the physical and hydrochemical data of the 

75 lakes are listed in Appendex B and D. The hydrochemical and physical data were 

provided mainly through links with other projects (Irvine et al., 2001; Wemaëre, 2005; 

Taylor et al., 2006) and the Irish Environmental Protection Agency (EPA). Other 

publications were also referred to for information used in this study (e.g. Flanagan & 

Toner, 1975; King & Champ, 2000; Free, 2002; McGarrigle et al., 2002; Toner et al., 

2005). Chemical data for 40 lakes were directly provided by the Irish EPA (see 

Appendix D). Chemical data for the other lakes were mainly collected during the 

summer season for most of the lakes with a sampling frequency varying from one to 

nine times per year (see Appendix D).  

 

Land cover data from the CORINE 2000 database were provided by the Irish EPA. 

CORINE (CO-oRdination of INformation on the Environment programme) Land Cover 

project uses a unique combination of satellite images and other data to reveal all kinds 

of information on land resources across Europe. The Irish National CORINE database 

includes 41 land cover classes based on a 25 ha minimum mapping unit. Land cover 

data of this study contained most of the 41 land cover classes, and were summarized 

into five groups (urban, forestry, pasture, peatland and agriculture) for data analysis (see 

Appendix C). Data for Ballycar, Castle, Rosconnell and Caragh were collected from 

Wemaëre (2005) and Irvine et al. (2001) but were based on the CORINE 1990 dataset. 

 

An Irish lake typology scheme including thirteen typology classes was proposed by the 

Irish EPA (Free et al., 2005) mainly based on alkalinity, mean depth and lake area (see 

Table 3.2). All 13 lake types were represented by the 75 study sites with 3-11 lakes in 

each category. Typology class 13 was identified for lakes only based at altitudes of > 

300 m (Free et al., 2005) and Lough Bray Lower with an altitude of 378 m fell into that 

category. This lake was re-categorised as type 3 in this study to make it more 

comparable with other lakes due to its low alkalinity, deep waters and relatively small 

area. The data set contains 31 lakes with low alkalinity (< 20 mg l-1 CaCO3), 24 lakes 

with moderate alkalinity (20-100 mg l-1 CaCO3) and 20 lakes with high alkalinity (> 

100 mg l-1 CaCO3) (see Table 3.2). Lake Type 4 (low alkalinity, deep and large) 
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contained 11 lakes, more than any other lake type. The lowest number of lakes occur in 

Type 2 (low alkalinity, shallow and large), Type 6 (moderate alkalinity, shallow and 

large), Type 10 (high alkalinity, shallow, large) and Type 11 (high alkalinity, deep and 

small) respectively.  

 
Table 3.2 Classification of the 75 study lakes based on the Irish Lake Typology scheme (Free et al., 
2005) (see Appendix A for site names) 
 
Alkalinity <20 mg l-1 CaCO3 20 – 100 mg l-1 CaCO3 >100 mg l-1 CaCO3 

Mean 
Depth ≤4 m >4 m ≤4 m >4 m ≤4 m >4 m 

Lake 
Area 

≤50 
ha 

>50 
ha 

≤50 
ha 

>50 
ha 

≤50 
ha 

>50 
ha 

≤50 
ha 

>50 
ha 

≤50 
ha 

>50 
ha 

≤50 
ha 

>50 
ha 

Typology 
Class 1 2 3 4 5 6 7 8 9 10 11 12 

No. of 
Lakes 9 3 8 11 8 3 5 8 5 4 3 8 

Lakes 
(Site  
Code) 

CAU 
HOH 
MAU 
MOA 
NAB 
NAH 
NAM 
NAN 
TUL 

BAR 
DOC 
EAS 

ANS 
BAF 
BEA 
BRL 
DOO 
FAD 
KEE 
TAY 

ARD 
CAR 
CLO 
DAN 
FEE 
FEG 
KYL 
OOR 
SHI 
UPE 
VEA 

DRU 
GAR 
GOR 
KIL 
LIS 
MOR 
MUL 
RUS 

LIC 
OUG 
RAM 

BAL 
CRA 
EFF 
MOO 
ROS 

DUN 
EGI 
KIN 
MCN 
MUN 
OWE 
POL 
TAL 

ATE 
BAB 
BAC 
BAT 
CAS 

BUN 
CAA 
MUC 
OFL 

BAA 
CUL 
DRO 

ANN 
BAN 
CUY 
INC 
INQ 
LEN 
REA 
SIL 

 

 

Water column stratification is generally restricted to the summer months in small and 

relatively deep lakes in Ireland whereas shallow lakes do not show an annual cycle of 

thermal stratification (Irvine et al., 2001). Winter stratification is uncommon as Irish 

lakes are seldom ice covered due to their proximity to the Atlantic Ocean. Of the 31 

lakes surveyed in 1996-7 (13 of which are included in this study) almost all were found 

to stratify during the summer (Irvine et al., 2001). Either stable or temporary summer 

stratification was found in six small lakes in Co. Clare despite the windy and temperate 

weather conditions (Allott, 1986). The occurrence of summer stratification can 

influence the oxygen availability and internal loading of nutrients (like phosphorus) in 

deep waters and therefore affect the growth of plants and animals within lakes.  

 

3.1.2 Sediment Sampling and Sub-sampling 
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Fifty-eight of the 75 study lakes were sampled in the summer of 2003 and 2004 either 

by the author or through the joint fieldwork with the IN-SIGHT project (Taylor et al., 

2006) (see Table 3.1). Eleven lakes were sampled in 1996-7 by Norman Allott but not 

analysed by the Ecological Assessment of Irish Lakes (EAIL) project (Irvine et al., 2001) 

and also six lakes were sampled by Manel Leira in 2002.  

 

A Renberg gravity corer (HTH Teknik, Vårvågen 37, SE-95149 Luleå) was used to 

extract sediments for the 58 lakes in 2003 and 2004 (see Table 3.1). This device can 

close completely under water so that sediments are not lost during retrieval (Renberg, 

1991). Bathymetric surveys were carried out using an echo sounder and a portable GPS 

when the bathymetry data were not available or not accurate enough to determine the 

deepest point for sediment coring. Sediment cores were sub-sampled using a vertical 

extruder immediately after coring in the field. Sediments were sectioned at 0.5 cm 

interval for the top 5 cm and at 1.0 cm interval for the rest of the depth. The sediment 

cores from Ballyallia and Anascaul were sub-sampled every 1 cm due to technical 

problems. Sub-samples were placed in sealed and labelled sampling bags and stored in 

cool box, and kept out of direct sunlight before being stored in a refrigerator at the 

Sediment Laboratory of Geography Department, Mary Immaculate College for 

subsequent analyses. Seventeen samples provided by Norman Allott and Manel Leira 

(see Table 3.1) were taken using an Echman Grab in the profoundal area of the lakes. 

Surface sediments of the top 2-3 cm were removed and sealed in screw-top vials and 

were stored as above.  

 

3.2 Laboratory Analyses 

 

3.2.1 Diatom Analysis 

 

Surface sediments from the top 0.5 cm for 55 lakes, 1 cm for two lakes (Ballyallia and 

Anascaul) and ca. 2-3 cm for 15 lakes sampled with Echman Grab (see Table 3.1) were 

processed for diatom analysis. Core bottom samples from seven lakes were also 

processed.  
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3.2.1.1 Slide Preparation 

 

Procedures for slide preparation adopted here mainly followed those of Battarbee et al. 

(2001). The key focus during diatom slide preparation is that no diatom valves are lost 

or damaged. Care was taken to avoid contamination of the samples. The detailed 

procedures are summarised as follows: oxidation of organic matter of around 0.1 g wet 

sediment with 5ml 30% hydrogen peroxide (H2O2) in the water bath at 80°C for around 

4 hours, adding 5-10 drops of 10% hydrochloric acid (HCl) to eliminate the remaining 

H2O2 and carbonates, washing with distilled water and centrifuging at 1200 rpm for 4 

minutes for 4 times, drying 5 ml of the slurry on a coverslip, and mounting with 

Naphrax® (a resin of high refractive index) on a hotplate at 100-150°C for around 10 

minutes. 

  

3.2.1.2 Valve Identification and Counting 

 
A Meiji ML2000 microscope with phase contrast and 100× oil immersion objective and 

1000× magnification was used for diatom counts. The phase contrast condenser can 

increase the contrast between the mountant and the diatom cells. A Nikon Coolpix 4500 

digital camera attached to the microscope was used to facilitate diatom identification 

and counting. Images captured were used for taxonomic verification and harmonisation 

as well as records for unknown taxa. At least 300-500 valves were counted for surface 

and bottom samples. A continuous transect from the edge to center of the diatom slides 

were counted. This potentially includes equal portions of slides to avoid any sorting 

caused by evaporation and is generally thought to be representative of the whole slide 

(Battarbee, 1986). 

 

Identification of diatoms was mainly based on cell shape and the detailed structure of 

the silicious wall (termed frustule). Diatom nomenclature and taxonomy mainly 

followed the series of books by Krammer & Lange-Bertalot (1986, 1988, 1991a, 1991b, 

2000), together with a wide range of references (Foged, 1977; Stevenson et al., 1991; 

Lange-Bertalot & Metzeltin, 1996; Prygiel & Coste, 2000; Håkansson, 2002). An 

unpublished French diatom list is used for coding the diatom taxa in this study (see 

appendix E). The single valve is used as the basic counting unit, so the complete 

frustule was counted as two and chains of frustules as the total number of the individual 
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valves. When counting fragments of valves, fragments are included in the counts only if 

no double or multiple counting takes place as suggested by Battarbee (1986), Other 

strategies included counting the broken valves only if they represent approximately 

three-quarters of the valves. 

 

Quality control on diatom identification has been fulfilled through cross-verification and 

discussion within the IN-SIGHT project. Diatom harmonization was conducted by the 

author and Dr. Leira on the combined diatom training set. Sub-species were merged for 

several species like Cocconeis placentula and Stephanodiscus hantzschii (see Figure 3.3) 

mainly due to their similar ecological requirement for growth (Van Dam et al., 1994). 

Some species that have different forms were also merged under the same species, 

including the two common forms of Aulacoseira subarctica (Gibson et al., 2003) in this 

training set (Figure 3.3). Taxa that were difficult to distinguish and also occurred with a 

relatively low abundance were merged with species with close morphology, including 

Cyclotella karmmeri (merged with C. kutzingiana), Stephanodiscus rotula (merged with 

S. neoastreae), Cyclotella praetermissa (merged with C. radiosa) and Navicula 

phyllepta (merged with N. gregaria). Synonymous species were also merged, e.g. 

Navicula heimansii (synonymous with N. leptostriata), Achnanthes impexa 

(synonymous with Navicula impexa). Girdle views of taxa of some genera occurred in 

relatively high abundance, particularly those of Fragilaria and Eunotia (see Figure 3.3). 

Some taxa in girdle view were difficult to identify and were therefore counted as 

unidentified within the genus.  
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3.2.2 Cladocera Analysis 

 

3.2.2.1 Water Samples 

 

For Cladocera taxonomic identification fresh samples were taken from the water 

column, rocks and plants from around 10 lakes. Samples were washed gently under a 

tap through a 53µm mesh sieve into a beaker until the rinsing water came through clear. 

Care was taken to collect all the material rinsed from the mesh and the volume of the 

final solution did not exceed that of standard solution of around 50 ml. The samples 

were then preserved in 70-90% industrial alcohol, which prevents the decay of 

Figure 3.2 Images of some diatom taxa in the 72-lake diatom training set (1 Cocconeis placentula 
var. euglypta, 2 Stephanodiscus hantzschii, 3&4 Aulacoseira subarctica, 5 Cyclotella kutzingiana, 6 
Stephanodiscus neoastreae, 7 Cyclotella radiosa, 8&9 Fragilaria exigua (girdle view), 10 Fragilaria 
virens (girdle view), 11&12 Eunotia incisa (girdle view)). 
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Cladocera bodies or parts. A pipette with an aperture large enough to accommodate the 

intact Cladocera exoskeletons was used to absorb 5 ml of solution into a counting 

chamber for taxa identification and enumeration.  

 

3.2.2.2 Sedimentary Samples 

 

Surface sediments from the top 1 cm from 28 lakes sampled with a gravity corer and the 

top 2-3 cm from five lakes sampled with an Echman Grab (see Table 3.1) were used for 

Cladocera analysis. Core bottom samples from seven lakes were also processed.  

 

The sediment digestion method for Cladocera analysis mainly followed that of Frey 

(1986). Approximately 5 g of wet sediments were deflocculated with 50 ml 10% 

potassium hydroxide (KOH) in a 250 ml beaker, heated on a hot plate to 65-70 ºC for 

approximately one hour and stirred gently. Five ml of 10% HCl was added to remove 

carbonate from calcareous sediments after the contents of the beaker were allowed to 

cool. After CO2 bubbles were released, samples were filtered through a sieve with a 

53μm mesh size, which would retain small exoskeleton parts. Remains retained on the 

screen were carefully transferred into vials, diluted to a volume of around 5-10 ml and 

then kept in the refrigerator for further analysis.  

 

Permanent slides for Cladocera analysis were prepared by transferring 0.05 ml aliquot 

of the well-shaken concentrate to a glass slide through a precision pipette. The slide was 

placed on a hotplot at 35-50 ºC until almost all of the liquid was evaporated. Care was 

taken to prevent complete drying. Two drops of Glycerine jelly were then dripped onto 

the residue and a pin was used to mix the jelly and the sample residue gently for a 

homogeneous distribution. Gram’s safranine solution was used to stain and mark the 

fragments on the slides. A 22 mm ×22 mm coverslip was then mounted and nail varnish 

was employed around the edges to seal the cover slip. The slides were left overnight to 

dry and then were ready for identification and counting.  

 

3.2.2.3 Identification and Counting 
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Examination of intact exoskeleton components from water samples greatly helps with 

the identification of the sedimentary remains. Taxonomy guides of freshwater Cladocera, 

mostly from Europe, have been referred to (Scourfield & Harding, 1966; Smirnov, 1974; 

Amoros, 1984; Margaritora, 1985; Pennak, 1989; Duigan, 1992; Alonso, 1996; Smirnov, 

1996; Dodson & Frey, 2001). Lists of Cladocera taxa belonging to Chydoridae and 

other families were used to falicitate sedimentary Cladocera identification and counting 

(Duigan, 1992; de Eyto, 2000; Irvine et al., 2001). 

 

Identification of the fossil Cladocera remains is complicated by the fact that only 

fragments of Cladocera bodies are preserved and not all Cladocera are preserved equally 

well in the sediments (Frey, 1960). Hard-shelled forms of cladocerans, such as 

chydorids, are well preserved, whereas soft-shelled chitinous taxa, such as Daphina, is 

represented by smaller fragments (Jeppesen et al., 2001). These may also be caused by 

various factors including fish predation and complex physical and chemical operations 

on the bodies during the transportation and burial processes (Frey, 1986). Headshields 

(see Figure 3.4 and Figure 3.5), postabdomens (Figure 3.6) and shells or carapaces 

(Figure 3.7) are the main identifiable features for sedimentary Chydoridae and 

Bosminidae, as well as the claws for Daphniidae (Figure 3.6).  

 

There is not a comprehensive taxonomy key to sedimentary Cladocera, but the 

pioneering works by D.G. Frey (1958, 1959, 1960, 1962a, 1962b, 1964, 1965) 

significantly improved the identification of sedimentary fragments and enabled 

Cladocera remains to be a significant proxy in paleoecology and paleolimnology. For 

example, the arrangement of head pores on the head shield has been an important key 

for sedimentary Chydoridae and Bosminidae (see Figure 3.4 and Figure 3.5). Works by 

many other researchers have also greatly helped with sediment Cladocera taxonomy 

(Goulden & Frey, 1963; Deevey & Deevey, 1971; Lieder, 1983; Melo & Hebert, 1994; 

Bos, 2001). A Cladocera species code developed by the author was used in this study for 

data analysis (see Appendix F). 
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Figure 3.3 Headshields of some chydorids (1 Alona affinis, 2 Alona quadrangularis, 3 Pleuroxus 
trigonellus, 4 Alonella excisa, 5 Alonella exigua, 6 Graptoleberis testudinaria, 7 Alona costata, 8 
Alona rustica, 9 Monospilus dispar). 
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Figure 3.4 Headshields of some chydorids and bosnomids (1 Chydorus Sphaericus (tip part 
enlarged and inserted), 2 Chydorus piger, 3 Leydigia leydigii (head pores enlarged and inserted), 4
Eurycercus lamellatus, 5&6 Alona guttata/rectangula, 7 Acroperus harpae, 8 Bosmina longirostris, 9 
Bosmina longispina).  
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Figure 3.5 Postabdomens and claws of some cladocerans (1 Pleuroxus laevis, 2 Alona rustica, 3 
Alona guttata, 4 Alona affinis (?), 5 Alona rectangula, 6 Acroperus harpae (part at the base of the 
claw enlarged and insersted), 7 Daphnia pulex group, 8 Daphnia longispina group, 9 Alona affinis, 
10 Alona quadrangularis, 11 Eurycercus lamellatus). 
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Counts of remains were adjusted to represent the Cladocera individual with two shells, 

one headshield and one postabdomen. The most abundant, single remain was used in the 

analysis for each taxa or species (Frey, 1986). At least 100 individuals of Chydoridae 

were counted or at least 70 individuals with at least 20 Cladocera slides counted when 

the chydorid density was very low. Coverslips were enumerated completely in order to 

avoid any possible bias towards the relative abundance of the remains and to determine 

the absolute concentrations and biomass (Bredesen et al., 2002).  

 

All Chydoridae and Bosminidae remains were identified to species level (see Figure 3.4 

to Figure 3.7), except when insufficient taxonomic feature could be observed. Species 

1 2

3 4
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Figure 3.6 Carapaces of some cladocerans (1 Graptoleberis testudinaria, 2 Acroperus harpae, 3 
Pleuroxus truncatus, 4 Pleuroxus aduncus, 5 Alonella exigua, 6 Alonella nana, 7 Bosmina 
longirostris).  



 62

of Alona guttata and A. rctangula were merged as A. guttata/rectangula group because 

their headshields (see 5&6 in Figure 3.5), often the most abundant fragments of both 

species in this study, were generally indistinguishable despite that their postabdomens 

(see 3&5 in Figure 3.6) and carapaces could be identified and distinguished. 

Headshields and carapaces are often the only fragments for the Bosminidae in this study 

(see 8&9 in Figure 3.5 and 7 in Figure 3.7). Position and shape of lateral pores on the 

headshield enabled the identification of Bosmina at species level (Goulden & Frey, 

1963), but the features of carapaces alone could not be used to distinguish between 

Bosmina longirostris and B. longispina. However, number of Bosmina individuals 

indicated by headshields was higher than that indicated by related shells in this study 

and therefore there was no taxonomic problem for enumerating sedimentary Bosmina 

remains. Daphnia remains could only be identified to two species groups (Daphnia cf. 

longispina and D. cf. pulex) (Frey, 1958) mainly based on the postabdominal claws (as 

shown in Figure 3.6).  

 

Ephippia were only found in surface sediments from Loughs Mullagh (1, the total 

number of ephippium), Ballyteige (1), Crans (1), Egish (21) and in the bottom sediment 

from Lough Crans (3). Therefore ephippia were not included in the subsequent data 

analysis due to their extremely low frequency of occurrence and abundance.  

 

3.3 Numerical Analyses 

 

The simplest data structure can be expressed as a single variable of an object (e.g. the 

maximum depth of lakes, count of one diatom species), often called univariate data. 

Multivariate data consist of many objects, with each object described by several 

variables. In this study the ecological data consists of percentage counts for the two 

fossil variables (diatom and Cladocera) in multiple lakes (objects). Ecological and 

environmental data were stored mainly in MS Excel spreadsheets as well as MS Access 

tables where the relational data sets were linked. Both diatom and cladoceran counts 

were expressed as percentage data of the total counts for the same sample respectively.  

 

3.3.1 Exploratory Data Analysis (EDA) 
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For univariate data, the histogram was used in this study for displaying the 

distributional information. Quantile-quantile (Q-Q) plots are useful tools for 

determining if data are normally distributed (Venables & Ripley, 2002). They show the 

relationship between the distribution of a variable and a theoretical distribution. 

Quantile-Quantile (Q-Q) plots were employed in this study to test the normal 

probability of environmental data (but not displayed). For bivariate and multivariate 

data, the scatter plot was used to explore the data patterns. A scatter plot reveals 

relationships or association among variables. Such relationships manifest themselves by 

any non-random structure in the plot. They can provide information about the 

relationship and dependence among variables and any potential outliers. Scatter plots 

are a useful diagnostic tool for determining association and correlation. They can 

provide the key features of a set of data and an overall impression of the data 

distribution. 

 

3.3.2 Multivariate Analysis 

 

Any analysis that attempts to simultaneously examine the behaviour of more than one 

dependent variable is termed as multivariate analysis. Ordination and classification, the 

most commonly used multivariate methods, are applied in this study.  

 

3.3.2.1 Missing Data and Normalizing Transformation of Data 

 

Missing data is a feature of many physico-chemical data sets, including the current data 

set. Fourteen values of six physical variables and three values of two hydrochemical 

variables are missing (see Appendex B and D). Removing variables with missing values 

could eliminate critical physico-chemical factors determining the biological 

assemblages and valuable information can be lost. Instead the mean of the variable was 

substituted for the missing value prior to data transformation and multivariate analysis 

(Legendre & Legendre, 1998).  

 

If the data have a highly skewed distribution e.g. with many small values and a few 

extremely large values, data transformation is recommended to improve the analysis (ter 

Braak, 1987b). Normalizing transformation of data for subsequent multivariate analysis 
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was employed to reduce the influence of extreme values and also to fit better to a 

normal distribution (also known as the Gaussian distribution) for further multivariate 

analysis. Square root and logarithm with bases of 10, natural and 2 were used to test the 

normality of each environment variable. Addition of 1 to the value equal to or below 0 

was also used for square root and log- transformations. Transformation of each variable 

was judged and selected based on the Q-Q plot and frequency histogram analyses. 

Square root transformation was selected for ecological data in this study prior to 

multivariate analysis if not specified (Lepš & Šmilauer, 2003).  

 

3.3.2.2 Gradient Analysis 

 

Gradient analysis is the examination of species distribution along environmental 

gradients. Gradient analysis includes indirect gradient analysis (ordination), where 

community samples are displayed along axes of variation in composition that can 

subsequently be interpreted in terms of latent, not measured, environmental gradients 

and direct gradient analysis (constrained ordination), in which each species’ abundance 

is described as a function of measured environmental variables (ter Braak & Prentice, 

1988).  

 

Models of species response to environmental gradients determine the techniques used 

for gradient analysis (see Table 3.3). Two types of species response models to an 

environmental gradient are used: linear and unimodal response models. The linear 

response model is the simplest approximation, and the unimodal model expects that the 

species have an optimum on an environmental gradient (Lepš & Šmilauer, 2003). 

Detrended Correspondence Analysis (DCA) is used to ascertain if the species data are 

suited to a linear or unimodal model (ter Braak & Prentice, 1988). DCA provided an 

estimate of the gradient length in relation to the underlying environmental gradients 

reported in standard deviation (SD) units for each axis (ter Braak & Prentice, 1988). If 

the gradient length is short (2 SD units or less) (see Table 3.3), taxa are generally 

behaving monotonically along the environment gradient and therefore linear methods 

are appropriate (Birks, 1995). If the gradient length is longer (2 SD or more), unimodal-

based methods would be appropriate.  
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Table 3.3 Summary of basic ordination techniques used in this study. 

 
Response model Linear Unimodal 

Gradient length (SD) ≤ 2 > 2 

Unconstrained 
Principal Components Analysis 

(PCA) 

Correspondence Analysis 

(CA) 

Constrained 
Redundancy Analysis 

(RDA) 

Canonical Correspondence 

Analysis (CCA) 

 

 

Linear response model 
 

Species responses may seem to change linearly through short environmental gradients, 

so a linear response model may be a reasonable basis for exploring quantitative 

abundance data spanning a narrow range of environment variation. Linear methods 

(PCA and RDA) are generally used to explore the structure of the environmental data 

and are also used for the Cladocera data in this study.  

 

Principal components analysis (PCA) transforms the original variables into a smaller set 

of linear combinations that account for most of the variance of the original data (Dillon 

& Goldstein, 1984). It is an indirect or unconstrained ordination technique that 

constructs the theoretical variable that minimizes the total residual sum of squares after 

fitting straight lines to the species data (ter Braak, 1987b). The purpose of PCA is to 

explain as much of the total variation in the data as possible with as few components as 

possible. The principal components are extracted so that the first principal component 

accounts for the largest amount of the total variation in the data. Total sum of squares of 

regressions is called eigenvalue (λ, a value for each eigenvector) and it is expressed as 

percentage of total variance in species data. The eigenvalue is actually equal to the 

maximized dispersion of the species scores on the ordination axis and is thus a measure 

of importance of the ordination axis (ter Braak, 1987b). The first of first PCA axis has 

the largest eigenvalue (λ1), the second axis the second largest eigenvalue (λ2), and so on. 

Broken stick model was used to examine which ordination axes should be retained for 

interpretation based on the percentage variance explained by each axis (Jackson, 1993) 

and this was performed in the program R. 
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In PCA without data transformation (also known as non-standardised or species-

centred), each species is implicitly weighted by the variance of its abundance values and 

the abundant species with largest variances are emphasized within the covariance matrix. 

However, the species with low variance, often the rare ones, have only minor influence 

on the solution (ter Braak, 1987b). In standardised PCA all species receive equal weight 

including rare species in a correlation matrix. Standardisation of data is recommended 

when variables are measured in different and non-comparable units and the shape of the 

transformed data is left unchanged (Noy-Meir et al., 1975; Shaw, 2003). Environmental 

data were therefore standardised before performing PCA as they were generally 

measured in different units in this study.  

 

PCA is commonly displayed in a biplot where sites marked by points and species by 

arrows are represented jointly (Gabriel, 1971). Sites close together are inferred to 

resemble one another in species composition, which are tacitly assumed to have similar 

environments. Points near the origin have low magnitude of change from the average 

(the origin). Therefore, species on the edge of the diagram (far from the origin) are the 

most important for indicating site differences and species near the centre are of minor 

importance (ter Braak & Prentice, 1988). The arrow points in the direction of maximum 

variation in the species’ abundance, and its length is proportional to this maximum rate 

of change (ter Braak & Prentice, 1988). Angles between vector arrows approximate 

their correlations: an angle of 0˚ means a completely positive correlation while an angle 

of 180˚ indicates a completely negative correlation.  

 

Redundancy Analysis (RDA) is a constrained PCA method in which species are 

presumed to have linear relationships to environmental gradients. RDA selects linear 

combination of environmental variables that gives smallest total residual sum of 

squares. The results of RDA can be expressed in a triplot or biplot, where sites are 

indicated by points, and both species and environmental variables are indicated by 

arrows whose interpretation is similar to that of the arrows in the PCA biplot. The 

species scores in RDA are most accurately represented by arrows (the direction in which 

the species is increasing in abundance).  

 

Unimodal response model 
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Correspondence Analysis (CA) is the technique that constructs the theoretical variable 

that best explains the species data using weighted averaging (ter Braak, 1987b). It is 

also known as Reciprocal Averaging, which means that sample scores are calculated as 

weighted averages of species scores, and species scores are calculated as a weighted 

average of sample scores. Species and samples are ordinated simultaneously in CA. The 

theoretical variable constructed by CA is termed the first CA axis and its values are the 

site scores on the first CA axis. A second and further CA axes are also constructed for 

maximizing the dispersion of the species scores, but the size of eigenvalues can be a 

guide for the number of axes worth interpreting. As in PCA broken stick model was 

used to decide which CA axes should be used for interpretation (Jackson, 1993). 

 

Correspondence Analysis has a fault as the arch effect and this effect is caused by 

nonlinearity of species response curves (ter Braak, 1987b). Detrended Correspondence 

Analysis (DCA) was developed by Hill and Gauch (1980) as a heuristic modification 

and more sophisticated form of CA, and designed to correct the arch effect. In CA both 

sites and species are represented by points, and each site is located at the center of 

gravity of species that occur there (ter Braak, 1987b). Species points on the edge of the 

diagram are often rare species, either because they prefer extreme environmental 

conditions or because their few occurrences by chance happen to be at extreme sites.  

 

Canonical Correspondence Analysis (CCA) is a modification of CA in which the 

ordination axes are restricted to be weighted sums of environmental variables. CCA 

aims to visualize a pattern of community variation, as in standard ordination, and also 

the main features of species’ distributions along environmental variables. The species 

and sites are positioned as points in CCA and their joint interpretation is the same as 

that in CA. A site with a high abundance of a species tends to be close to the point for 

that species. Since species are assumed to have unimodal responses with respect to 

linear combinations of the environmental variables, the species are logically represented 

by points (corresponding to their approximate optima), and the environmental variables 

by arrows indicating their direction and rate of change (ter Braak & Prentice, 1988). The 

joint plot of species points and environmental arrows is actually a biplot that 

approximates the weighted averages of each of the species with respect to each of the 

environmental variables. The weighted averages are approximated as deviations from 

the mean of each environmental variable represented by the origin of the plot. The 

inferred weighted average is higher than the average if the projecting point lies on the 
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same side of the origin as the head of the arrow and is lower then average if the origin 

lies between the projecting point and the head of and arrow.  

 

3.3.2.3 Minimum Adequate Model Selection 

 

A significant feature of all statistical models is that they have two main parts: the 

systematic component, that describes the variability in the values of response variables 

explained by the explanatory variables, and the stochastic component, that refers to the 

residual variability in the response variables not described by the systematic part of the 

model and contributes to the noise in the data set (Lepš & Šmilauer, 2003). The 

systematic component is often used to judge the quality of the fitted model based on the 

amount of variance in response variables it can explain. The principal of parsimony is 

generally followed to include only those explanatory variables that significantly 

contribute to the model (Legendre & Legendre, 1998). However, strong collinearity 

among explanatory variables can affect the correct estimation of model parameters 

(Legendre & Legendre, 1998). To best describe the ordination models in this study, 

forward selection is used to select significant environmental variables and is run using 

functions of R package vegan (Oksanen, 2005b). This procedure uses a fairly new 

concept Akaike’s information criterion (AIC) as the selection criterion (Godínez-

Domínguez & Freire, 2003), rather than the maximum extra fit used in CANOCO (ter 

Braak & Šmilauer, 2002).  

 

Forward selection, a type of stepwise selections, starts with a null model without any 

explanation variable (Legendre & Legendre, 1998). In automatic selection procedure a 

single variable that explains the largest amount of variability in the species data 

independently is selected (Lepš & Šmilauer, 2003). However, automatic selection can 

be misleading when several highly correlated variables are almost equally good as 

explanatory variables but small changes in the data can change the selection results 

(Oksanen, 2004; Birks, 2005a). Alternately an environmental variable (TP in this study) 

with a priori ecological interest can be manually selected in the forward selection as the 

starting variable. This variable is then used as a covariable and other variables are 

selected in the order of their additional effects (variance explained in addition to the 

selected variable(s)). Monte Carlo permutation tests are used to test the significance of 
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each variable and only those variables with P ≤0.05 under 999 permutations are 

accepted (Lepš & Šmilauer, 2003; Birks, 2005a).  

 

A major problem with forward selection is that all variables selected in previous steps 

are included in the model though some of them may contribute little to the multivariate 

regression model (Legendre & Legendre, 1998). The elimination of a variable does not 

mean that it is not ecological important and therefore the final selected model must be 

based both on ecological and statistical criteria (Oksanen, 2004; Birks, 2005a). 

Therefore the minimal adequate model selected by forward selection is only one 

possible model. 

 

3.3.2.4 Cluster Analysis 

 

Cluster analysis is used to identify homogeneous groups or clusters of objects (species, 

samples) (Lepš & Šmilauer, 2003). Hierarchical classification means that groups are 

nested within other groups. An agglomerative hierarchical method starts with small 

groups of few samples, and progressively groups them into larger and larger clusters, 

until the entire data set is sampled. Ward’s minimum variance method is one type of 

hierarchical agglomerative clustering analysis. At the beginning of the procedure each 

object is in a cluster of its own and at each clustering step this method finds the pair of 

objects whose fusion increases the sum of squared distances between objects and cluster 

centroids as little as possible over all objects (Legendre & Legendre, 1998). In 

comparison with other hierarchical agglomerative methods like average linkage, 

complete linkage and single linkage methods, the minimum variance method is usually 

proven to most useful though it tends to produce clusters of fairly equal size (Birks, 

2005a). Ward’s minimum variance clustering method was used for classifying both the 

diatom and Cladocera data and selection of clusters were mainly determined by the 

homogeneity and separation of the clusters (van Tongeren, 1995). The resulting clusters 

were compared with the Irish EPA Lake Typology classes in this study. Transformed 

environmental and ecological data were employed for cluster analysis in this study. 

 

3.3.2.5 Species Response Curves 
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There are many types of ecological response curves and a Gaussian unimodal model 

with symmetric curves is generally more appropriate as an ecological response curve 

than a monotonic one (ter Braak & Looman, 1987). As a type of GLM, Gaussian Logit 

Regression (GLR) is preferred as a practical method for summarizing species 

distributions along environmental gradients under a Gaussian-like species response 

curve (ter Braak & Looman, 1986). GLR is usually applied to presence-absence data, 

but it can also be used for proportional data as quasi-likelihood model (McCullagh & 

Nelder, 1989). Such GLR modelling for species with relative abundances and a fixed 

maximum abundance value have been applied in several diatom training sets used for 

modelling the diatom response to environmental gradients (ter Braak & van Dam, 1989; 

Birks et al., 1990) and also other ecological studies (Odland et al., 1995). GLR was also 

applied to model the response curves of Cladocera species in several Cladocera training 

sets (Davidson, 2005; Simpson, 2005a), but only using presence-absence data because 

of a high frequency of zero counts and also many rare species. In the current Cladocera 

training set proportional data was used as most species have relatively high number of 

occurrence with a relatively low frequency of zero counts. Therefore in this study GLR 

with a logit link function and a binomial distribution of response variables was used to 

model the response of diatom and Cladocera species with relative abundance data along 

the environmental gradients. The ecological and environmental data were not 

transformed for normalization or standardization in the GLR modelling analyses of this 

study.  

 

3.3.3 Calibration Analysis 

 

In comparison with regression analysis which is used to explore the response of species 

to environmental variables, calibration analysis expresses values of environmental 

variable as a function species data (ter Braak, 1987a). The regression function so 

constructed is the transfer function that is used for prediction of environmental variables 

based on species data. Calibration analysis considers only one environmental variable in 

each transfer function (ter Braak, 1995). A typical transfer function normally includes 

many taxa (e.g., 50-300) and 50-300 samples (Birks, 2005b). Ecological data are 

usually quantitative and expressed as relative abundance (%) of total sample count. 

While environmental data rarely contain zero values and often follow a log-normal 

distribution (Birks, 2005b).  
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The length of the first axis of Detrended CCA (DCCA) constrained by only one 

environmental variable of interest generally indicates the degree of species turnover, 

with a length of above 2 suggesting unimodal-based methods are appropriate and a 

length of less than 2 suggesting linear-based methods (Birks, 1995). Two powerful non-

linear methods, weighted averaging (WA) and weighted averaging partial least squares 

(WA-PLS), and one linear method, partial least squares (PLS), are applied in this study. 

WA is also employed to calculate the TP optima of both diatom and Cladocera taxa. In 

many cases there may be no single optimal model and it is advised to use several 

models for reconstruction and to reach a consensus reconstruction based on different 

inference models (Birks, 1998). The use of multiple inference models for TP 

reconstruction was adopted in this study (see Chapter 7). 

 

3.3.3.1 Weighted Averaging (WA) 

 

When a species shows a unimodal response curve along an environment gradient, this 

species would most frequently and abundantly occur around the optimum of the curve. 

Weighted Averaging (WA) regression analysis estimates the species optima by taking 

the average of the values of the environmental variables over those sites where this 

species occurs (ter Braak & Looman, 1987). For calibration analysis WA is used to 

estimate the value of the environmental variable by taking a weighted average with 

weighting proportional to species abundance (ter Braak & Prentice, 1988). The species’ 

tolerance (ecological amplitude) can be estimated as the weighted standard deviation of 

the environmental variable. Species with a narrow tolerance can be given greater weight 

than species with a wide tolerance if required (Birks et al., 1990). In WA the number of 

species in a site is not very important and a better indicator is the effective number, the 

Hill’s N2 measure of diversity (ter Braak & Juggins, 1993).  

 

In WA environmental reconstructions, averages are taken twice (in WA regression and 

calibration respectively) and this causes the shrinkage of the range of inferred values 

towards the mean of the environmental variable (Birks et al., 1990; Birks, 1995). Two 

methods, inverse and classical deshrinking regressions, are available to correct this 

shrinkage effect (Birks et al., 1990; ter Braak & Juggins, 1993; Birks, 1995). In inverse 

regression the observed values of environmental variable are regressed on the initial 
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inferred values. This method minimises the root mean squared error (RMSE) in the 

training set but is liable to produce bias at both high and low ends of the environment 

gradient (ter Braak & Juggins, 1993). For classical regression the observed values of an 

environmental variable, instead of the initial inferred values, are used for regression in 

the training set. Therefore classical regression deshrinks more than inverse regression 

and it uses the inferred values further away from the mean of the training set (Birks et 

al., 1990). For WA regression and calibration the choice of inverse or classical 

regression depends on the scale of environment gradient to be reconstructed. If higher 

accuracy is needed at high or low end of the gradient classical deshrinking is 

appropriate and if the middle part of the gradient is of interest the inverse method is a 

better choice (Birks, 1995).  

 

WA has become a powerful method in palaeolimnology and palaeoecology because it 

can provide quantitative prediction and also prediction error (Birks, 2005b). It does not 

assume linear species-environment relationship and therefore is not hindered by 

multicollinearity between variables or by large number of taxa in training sets and is 

relatively less sensitive to outliers (ter Braak & Juggins, 1993; Birks, 2005b). WA 

functions best with noisy, species rich, compositional data, with species absent in many 

samples and a long ecological gradient (ter Braak & Juggins, 1993). Furthermore, WA 

performs well in no-analogue situations with relatively realistic inferences as long as 

there are reliable optima estimates for the fossil taxa of high numerical importance 

(Birks, 2005b). However, WA disregards species absence and therefore the reliability of 

its estimate depends on the distribution of the environmental variable in the samples 

(Braak & Looman, 1986). WA also disregards residual correlations in species data, 

namely correlations that remain after fitting the environmental variable of interest and 

that are often caused by environmental variables not considered in WA model (ter Braak 

& Juggins, 1993). WA can be modified by incorporating partial least squares (PLS) in 

the method WA-PLS, where residual correlations are taken into account to improve the 

optima estimates (ter Braak & Juggins, 1993). 

 

3.3.3.2 Partial Least Square (PLS) and Weighted Averaging Partial Least Square (WA-

PLS) 
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Partial least squares (PLS) is a linear-based modelling technique developed first in 

chemometrics (Birks, 1995). In PLS regression the original independent variables are 

replaced by a few orthogonalized components through employing the covariance matrix 

between the dependent variables and the independent variables (Nilsson et al., 1996). A 

main feature of PLS is that components are selected not to maximize the variance of 

each component of environment variables but to maximize covariance between 

components that are linear combinations of the variables within environment and 

ecological data (Birks, 2005b). The optimal number of components that yields the 

model with highest prediction properties and lowest prediction errors is determined by 

cross-validation (ter Braak & Juggins, 1993; Nilsson et al., 1996).  

 

In the unimodal method, Weighted Averaging Partial Least Square (WA-PLS), 

components are chosen to maximize the covariance between the vector of weighted 

averages of environmental and ecological variables. Subsequent components are 

selected to implement the same task but are restricted to be orthogonal and therefore 

uncorrelated to earlier components (ter Braak et al., 1993). It was found that WA is a 

form of PLS regression on transformed data when only the first component was used. 

The improvement in WA-PLS over WA lies in the use of further orthogonal components 

to improve predictive powers (ter Braak & Juggins, 1993). The additional components 

use the residual structure in species data to optimize the species parameters in the 

transfer function. In WA-PLS with each additional component the model fits the 

environmental variable better as measured by the root mean square error (RMSE) but 

with less predictability as the RMSE is not corrected for degrees of freedom (Birks, 

1995). The estimated optimum component is often the one which gives the lowest 

prediction error (RMSEP, as discussed in the next subsection) in the training set tested 

using cross-validation. In WA-based models there are problems of edge effect that result 

in inevitable overestimation of optima at the low end of the environment gradient and 

underestimation at the high end of the gradient (ter Braak & Juggins, 1993). WA-PLS 

implicitly implements a weighted inverse deshrinking regression to pull the inferred 

values towards the mean of the training set. Therefore WA-PLS usually produce models 

with lower prediction errors and bias than WA (Birks, 1995).  

 

3.3.3.3 Evaluation and Validation of Transfer Functions 
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Root mean square error (RMSE), coefficient of determination (r2) and the bias between 

estimated and observed values are commonly calculated as measures of the performance 

of the inference model (Smol, 2002). These measures of the strength of the relationship 

between observed and inferred values allow comparison between transfer functions for 

different environmental variables. However, measures like the coefficient of 

determination (often referred to as apparent r2) are generally an overly optimistic 

estimate of model performance because of their dual roles in both estimating the species 

parameters and testing the model performance (ter Braak & Juggins, 1993). A large 

training set can help to estimate the model performance as independent test but they are 

generally unavailable in reality. An alternate way is to employ computer-intensive cross-

validation to evaluate the predictability and prediction errors of a training set.  

 

The simplest cross-validation approach used in this study is jack-knifing (also known as 

leave-one-out) (Birks, 1995). A new subset of the original data set is created and each 

time one sample is left out in the new subset as an independent test sample for the 

transfer function based on the new subset. This sample is then returned in the subset and 

another sample is selected for running another independent test. This test is run 

repeatedly until all the samples in the original training sets have been used for 

independent tests. A second approach for cross-validation is bootstrapping which a more 

complex error estimation technique (Birks et al., 1990). Like jack-knifing bootstrapping 

extracts a subset from the original training set each time, but it replaces those removed 

samples with samples from the subset to keep the size of the subset the same as that of 

the original training set (Birks et al., 1990; Birks, 1995). This estimate is less prone to 

bias because it includes the full size of the training set. Some samples are selected twice 

because of replacement sampling and this procedure is run many times (1000 used in 

this study). Bootstrapping can also be used to estimate sample-specific RMSEP of fossil 

samples in reconstruction (Birks, 1998). The coefficient of determination from jack-

knifing and bootstrapping are also termed as r2
jack and r2

boot respectively.  

 

A model with a low prediction error in cross-validation (RMSEP), as well as low mean 

or maximum bias is preferred in model selection. These measures of model performance 

are independent of the range of observed environmental variables, unlike the coefficient 

of correlation (r2), and they can be more directly interpretable than correlations (Gasse 

et al., 1995). Coefficient of correlation (r2) is a measure of relationship between the 

observed and predicted values of environmental variables and it is mainly used for 
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comparing different inference models (Birks, 1998). However, model selection often 

involves a compromise between the models with lower RMSEP and lower bias, mainly 

depending on the use of model in reconstruction (Birks, 1998). When the model is used 

for reconstruction near the end of the environment gradient, it may be appropriate to 

tolerate a high maximum bias at the other end of the gradient to obtain a low maximum 

bias for the predicted values of the environmental variables. In some cases it can be 

more appropriate to apply several models for reconstruction and to obtain concordant 

inferred values for fossil samples (Birks, 2005b; Lotter, 2005).  

 

A potentially vigorous but rarely used method to validate inference models is to 

compare reconstruction data based on two or more biological indicators (Birks, 2005b). 

As two independent biological indicators (diatoms and Cladocera) are included in this 

study, the comparisons of diatom-based and Cladocera-based transfer functions could 

provide a strong and unique insight into their model performances as a form of multi-

proxy approach (Ihaka & Gentleman, 1996). In addition inference models with 

bootstrapping were applied for TP reconstruction in this study as sample-specific errors 

could only be provided by bootstrapping (see Chapter 7). 

 

3.3.4 Software and Packages 

 

Most of the exploratory and multivariate analyses in this study were performed using 

the R program (version 2.2.1), a language and environment for statistical computing and 

graphics (Becker et al., 1988; Fox, 2002; Venables & Ripley, 2002; Venables et al., 

2005). R is an integrated suite of software facilities for data manipulation, calculation 

and graphical display, and is available as open-source and free software (http://www.r-

project.org/). It provides a wide variety of statistical and graphical techniques (Oksanen, 

2004; Simpson, 2005b). It can be used in multivariate analysis of ecological and 

environmental data (Fox, 2002; Oksanen, 2005a). The basic functions provided by the 

standard packages in R are mainly used for the explanatory and cluster analyses in this 

study including the broken stick model test (Oksanen, 2005b, 2005a). Package vegan is 

employed in ordination analyses of both diatom and Cladocera training sets (including 

PCA/RDA, CA/DCA/CCA) and also for performing forward selection to help select 

significant environmental variables for both training sets in this study (Wood, 2006). 

Package mgcv is applied in the species response curve analysis (GLR) (Juggins). 



 76

 

C2 (version 1.4.2), a software for ecological and paleoecological data analysis and 

visualization developed by Juggins (2003), is mainly used here for developing 

calibration models, TP reconstruction and plotting stratigraphic diagrams. It is also used 

for transforming and summarising the ecological and environmental data together with 

R.  
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Chapter 4: Relationships between Surface Sediment Diatom and 
Environment Variables of 72 Irish Lakes 

 

 

This chapter will first illustrate the structure and distribution of related environmental 

and diatom data in a 72-lake diatom training set using numerical methods detailed in 

Chapter 3. Relationships between both diatoms and environmental variables are then 

explored using direct gradient analysis and species response curves. Classification of the 

72 lakes based on the diatom assemblages is performed and compared with the Irish 

EPA lake typology classes.  

 

4.1 Environment Variables 

 

Seventy-two lakes across the Irish Ecoregion are included in the diatom training set and 

have been summarily described in Chapter 3. Twelve physico-chemical variables and 

five land cover variables are used in the data analysis of the diatom training set (see 

Appendex B and D). Summary statistics and frequency histograms of the 17 

environmental variables are shown in Table 4.1 and Figure 4.1 respectively.  

 

4.1.1 Explanatory Data Analysis 

 

The majority of the 72 lakes in the diatom training set are located at altitudes of <100 m 

(see Figure 4.1). Most lakes have area of <200 ha with a median value of 50 ha and 

mean value of 177.3 ha (see Figure 4.1 and Table 4.1). Catchment areas of most lakes 

were smaller than 20,000 ha and their ratio to lake areas are generally smaller than 

100:1. Most of the training set lakes have maximum depth between 5-25 m but they 

have a wide range of maximum depth between 1.1-45.7 m (see Figure 4.1). The mean 

depth of most lakes is below 10 m with mean and median values of 6.4 m and 5.5 m 

respectively.  

 

Half of the training set lakes are surrounded by forests in the catchment, but most forest-

covered lakes have forestry coverage of less than 10% (Figure 4.1 and Appendix C). 

Pasture land is much more common and over half of the lakes have pasture coverage of 

22.4%. Other agricultural lands, including the permanent irrigated and non-irrigated 
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arable lands, are not common. Only half of the lakes have coverage of above 2.5% of 

other agriculture lands, with a mean average value of 7.9% for the whole training set 

(Table 4.1). Peat bogs occur frequently and half of the lakes had peat coverage of above 

33.8% (Table 4.1). Urban land is quite uncommon in the catchments of the 72 lakes and 

most of the 72 lakes had very limited or no urban coverage (see Table 4.1 and Figure 

4.1).   

 
Table 4.1 Summary statistics of 17 environmental variables of 72 lakes. 

Variables Min Max Mean Median Standard 
deviation 

N 
With 
data 

N 
missing 

N 
Non-
zero 

Physical         
Altitude (m) 7.0 378.0 79.9 57.0 72.7 70 2 70 
Catchment Area (ha) 30.0 147874.0 6361.4 965.7 18628.1 69 3 69 
Lake Area (ha) 1.2 1973.9 177.3 50.0 349.9 71 1 71 
Catchment Area:Lake Area  2.8 2045.2 77.0 17.8 263.3 69 3 69 
Maximum Depth (m) 1.1 45.7 16.3 14.0 10.2 70 2 70 
Mean Depth (m) 0.7 19.8 6.4 5.5 4.4 70 2 70 
         
Land Cover         
Agriculture (%) 0.0 84.7 7.9 2.5 14.3 72 0 39 
Forestry (%) 0.0 43.9 5.7 0.8 9.2 72 0 38 
Pasture (%) 0.0 100.0 33.3 22.4 34.7 72 0 47 
Peat (%) 0.0 100.0 40.6 33.8 38.1 72 0 55 
Urban (%) 0.0 10.9 0.6 0.0 1.8 72 0 15 
         
Hydrochemical         
Alkalinity (mg  l-1) -1.0 208.6 55.2 23.0 58.9 72 0 69 
Chlorophyll a (µg l-1) 0.4 62.7 8.7 3.7 12.2 72 0 72 
Colour (mg l-1 PtCo/Hazen) 1.0 208.5 47.0 34.5 39.2 70 2 70 
Conductivity  (µS cm-1) 33.0 462.0 183.1 164.5 113.5 71 1 71 
pH 5.1 8.5 7.3 7.4 0.9 72 0 72 
TP (µg l-1) 0.0 142.3 25.9 10.0 31.3 72 0 71 
 
 

Thirty-one lakes are categorised as low alkalinity lakes (<20 mg l-1 CaCO3), 23 lakes as 

moderate alkalinity ones (20-100 mg l-1 CaCO3) and the other 18 lakes as highly 

alkaline on the basis of the Irish Lake Typology scheme (e.g., Free et al., 2005) (see 

Appendix D for hydrochemical data). Lake conductivity measurements range from 33 to 

462 µS cm-1 (mean = 181.8 µS cm-1, median = 157 µS cm-1) (Table 4.1).  More than 50 

lakes have chlorophyll-a values of < 10 µg l-1 and also low colour values of <60 mg l-1 

PtCo/Hazen (Figure 4.1 and Appendix D). The hydrochemical variable pH shows a 

wide range from 5.1 to 8.5 (mean = 7.3, median = 7.4). More than half of the 72 lakes in 

the diatom training set have a pH of above 7 (Table 4.1). The 72 lakes have a mean TP 

value of 25.9 µg l-1 and a median TP value of 10.0 µg l-1. Seventy lakes had TP values 
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of <100 µg l-1 and the other two had TP values of 141 and 142.3 µg l-1 (see Appendix 

D). Based on the OECD classification scheme (OECD, 1982) (see Chapter 2 for 

details), 36 of the 70 lakes therefore are oligotrophic with 19 and 15 lakes categorised as 

mesotrophic and eutrophic respectively.  

 

Frequency distribution plots of all six physical variables and five land cover variables 

display strong skewness to right with long tails (see Figure 4.1). Hydrochemical 

variables TP and chlorophyll-a are also strongly skewed to right with long tails. 

Conductivity, alkalinity and colour display log-normal distributions in the frequency 

histogram (see Figure 4.1). 
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Figure 4.1 Frequency histograms of 17 environmental variables of 72 lakes (the frequency class set 
by fault in the statistical programme R). 
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All the twelve lake types categorised in the Irish lake typology scheme are covered in 

the 72-lake diatom training set, each containing 3-11 lakes (see Chapter 3 for details of 

the Irish lake typology scheme). Lake Type 4 (low alkalinity, deep and large) contains 

11 lakes, the most populated class among the 12 lake types (see Appendex B and D for 

full physico-chemical data). Lake Types 2 (low alkalinity, shallow and small), 6 

(moderate alkalinity, shallow and large) and 11 (high alkalinity, deep and small) contain 

only three lakes each.  

 

4.1.2 Ordination of Environmental Data 

 

Principal Component Analysis (PCA) was applied to explore the key physical, 

hydrochemical and land cover factors simultaneously in the training set lakes (see 

Chapter 3 on details of methods). In PCA all the environmental data are examined and 

can be best explained by a few latent axes based on a linear response model. 

Normalising transformation of environmental data was performed to reduce the 

influence of extreme data. Most physical data was log10-transformed while maximum 

depth and land cover variables were square-root transformed. Because of the occurrence 

of many zero values, log10 (1+) transformation was used for hydrochemical data except 

for pH. The normalised data were then scaled to zero mean and unit standard deviation 

for PCA analysis with sites unscaled for a correlation biplot to highlight the 

relationships between the environmental variables.  

 

Two main gradients were identified along the first two axes of PCA (see Figure 4.2). 

Axis one with an eigenvalue (λ1) of 0.338, explained most of the variance of the 

environmental data and accounted for 33.8% of the total variance, while the second axis 

captured 19.5% (λ2 = 0.195) of the total variance (see Table 4.2). Cumulatively the first 

two axes explained 53.3% of the total variance and the first four axes explained 72.2% 

of the total variance in the environmental data (Table 4.2). The broken stick model 

indicated that only the first and second axes were significant components for further 

investigation (Jackson, 1993). The first axis is highly correlated with several closely 

clustered chemical variables (conductivity, alkalinity, pH and TP) and land cover 

variables (peat and pasture) (see Figure 4.2). Biplot scores for these variables were 

among the highest along the first principal component axis (see Table 4.2). Physical 

variables (catchment area, lake area and maximum depth) and colour were important on 
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the second axis. TP was correlated with both PCA axes 1 and 2, explaining variances in 

the data set along first two PCA axes of variation. 

 

Angles between the environmental variables (vectors) approximate their correlations in 

PCA biplot and several groups of environmental variables are closely correlated (Figure 

4.2). Obvious in the PCA biplot is the closely clustered chemical variables of pH, 

alkalinity and conductivity along the first principal component axis. This acidity and 

conductivity gradient is negatively correlated with peat land coverage, indicating that 

higher coverage of peat lands would produce more acidic and conductive lake waters. 

The very small angle between TP and chlorophyll-a in PCA plot indicates their close 

positive correlation. Scatter plots of both variables both in raw and log-transformed data 

are shown in Figure 4.3 where a strong linear relationship is evident between TP and 

chlorophyll-a. However, several sites were shown as outliers in Figure 4.3 (a), including 

Rosconnell [ROS], Ramor [RAM], Sillan [SIL] and Morgans [MOR].  
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Figure 4.2 PCA Correlation biplot of 17 environmental variables at 72 lakes. 
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Table 4.2 Summary statistics of PCA of 17 environmental variables at 72 lakes. 
 

PCA Axes 1 2 3 4 Total 
Variance 

Eigenvalue (λ) 0.338 0.195 0.109 0.079 1 
Variance (%) 33.8 19.5 10.9 7.9  
Cumulative Variance (%) 33.8 53.3 64.2 72.2  
Total Unconstrained Eigenvalue     1 
      
Biplot Scores for Environmental 
Variables 

     

Altitude 0.449 0.420 -0.632 -0.636  
Catchment Area (CA) 0.040 -0.974 0.907 -0.067  
Lake Area (LA) 0.206 -1.189 0.192 -0.273  
CA:LA -0.221 0.042 1.153 0.245  
Maximum Depth 0.699 -0.982 -0.029 -0.353  
Mean Depth 0.680 -0.719 -0.294 -0.498  
Agriculture -0.718 -0.277 0.037 0.182  
Forestry 0.334 -0.149 0.541 -0.589  
Pasture -1.269 -0.176 -0.218 -0.260  
Peat 1.237 0.060 0.273 0.192  
Urban -0.576 -0.546 -0.035 -0.651  
Alkalinity -1.270 -0.436 -0.008 0.210  
Chlorophyll -0.839 0.593 0.157 -0.668  
Colour 0.115 0.941 0.750 -0.382  
Conductivity -1.267 -0.332 -0.033 0.263  
pH -1.228 -0.518 -0.149 0.015  
TP -0.981 0.717 0.300 -0.480  

 

 

Sites with projection points lying along the vector of a variable have higher than 

average values of the variable (the origin) and vice versa in the PCA bioplot (ter Braak, 

1987b). In Figure 4.2 Loughs Tay [TAY, site code used in PCA plot], Dan [DAN] and 

Bray Lower [BRL] are characterised as being very acidic with extremely low 

conductivity and alkalinity values and with very high peatland coverage. Loughs 

Tullabrack [TUL], Morgans [MOR], Gortaganniv [GOR] and Lisnahan [LIS] have high 

values of colour, TP and chlorophyll-a as they lie near the end of these vectors. Sites on 

the lower bottom and right of the biplot (Figure 4.2), like Veagh [VEA] and Fee [FEE], 

are deep lakes with low TP values and high forestry coverage. Sites located at the edges 

of the biplot, like Tullabrack and Rea [REA], indicate big differences from other sites 

near the origin.  
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Figure 4.3 Scatter plots of TP and Chlorophyll-a with raw data in plot (a) and with data log(1+)-
transformed in plot (b) (outlier sites are labelled with site code in plot (a)).  
 

 

4.2 Surface Sediment Diatoms 

 

In total 602 diatom taxa were counted in the surface sediments of 72 lakes. Of the total 

602 taxa, 233 species occurred in least in 3 sites with a maximum abundance not less 

than 1%. To reduce the influence of rare species, only these 233 diatom taxa were used 

for multivariate analysis and model construction. Authorities of diatom taxa used in this 

study are provided in Appendix E.  

 

Table 4.3 lists 79 common diatom taxa with a maximum relative abundance of above 

5% and the basic statistics of these taxa are summarised. Achnanthes minutissima var. 

minutissima is the most common species and it occurred in 70 of the 72 lakes. It has the 

highest Hill’s Number (N2 = 37.9), a measure of the effective number of occurrence in 

the samples (Hill, 1973). Tabellaria flocculosa, Cyclotella radiosa, Cocconeis 

placentula, Fragilaria exigua, F.construens f. venter and Asterionella formosa are also 

very common species occurring in more than half of the 72 lakes. They generally also 

have high N2, e.g. above 10 (see Table 4.3). Other common species with an occurrence 

in at least 30 lakes are Eunotia incisa, Fragilaria brevistriata, F. pinnata, F. capucina 

var gracilis, Stephanodiscus parvus, Cymbella gracilis, Gomphonema parvulum var. 

parvulum, Navicula radiosa, Amphora pediculus, Aulacoseira subarctica and Cyclotella 

pseudostelligera (see Table 4.3). Taxa like Aulacoseira granulata var. angustissima, 
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Mastogloia elliptica and Stephanodiscus tenuis, occurred in only three lakes. These taxa 

with very low frequency of occurrence also have low effective numbers, e.g. < 2 (see 

Table 4.3). 

 
Table 4.3 Summary statistics of 79 common diatom taxa (≥ 5% at 3 sites) from surface sediments of 
72 lakes (N =number of occurrence; N2= Hill’s effective number of occurrence; max and mean refer 
to the maximum and mean values of relative abundance (%); SD= standard deviation) 
 

Taxon Name Code N N2 Max Mean SD 
Achnanthes clevei KCLE 11 4.8 5.2 0.2 0.7 
Achnanthes helvetica PHEL 13 2.2 34.3 0.7 4.2 
Achnanthes laterostrata KLAT 12 2.2 12.5 0.3 1.5 
Achnanthes minutissima var. minutissima ADMI 70 37.9 30.1 6.8 6.5 
Achnanthes pusilla ACNP 27 9.5 5.8 0.3 0.9 
Achnanthes scotica ADCA 21 10.5 6.2 0.4 0.9 
Achnanthes sp cf saccula PSAC 10 3.4 5.6 0.2 0.7 
Achnanthes subatomoides PSAT 20 8.2 6.8 0.4 1.0 
Amphora inaeriensis AINA 17 9.3 6.4 0.4 1.1 
Amphora pediculus APED 31 13.1 24.0 2.1 4.5 
Anomoeoneis neoexilis BEXI 27 17.5 6.2 0.8 1.5 
Anomoeoneis vitrea BVIT 10 2.2 15.3 0.3 1.8 
Asterionella formosa AFOR 41 17.0 37.7 4.6 8.2 
Asterionella ralfsii ARAL 11 3.1 64.7 1.8 8.5 
Aulacoseira ambigua AAMB 21 8.1 22.0 1.3 3.7 
Aulacoseira granulata AUGR 12 6.0 24.6 1.2 4.1 
Aulacoseira granulata var. angustissima AUGA 3 2.0 40.8 0.9 5.5 
Aulacoseira islandica var. islandica AUIS 12 5.4 18.4 0.8 2.7 
Aulacoseira subarctica AUSU 31 15.6 67.0 6.9 13.1 
Cocconeis neothumensis CNTH 8 3.2 10.4 0.3 1.3 
Cocconeis placentula CPLA 43 11.6 26.0 1.9 4.4 
Cyclostephanos dubius CDUB 18 6.0 19.9 1.0 3.2 
Cyclostephanos invisitatus CINV 11 4.6 9.3 0.4 1.3 
Cyclotella atomus var. gracilis CAGR 3 1.9 6.7 0.1 0.8 
Cyclotella comensis CCMS 27 13.6 35.7 3.3 6.9 
Cyclotella comta PUCO 12 3.0 16.8 0.5 2.2 
Cyclotella distinguenda CDTG 9 2.0 11.0 0.2 1.3 
Cyclotella gordonensis CGOR 6 2.1 28.4 0.6 3.5 
Cyclotella kuetzingiana CKRM 20 9.0 24.0 1.8 4.7 
Cyclotella kuetzingiana cf striata CSTR 3 2.1 7.3 0.2 1.0 
Cyclotella meneghiniana CMEN 19 5.7 10.7 0.4 1.4 
Cyclotella ocellata COCE 7 2.7 7.0 0.2 0.9 
Cyclotella pseudostelligera CPST 30 4.8 54.6 1.8 6.7 
Cyclotella radiosa PRAD 44 22.9 11.3 1.9 2.7 
Cymbella gracilis ENNG 33 15.8 9.6 0.9 1.8 
Cymbella helvetica CHEL 6 1.8 8.6 0.2 1.0 
Cymbella laevis var. capitata CLAE 6 4.7 5.7 0.3 1.0 
Cymbella microcephala ENCM 27 16.8 7.3 0.9 1.7 
Denticula tenuis DTEN 12 6.5 6.1 0.3 1.0 
Eunotia incisa EINC 36 14.6 11.5 1.3 2.5 
Eunotia pectinalis var. undulata EPUN 16 8.1 7.8 0.5 1.5 
Fragilaria brevistriata PSBR 35 12.2 13.7 1.3 2.9 
Fragilaria brevistriata var. binodis PBBI 6 1.7 6.2 0.1 0.7 
Fragilaria capucina FCAP 22 10.0 8.8 0.7 1.7 
Fragilaria capucina var. gracilis FGRA 33 15.8 9.8 1.0 1.8 
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Taxon Name Code N N2 Max Mean SD 
Fragilaria capucina var. rumpens FCRP 10 4.9 6.2 0.2 0.9 
Fragilaria construens f. venter SCVE 41 8.1 60.9 2.8 7.9 
Fragilaria crotonensis FCRO 6 2.1 15.9 0.3 1.9 
Fragilaria delicatissima FDEL 4 1.2 6.8 0.1 0.8 
Fragilaria elliptica SELI 14 4.8 6.8 0.3 1.0 
Fragilaria exigua SEXG 43 17.8 25.8 3.0 5.2 
Fragilaria leptostauron var. martyi SMAT 4 2.2 8.4 0.2 1.1 
Fragilaria nanana FNAN 15 4.1 9.6 0.3 1.2 
Fragilaria parasitica f. subconstricta SDSU 3 1.2 6.0 0.1 0.7 
Fragilaria pinnata SPIN 35 13.8 14.2 1.0 2.1 
Fragilaria ulna var. angustissima FUAN 5 2.3 22.7 0.5 2.8 
Fragilaria virescens FVIR 7 1.7 23.1 0.4 2.8 
Frustulia rhomboides FRHO 29 12.7 8.3 0.7 1.5 
Frustulia saxonica FSAX 21 12.9 6.7 0.7 1.5 
Gomphonema lateripunctatum GLAT 16 9.3 10.6 0.8 2.0 
Gomphonema parvulum var. exilissimum GEXL 17 7.4 7.1 0.3 1.0 
Gomphonema parvulum var. parvulum GPAR 33 19.3 5.1 0.7 1.1 
Gomphonema pumilum GPUM 21 8.0 10.7 0.5 1.4 
Mastogloia elliptica MELL 3 1.2 9.8 0.1 1.2 
Mastogloia lacustris MLAC 8 5.0 13.3 0.8 2.8 
Meridion circulare MCIR 5 1.3 8.3 0.1 1.0 
Navicula leptostriata NLST 5 2.1 6.6 0.1 0.8 
Navicula pseudoconstruens FPCO 16 8.6 5.1 0.3 0.9 
Navicula radiosa NRAD 32 8.3 9.2 0.4 1.2 
Nitzschia perminuta NIPM 18 7.3 5.4 0.3 0.8 
Peronia fibula PFIB 12 4.1 6.4 0.3 1.1 
Pinnularia subcapitata PSCA 10 3.2 11.2 0.4 1.8 
Stephanodiscus hantzschii SHAN 19 8.2 7.1 0.5 1.3 
Stephanodiscus minutulus STMI 14 4.1 20.8 0.7 2.9 
Stephanodiscus neoastreae SNEO 13 4.8 13.1 0.5 2.0 
Stephanodiscus parvus SPAV 34 11.9 33.3 2.8 6.2 
Stephanodiscus tenuis SHTE 3 1.3 14.0 0.2 1.6 
Tabellaria flocculosa TFLO 48 21.8 25.4 2.9 4.4 
Tabellaria quadriseptata TQUA 6 1.8 11.3 0.2 1.3 

 

 

Among the 11 species with maximum relative abundance of above 30%, most are 

centric diatoms like Aulacoseira subarctica (67.0%), A. granulata var. angustissima 

(40.8%), Cyclotella pseudostelligera (54.6%) and C. comensis (35.7%). Non-centric 

taxa include Asterionella ralfsii (64.7%), Fragilaria construens f. venter (60.9%) and 

Asterionella ncise  (37.7%) (see Table 4.3). Taxa with low maximum relative 

abundance of less than 6% are all ncise  diatoms among the 79 common diatom 

species and they have a varying frequency of occurrence between 6 and 33, like 

Cymbella laevis var. capitata (6, frequency of occurrence), Achnanthes clevei (11), A 

pusilla (27) and Gomphonema parvulum var. parvulum (33).  
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The distribution of abundant diatom taxa with Hill’s N2 ≥ 5 and maximum relative 

abundance ≥ 5% are shown in Figure 4.4. The most common taxon, Achnanthes 

minutissima var. minutissima, is dominant at Upper [UPE], Anascaul [ANS], 

Gortaganniv [GOR], Moher [HOH] and Atedaun [ATE] in abundance of above 20% 

(see Figure 4.4). A. minutissima is often observed to prefer circumneutral and oligo- to 

eutrophic waters (Van Dam et al., 1994).  Other abundant Achnanthes species like A. 

pusilla and A. scotica are much less common or dominant than A. minutissima in this 

training set. The relative abundance of Asterionella formosa is above 20% in four lakes- 

Effernan [EFF], Mooghna [MOO], Pollaphuca [POL] and Morgans [MOR] (see Figure 

4.4). A. formosa only occurs suspended in the open water of a lake with a narrow 

ecological amplitude (Round, 1981). This species was observed to be dominant and 

subdominant in mesotrophic and eutrophic lakes but not in oligotrophic and acid lakes 

in the Northwest of the former USSR (Trifonova, 1987). It is a major indicator species 

of long-term changes associated with increased nutrient inputs in four English lakes 

(Talling & Heaney, 1988).  

 

Four Aulacoseira taxa are prevalent among the 72 lakes and A. subarctica is generally 

more common and dominant then the other three taxa (A. ambigua, A. granulata and A. 

islandica var. islandica). A. subarctica is a typically meroplanktonic diatom, which 

grows as part of the plankton but also spends an important part of its life in the lake 

bottom (Gibson et al., 2003). It is considered to be a diatom of mesotrophic lakes and 

has been found to be common in surface sediments of meso-eutrophic lakes with 

contrasting depth (Anderson, 1997a; Gibson et al., 2003). An increase in its population 

was believed to be part of the eutrophication pattern in English lakes (Lund, 1954, 

1979). A. subarctica has a relative abundance of above 60% in Loughs Muckno [MUN] 

and also very high abundances in Caragh [CAR], Feeagh [FEG], Rushaun [RUS], 

Oughter [OUG] and Doo [DOC] (see Figure 4.4).  All the other three Aulacoseira taxa 

mainly occur in lakes toward high end of the TP gradient as shown in Figure 4.4. 

Cocconeis placentula also occurred in lakes with high TP values, particularly in sites 

like Atedaun [ATE], Ballyallia [BAA], Ballyteige [BAT] and Gortaganniv [GOR] in 

abundances of above 10%. This species has its preference in eutrophic and alkaline 

lakes (Van Dam et al., 1994). Most of the Cyclotella taxa were abundant mainly in lakes 

with low TP values, like C. comensis, C. kuetzingiana and C. radiosa. Cyclotella is a 

common centric genus in freshwaters and live as planktonic organisms (Round et al., 

1990). This genus is generally noticed to be prominent in oligotrophic lakes (Reynolds, 
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1984).  C. comensis is abundant at sites like Fad Inishowen [FAD], Owel [OWE] and 

Shindilla [SHI] and C.kuetzingiana at Veagh [VEA] and Shindilla [SHI] in abundances 

of above 20%.  

 

Eunotia incisa is common at Dan [DAN] and Barra [BAR] in abundances of around 

10% and E. pectinalis var. undulate is prominent at Dan [DAN] and Arderry [ARD] in 

abundance of between 5-10% (see Figure 4.4). Eunotia is a common genus in acidic 

freshwater habitats along with Tabellaria (Round, 1981; Lange-Bertalot & Metzeltin, 

1996). Epiphytic T. flocculosa is more dominant at Doo [DOC], Dan [DAN] and 

Lickeen [LIC] in abundances of above 15%. Six Fragilaria taxa are abundant in this 72-

lake diatom training set. Epiphytic Fragilaria are common in circumneutral and alkaline 

conditions but can have differential preference of trophic status of freshwaters (Van 

Dam et al., 1994): F. exigua has a preference for oligotrophic lakes, F. capucina var. 

gracilis for oligo-mesotrophic lakes, F. capucina for mesotrophic lakes, F. contruens var. 

venter prefer meso-eutrophic waters, while F. brevistriata and F. pinnata can tolerate a 

wide ecological amplitude from oligotrophic to eutrophic lakes. F. exigua has relative 

abundances of above 20% at Dunglow [DUN] and Easky [EAS]. F. capucina var. 

gracilis is most abundant at sites like Rosconnell [ROS] and Monamore [MOA] but 

with a maximum abundance below 10%. F. contruens var. venter has an extremely high 

abundance at Lisnahan [LIS] (60%) but is in much lower abundance at sites like 

Tullabrack [TUL] and Moanmore [MOA]. F. brevistriata occurs in abundances of above 

10% at Muckanagh [MUC], Carra [CAA] and Bane [BAN] and F. pinnata is present 

only at Moanmore [MOA] with an abundance of above 10%.  

 

Gomphonema is often a common component of the benthic community in freshwaters 

(Round et al., 1990). Four common Gomphonema taxa generally occur with low 

abundances and frequency of occurrence (see Figure 4.4). G. parvulum var. parvulum 

only occurs at Rosconnell [ROS] and G. pumilum at Atedaun [ATE] in abundances of 

above 5%. Stephanodiscus is a common diatom genus in eutrophic waters (Reynolds, 

1984). S. parvus is much more frequent and dominant than S. hantzschii in this training 

set. S. parvus occurs in abundances of above 30% at Morgans [MOR] and Crans [CRA] 

and occurred in abundances greater than 5% in nine other sites, including Rushaun 

[RUS], Lene [LEN], Garvillaun [GAR] and Ramor [RAM]. Only three sites (Inchiquin 

[INQ], Ramor [RAM] and Caragh [CAR]) have S. hantzschii in abundances of above 

5%. 
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Figure 4.4 Distribution of 42 abundant diatom taxa (Hill’s N2 ≥ 5 & maximum abundance ≥ 5%) (taxa are listed in alphabetic sequence and lakes are ordered according to 
their TP values from lowest at the bottom to highest on the top).
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4.2.1 Indirect Gradient Analysis of Diatom Data 

 

Before we explore the internal structure of surface sediment diatom data and their 

relationships with environmental variables, the gradient length of the diatom community 

is examined to determine the appropriate ordination methods. Detrended 

Correspondence Analysis (DCA) was used to estimate the heterogeneity in assemblage 

composition and the degree of species turnover. Rare taxa were downweighted to reduce 

unduly high influence in the pattern of diatom data. DCA analysis of 233 surface 

sediment diatom data produced a gradient length of 3.718 SD for the first axis. As the 

gradient length was in between 3 and 4, a unimodal response model was selected for 

further ordination and constrained ordination analysis as most taxa are not behaving 

monotonically over the underlying environmental gradients (ter Braak & Prentice, 

1988). Therefore Correspondence Analysis (CA) was selected to explore the variation in 

diatom assemblages. 

 

CA simultaneously ordinates both species and sites and such analysis aims to reveal the 

internal structure of species data. The results of CA is shown in Table 4.4 and two 

separate CA plots of diatoms and sites are shown in Figure 4.5 and Figure 4.6 

respectively instead of one joint plot because of the large numbers of diatom species and 

sites. Eigenvalues for the first and second axes were 0.511 (λ1) and 0.405 (λ2), 

explaining 12.1% and 9.6% of the total variance of the diatom data. Only Axes 1 and 2 

were significant in explaining the pattern of diatom data under the broken stick model 

and both axes together explained 21.7% of total variance in the diatom data.  

 
Table 4.4 Summary statistics of CA on the diatom data of 72 lakes 

 
CA Axis 1 2 3 4 Total  

Variance 
Eigenvalue (λ) 0.511 0.405 0.182 0.166 4.222 
Variance Explained (%) 12.1 9.6 4.3 3.9  
Cumulative Variance (%) 12.1 21.7 26.0 29.9  
Total Unconstrained Eigenvalue     4.222 

 

 

Twenty diatom taxa with the highest species scores (both positive and negative) are 

listed for axes 1 and 2 in Table 4.5. Diatom taxa like Eunotia elegans [EELE, species 

code], Gomphonema hebridense [GHEB], Tabellaria quadriseptata [TQUA] and 



 90

Eunotia monodon var. bidens [EMBI] sit on the far right side of Figure 4.5. They show 

a closely positive relationship with axis 1 (Table 4.5). At the other end of the first axis, 

taxa like Aulacoseira islandica var. islandica [AUIS], Stephanodiscus tenuis [SHTE] 

and Navicula cari [NCAR] are dominant. While taxa including Fragilaria ulna var. 

acus [FUAC], Stephanodiscus agassizensis [SAGA], Diatoma tenuis [DITE] and 

Stephanodiscus minutulus [STMI] dominate at the bottom left of Figure 4.5 with a 

negative correlation with the axis 2. While several taxa like Cymbella laevis var. 

capitata [CLAE], Mastogloia lacustris [MLAC] and Cymbella delicatula [CDEL] with 

highest species scores are dominant along the other side of the axis 2 (the upper part of 

Figure 4.5).  

 
Table 4.5 Twenty diatom taxa with highest species scores (both negative and positive) along the first 
two CA axes (taxa are listed in the order of their species scores (λ) along either axis) 
 

Code Taxon λ1 Code Taxon  λ1 
EELE Eunotia elegans 1.71 CLAE Cymbella laevis var. capitata 2.63 
GHEB Gomphonema hebridense 1.56 MLAC Mastogloia lacustris 2.42 
NDPA Navicula parabryophila 1.52 MELL Mastogloia elliptica 2.41 
TQUA Tabellaria quadriseptata 1.51 MSMI Mastogloia smithii 2.33 
EMBI Eunotia monodon var. bidens 1.50 CDEL Cymbella delicatula 2.30 
EUAL Achnanthes flexella var. alpestris 1.47 GSUB Gomphonema subtile 2.29 
ERHY Eunotia rhynchocephala v. rhynchocephala 1.45 EGOE Epithemia muelleri 2.28 
FERI Frustulia erifuga 1.43 FPLA Fragilaria pinnata var. lancetttula 2.24 
ENPE Cymbella perpusilla 1.43 FLAP Fragilaria lapponica 2.17 
PALT Achnanthes altaica 1.43 NDEN Nitzschia denticula 2.14 
STMI Stephanodiscus minutulus -1.00 NESP Neidium sp. -0.84 
GMCU Gomphonema minutum -1.07 SHTE Stephanodiscus tenuis -0.85 
FUAN Fragilaria ulna var. angustissima -1.09 AUAL Aulacoseira alpigena -0.85 
AUGR Aulacoseira granulata -1.09 FUAN Fragilaria ulna var. angustissima -0.86 
CPED Cocconeis pediculus -1.10 STMI Stephanodiscus minutulus -0.89 
AUGA Aulacoseira granulata  var. angustissima -1.11 DITE Diatoma tenuis -0.90 
AUIS Aulacoseira islandica var. islandica -1.13 FTEN Fragilaria tenera -0.90 
NCAR Navicula cari  -1.19 FUAC Fragilaria ulna v. acus -0.95 
FUAC Fragilaria ulna v. acus -1.20 SAGA Stephanodiscus agassizensis -1.01 
SHTE Stephanodiscus tenuis -1.35 AUIT Aulacoseira italica -1.09 

 

 

In CA the species composition at a particular site is composed of those species sitting 

close to the site (ter Braak & Prentice, 1988). Loughs Veagh [VEA], Barra [BAR], 

Easky [EAS] and Doo [DOO], which are located to the far right side of axis 1 (Figure 

4.6), have high abundances of Frustulia saxonica [FSAX], Eunotia elegans [EELE], 

Eunotia monodon var. bidens [EMBI], Navicula parabryophila [NDPA] (see Figure 4.5). 

While diatom assemblages at those sites near the other end of axis 1 including Mullagh 

[MUL], Dromore [DRO], Cullaunyheeda [CUY] and Inchiquin [INQ] consist of taxa 
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like Cocconeis pediculus [CPED], Navicula cari [NCAR], Achnanthes clevei [KCLE], 

Stephanodiscus neoastreae [SNEO] in high abundances. Similarly the sites located at 

the top end of CA axis 2 in Figure 4.6 including Bunny [BUN], Muckanagh [MUC] and 

Carra [CAA] are comprised of Cymbella laevis var. capitata [CLAE], Mastogloia 

lacustris [MLAC] and Mastogloia smithii [MSMI] with high positive species scores 

(see Figure 4.5 and Figure 4.6). At the lower end of axis 2 diatom assemblages at 

Muckno [MUN], Rushaun [RUS] and Rosconnell [ROS] are more influenced by taxa 

like Aulacoseira italica [AUIT], Stephanodiscus agassizensis [SAGA] and 

Stephanodiscus minutulus [STMI]. A distinctive feature in the CA plot of diatom species 

is the triangle-like configuration of the diatom taxa (see Figure 4.5). The diatom 

communities spread strictly along the first and second axes of CA. This is probably a 

reflection of the significance of the first two axes in controlling the diatom assemblages 

of the 72 lakes.  
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Figure 4.5 CA plot of species scores of diatom data from 72 lakes. 
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Figure 4.6 CA plot of site scores of diatom data from 72 lakes. 

 

 

4.2.2 Classification of Diatom Assemblages 

 

Alkalinity, mean depth and lake area were recognized as significant variables in 

characterising Irish lakes by the Irish EPA (Free et al., 2005). This physico-chemical 

categorization has only been verified by limited ecological data from around 60 lakes. 

The surface sediment diatom assemblages from 72 lakes are used here to see if these 

biological parameters reflect the physico-chemical classes of lakes. All twelve lake 

types are represented by the 72 lakes in the diatom training set and each lake type 

contains 3-11 lakes. Ward’s minimum variance method was used to classify the surface 

sediment diatoms and seven clusters were identified based on the dissimilarity between 

diatom samples (see Figure 4.7). A summary of the seven clusters of diatom samples 

and their associated lake types are shown in Table 4.6. A comparison of diatom cluster 

analysis and the physico-chemical classification for the 72-lake diatom training-set 
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lakes is shown in Figure 4.10. Both Ward’s seven diatom clusters and the 12 Irish lake 

types are superimposed on CA plots of diatom data. 

 

Cluster 1 with 15 lakes is mainly dominated by planktonic diatoms like Aulacoseira 

subarctica, Asterionella formosa and Cyclotella radiosa (see Table 4.6). They are 

typical taxa of nutrient-rich and circumneutral to alkaline waters. Cluster 2 only 

contained seven lakes and is mainly composed of non-planktonic (including benthic, 

epiphytic and epilithic) taxa. The common taxa are acidophilous and circumneutral 

which suggests that this cluster has lower alkalinity than Cluster 1. Cluster 3 is 

dominated by planktonic taxa commonly found in circumneutral to alkaline lakes. It 

differs from Cluster 1 in that it has a greater abundance of Stephanodiscus parvus and a 

lesser abundance of Aulacoseira subarctica (see Table 4.6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.7 Dendrogram of surface sediment diatoms of 72 lakes according to Ward’s minimum 
variance method (seven clusters are identified within grey frames and labelled under each frame).  
 

 

Cluster 4 lakes are dominated by non-planktonic and acidophilous taxa, including 

acidophilous Tabellaria flocculosa, Eunotia incisa and Frustulia saxonica. In 

comparison with Cluster 4, Cluster 5 is also dominated by non-planktonic taxa but they 

are commonly found in alkaline lakes, like Amphora pediculus, Fragilaria brevistriata 

and Fragilaria pinnata. The seven Cluster 6 lakes are mainly composed of planktonic 

taxa commonly found in acidophilous to circumneutral waters, including Cyclotella 
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comensis and C. kuetzingiana. These taxa are also common component of nutrient-poor 

waters. In comparison with Cluster 4 the diatom assemblages implied higher alkalinity 

in Cluster 6. It also differs from Cluster 2 in its greater abundance of C. comensis and C. 

kuetzingiana. Cluster 7 is dominated by both non-planktonic and planktonic diatoms 

common found in circumneutral to alkaline waters. The most common taxa include 

circumneutral Achnanthes minutissima var. minutissima and Cyclotella comensis, as 

well as alkaliphilous Fragilaria brevistriata and Cyclotella radiosa. The greater 

abundance of non-planktonic taxa like benthic Fragilaria makes Cluster 7 

distinguishable from Cluster 1 as Cluster 1 is dominated by planktonic taxa.  

 

The diatom clusters show good agreement with the physico-chemical lake typology 

classification. Lakes with high alkalinity are represented by Clusters 3 and 5 in Figure 

4.10 A and Types 9 to 12 in Figure 4.10 B. They are located in the left of both CA plots 

and are enclosed by the oval in the left of the plot in Figure B. The oval in the middle of 

Figure B is mainly composed of the Lake Types 5 to 8 with medium alkalinity, which 

corresponds well with the diatom Clusters 1, 7 and part of Cluster 2 in Figure A. While 

the oval to the right of Figure 4.10 B encloses most of the Lake Types 1 to 4 

characteristic of low alkalinity and these are similar to diatom Clusters 4 and 6 and part 

of Cluster 2 in Figure A. This confirms that alkalinity used in the Irish Lake Typology is 

a significant factor controlling the diatom assemblage structure in these lakes. Lake 

depth and area, the other two variables employed in the Irish Lake Typology, also show 

influence on the diatom assemblages of the 72 lakes. In Figure A Clusters 3 and 5 

contain lakes with high alkalinity but they lie at opposite ends of the CA plot (see 

Figure 4.10). This can be accounted for by their distinct lake areas as summarised in 

Table 4.6: lakes in Cluster 3 are mainly small and those in Cluster 5 are large lakes, 

corresponding to Lake Types 10 and 12 and 9 and 11 respectively in Figure B.  Lake 

depth probably seprerates Cluster 2 from Cluster 6, both of which contain lakes mainly 

with low alkalinity (see Table 4.6).  
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Table 4.6 Summary of diatom clusters classified using Ward’s method and related lake types. 
 
Diatom 
Cluster Cluster description Common taxa No. of 

lakes Lake types 

Aulacoseira subarctica 

Asterionella formosa 

Achnanthes minutissima var. minutissima 

Cyclotella radiosa 

1 
Planktonic dominant, 
circumneutral to alkaline 
taxa 

Gomphonema parvulum var. parvulum 

15 

Mainly medium 
alkalinity, 
Mainly shallow, 
Small and large 

Achnanthes minutissima var. minutissima 

Tabellaria flocculosa 

Fragilaria construens f. venter 

Cyclotella pseudostelligera 

2 
Non-planktonic 
dominant, acidophilous 
to circumneutral taxa 

Nitzschia palea 

7 

Mainly low 
alkalinity, 
Mainly shallow, 
Small 

Stephanodiscus parvus 

Asterionella formosa 

Cocconeis placentula 

Achnanthes minutissima var. minutissima 

3 

Planktionic dominant, 
circumneutral to alkaline 
taxa (higher abundance 
of S.  parvus and fewer 
A. subarctica than 
Cluster 1) Cyclotella radiosa 

13 

High to medium 
alkalinity, 
Mainly deep, 
Mainly small 

Tabellaria flocculosa 

Achnanthes minutissima var. minutissima 

Eunotia incisa 

Frustulia saxonica 

4 

Non-planktonic 
dominant, acidophilous 
taxa (more acidophilous 
and fewer planktonic 
taxa than Cluster 2) 

Fragilaria exigua 

14 
Low alkalinity, 
Deep and shallow, 
Small and large 

Amphora pediculus 

Fragilaria brevistriata 

Fragilaria pinnata 

Gomphonema lateripunctatum 

5 Non-planktonic 
dominant, alkaline taxa 

Cymbella microcephala 

7 
High alkalinity, 
Deep and shallow, 
Large 

Cyclotella comensis 

Cyclotella kuetzingiana 

Fragilaria exigua 

Achnanthes minutissima var. minutissima 
6 

Planktonic dominant, 
acidophilous to 
circumneutral taxa 
(greater abundance of C. 
comensis and C.  
kuetzingiana than 
Clusters 2 and 4) Tabellaria flocculosa 

7 
Low alkalinity, 
Deep, 
Mainly large 

Achnanthes minutissima var. minutissima 

Cyclotella comensis 

Fragilaria brevistriata 

Cyclotella radiosa 

7 

Non-planktonic and 
planktonic co-dominant,  
with circumneutral to 
alkaline taxa (fewer 
planktonic taxa than 
Cluster 1) Fragilaria construens f. venter 

9 

Mainly medium 
alkalinity, 
Deep, 
Small and large 
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Figure 4.8 Comparison of seven Ward’s minimum clusters (A) and 12 typology classes (B) of 72 lakes in the diatom training-set (both classifications are super- imposed on 
CA plots of diatom data; three ovals indicate three groups of lakes with high, medium and low alkalinities from the left to the right of Figure B; the arrows point to 
misclassfied sites based on diatom data).  
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A mismatching between the diatom clusters and the Irish Lake Typology classes is also 

observed in Figure 4.10. The arrows in Figure 4.10 (B) highlight three sites, Mullagh 

[MUL], Castle [CAS] and Dunglow [DUN] as the potentially displaced sites. Diatom 

assemblages at these three sites suggest high, medium and low alkalinities instead of the 

measured medium, high and medium alkalinity values respectively. The use of the 

typology classification assumes that there are discrete groups among lakes based on 

several physico-chemical variables. This may not occur in nature and some groups of 

lakes could overlap with other groups of lakes. In this 72-lake data set, the diatom 

Cluster 2 contains lakes both with low alkalinity and medium alkalinity (see Figure 

4.10). However, most other diatom clusters do not overlap with each other in CA plot 

and this indicates strong dissimilarity between clusters and similarity within each 

diatom cluster. In general the diatom clusters correspond well with the EPA lake types 

and this provides biological verification of the classification scheme.  

 

4.3 Direct Gradient Analysis  

 

Internal patterns in the environmental data and the diatom data in the training set have 

been explored separately in the previous sections using the PCA and CA. Canonical 

Correspondence Analysis (CCA) is now used to constrain the diatom data with the 

environmental data based on the unimodal species response model. Study sites, diatom 

taxa and environmental variables are ordinated simultaneously in CCA. All the data 

analyses in this section can provide a vigorous basis to determine the degree of 

influence of environmental variables, particularly TP, on the diatom assemblages and to 

assess the viability of TP for further development in inference modelling and 

environmental reconstruction. 

 

4.3.1 Constrained Correspondence Analysis (CCA) 

 

CCA biplots of diatom data and sites constrained by all the 17 environmental variables 

are shown in Figure 4.9 and Figure 4.10, and the results are also summarised in Table 

4.7. Eigenvalues constrained by the 17 environmental variables account for 35.1% (= 

2.016/5.737) of the total variance in the diatom assemblages (see Table 4.7). 

Constrained eigenvalues of axes 1 to 4 were 0.488, 0.378, 0.150 and 0.131, explaining 

8.5%, 6.6%, 2.6% and 2.3% of the total variance in the diatom data respectively. The 
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first two axes accounted for 15.1% of the total variance of the diatom assemblages 

while each of the additional axes explained a much smaller fraction of the total variance.  
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Figure 4.9 CCA biplot of species and 17 environment variables in 72 lakes in the diatom training 
set. 
 

 

Compared with the unconstrained plots of species and site scores (seeFigure 4.5 and 

Figure 4.6), the location of most diatom taxa and configuration of the assemblages 

remains quite similar in the constrained plot. Many species like Amphora aequalis 

[AAEQ], Amphora inaeriensis [AINA], Stephanodiscus tenuis [SHTE], Pinnularia 

subcapitata [PSCA] and Cymbella cesattii [ECES] on CCA plot (Figure 4.9) remain in 

similar positions as in CA plot (Figure 4.5) or drift in a short distance, like Navicula 

cari [NCAR] which moves from above the first axis on the left of the CA plot to just 

below the first axis on the left of CCA plot (Figure 4.9). This implies that the inherent 

pattern of diatom assemblages unconstrained is captured when constrained by the 

environmental variables. This is also apparent when comparing the eigenvalues of 

unconstrained CA axes and constrained CCA axes (ter Braak, 1987b). The percentage 



 99

variances explained by the CCA first and second axes are close to those explained by 

axes 1 and 2 in the unconstrained CA (8.5% and 6.6% for CCA axes and 12.1% and 

9.6% for CA axes respectively) (see Table 4.4 and Table 4.7). The variances explained 

by the constrained eigenvalues stabilise after the first two axes in both CCA and CA at a 

much smaller fraction of the total variance.  
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Figure 4.10 CCA biplot of sites and 17 environment variables in72 lakes in the diatom training set. 
 

 

The first CCA axis is strongly correlated with pH, alkalinity, conductivity, pasture and 

peat while the axis 2 is dominated by chlorophyll a, TP and colour. The gradient 

compositions of the two CCA axes are very much the same as the structure in the first 

two PCA axes of environmental variables shown in Figure 4.2: the first axis is most 

correlated with acidity and conductivity gradient (pH, alkalinity, conductivity) and the 

second one with nutrient gradient (TP, chlorophyll-a). Differences in the structures of 

both PCA and CCA plots include the shortened vectors of all six physical variables in 
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CCA plot, indicating their reduced influences in constraining the diatom data (compare 

Figure 4.9 and Figure 4.2).  

 
Table 4.7 Summary statistics of 17 environmental variables in the CCA of diatom data. 
 

CCA Axes 1 2 3 4 Total  
Variance 

Eigenvalue (λ) 0.488 0.378 0.150 0.131 5.737 
Speices-Environment Correlation 0.963 0.923 0.902 0.865  
Cumulative Variance (%) 8.5 15.1 17.7 20.0  
Constrained Eigenvalues      2.016 
Total Unconstrained Eigenvalues     3.721 
     
Biplot scores for constraining variables     
Altitude 0.316 -0.053 0.306 -0.160  
CA -0.134 0.061 0.213 0.076  
LA -0.122 0.365 0.452 0.269  
CA:LA -0.057 -0.376 -0.225 -0.233  
MaxDepth 0.150 0.243 0.759 0.231  
MeanDepth 0.191 0.137 0.671 0.396  
Agriculture -0.512 -0.123 0.014 0.032  
Forestry 0.193 -0.128 0.292 0.260  
Pasture -0.867 -0.084 0.043 -0.284  
Peat 0.781 0.114 0.055 0.266  
Urban -0.450 -0.025 0.303 0.000  
Alkalinity -0.932 0.131 -0.153 -0.059  
Chlorophyll -0.442 -0.781 -0.161 -0.004  
Colour 0.228 -0.624 -0.006 -0.155  
Conductivity -0.905 0.128 -0.142 -0.212  
pH -0.968 0.158 -0.072 0.097  
TP -0.494 -0.720 -0.183 -0.113  

 

 

As weighted averages of species scores (Oksanen, 2005a) are used as site scores for 

CCA in Figure 4.9, the position of sites in CCA plot also show a similar pattern as those 

in CA plot (Figure 4.6). As in PCA, the origin of the CCA plot represents the weighted 

averages of the environmental variables and the sites with a projection on an 

environmental vector at the same side of the arrow have higher values of the 

environmental variable and vice versa. Sites located in the left side of CCA axis 1 are 

characteristic of being highly alkaline with high conductivity like Cullaunyheeda [CUY], 

Muchanagh [MUC] and Lene [LEN]. Highly acidic sites with very low conductivity 

including Keel [KEE], Doo [DOO] and Maumwee [MAU] are located in the opposite 

side of axis 1. Loughs with high nutrient levels (e.g. Crans [CRA] and Ballybeg [BAB]) 

could be found in the lower part along the axis 2, while those with low nutrient levels 

are mainly located in the other side of axis 2, including Muchanagh [MUC], Bunny 

[BUN] and Annaghmore [ANN] at the edge of the upper left of the plot (Figure 4.9).  In 
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summary, sites in the CCA plot are located along the two major gradients, acidity-

conductivity and nutrient.  

 

4.3.2 Selecting Important Environment Variables 

 

Two main axes identified in constrained ordination of the species and environment data 

are the acidity-conductivity and nutrient gradients. Each gradient is represented by 

several highly correlated variables. Along the first axis pH, alkalinity and conductivity 

are closely positively correlated. On the second axis TP and chlorophyll-a are closely 

correlated and have strongly negative relationships with lake depth (see Figure 4.9). 

Redundant information in the full CCA model using all the 17 environmental variables 

occurs as a result of collinearity among the environmental variables. The building of the 

CCA model often follows the principle of parsimony (also called ‘Ockham’s Razor’), 

which recommends that any parameter that does not significantly contribute to the 

model should be eliminated (Legendre & Legendre, 1998). 

 

Forward selection was implemented in the R program to aid the selection a smaller set 

of significant environmental variables to explain the variation in the diatom training set. 

Variance Inflation Factors (VIF) of the 17 environmental variables reported in CCA 

output (see Table 4.8) enabled the exploration of co-relationship among the variables. A 

common rule of thumb is that variables with VIF of above 20 are strongly dependent on 

other variables and therefore could not provide unique information (ter Braak & 

Šmilauer, 2002). Catchment and lake areas are shown to be strongly correlated and they 

were the first candidates for exclusion from the ordination model due to their high VIFs 

(see Figure 4.9). Partial CCAs selecting just one environmental variable each time were 

also performed to constrain the diatom data and test for significance (see Table 4.8). 

Monto Carlo permutation tests (999) were performed for all 17 variables. Two variables, 

catchment area and forestry, are not significant at the P-level of 0.05 (Table 4.8). 

Variables including pH, alkalinity and conductivity independently explained the highest 

variances (8.2%, 7.7% and 7.4% respectively) in the diatom data and they are 

significant at the P-level of 0.001. But their VIF values suggest that moderate 

collinearity exists for these three variables (see Figure 4.9 and Figure 4.10). Each of the 

two nutrient variables, TP and chlorophyll-a, explains around 6% of the total variance 

significantly (P-level < 0.001).   
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Table 4.8 Summary of VIF and partial CCAs constrained by only one of the 17 environmental 
variables each time (999 Monto Carlo permutation tests were used; λ1 and λ2 refer to eigenvalues of 
the first two CCA axes; variables significant at the P-level of 0.001 are marked with *). 
 

Variable VIF λ1 λ2 λ1/λ2 
% variance 
explained P-value 

Altitude 1.6 0.126 0.498 0.253 2.2 0.010 
Catchment Area (CA) 174.4 0.083 0.527 0.158 1.5 0.328 
Lake Area (LA) 128.9 0.136 0.532 0.255 2.4 0.003 
CA.LA 77.8 0.127 0.530 0.239 2.2 0.008 
MaxDepth 5.1 0.148 0.524 0.282 2.6 0.002 
MeanDepth 3.7 0.138 0.518 0.267 2.4 0.004 
Agriculture 1.8 0.174 0.458 0.379 3.0 < 0.001* 
Forestry 1.6 0.090 0.521 0.174 1.6 0.178 
Pasture 9.2 0.392 0.458 0.855 6.8 < 0.001* 
Peat 6.7 0.334 0.458 0.730 5.8 < 0.001* 
Urban 1.7 0.168 0.464 0.362 2.9 < 0.001* 
Alkalinity 14.2 0.439 0.464 0.948 7.7 < 0.001* 
Chlorophyll-a 3.7 0.343 0.505 0.679 6.0 < 0.001* 
Colour 3.2 0.223 0.530 0.420 3.9 < 0.001* 
Conductivity 11.3 0.422 0.464 0.910 7.4 < 0.001* 
pH 10.3 0.470 0.464 1.013 8.2 < 0.001* 
TP 6.0 0.336 0.499 0.673 5.9 < 0.001* 

 

 

Because TP has proven to be a significant variable controlling the diatom assemblages 

and is also the variable of primary interest in this study, it is manually included in 

forward selection before any other variable is added in the minimum model. Forward 

selection with Monte Carlo permutation test was performed in the R program. Two 

variables (pH and maximum depth) were automatically selected in addition to the 

manually selected TP.  Table 4.9 summarises the minimum optimal CCA model for the 

72-lake diatom training set constrained by pH, TP and maximum depth. This model 

accounted for more than 45% (0.768/2.016) of the total constrained variance explained 

by the 17 environmental variables (compare Table 4.9 with Table 4.7). Therefore, this 

minimal set containing three significant environmental variables could explain the 

species data nearly as well as the full model as it captured nearly half of the total 

variance in the full model constrained by all 17 environmental variables.  
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Table 4.9 Summary of CCA of diatom data constrained by TP, pH and maximum depth. 
 

Axes 1 2 3 4 Total  
Variance 

Eigenvalues for constrained Axes 0.4763 0.3056 0.1258  5.737 
Speices-Environment Correlation 0.953 0.849 0.874   
Cumulative Variance (%) for Constrained Axes 8.3 13.6 15.8   
Eigenvalues for unconstrained Axes 0.2574 0.2458 0.2006 0.1833  
Cumulative Variance (%) for Unconstrained Axes 4.5 8.8 12.3 15.5  
Constrained Eigenvalue     0.908 
Total Unconstrained Eigenvalue     4.829 

 

 

4.3.3 Viability of TP for Constructing Transfer Functions  

 

Both the full and the partial constrained ordinations of diatom data in the previous 

sections indicate that TP is one of the most significant environmental variables 

explaining the patterns of diatom assemblages in the 72 lakes. A good indicator for 

assessing the viability of environmental variable selected to construct transfer functions 

is the ratio of λ1 to λ2, the first two eigenvalues of partial CCA (ter Braak, 1988; Hall & 

Smol, 1992). The λ1/ λ2 ratios for the 17 environmental variables are listed in Table 4.9. 

The three variables related with acidity-conductivity gradient have highest λ1/ λ2 ratios 

above 0.7 among all the 17 variables. The λ1/ λ2 ratios of pasture and peat are also quite 

high (0.855 and 0.730 respectively), but their high abundance of zero values implies that 

they are not viable for such modelling (Birks, 2005b). TP produces a λ1/ λ2 ratio of 

0.673. Variables with high λ1:λ2 ratios (e.g., >1) generally produce strong calibration 

models, but variables with lower ratios can still be used in transfer function 

development but care should be taken in ecological interpretation (ter Braak, 1987b; ter 

Braak, 1988). TP inference models have been developed with relative low λ1/ λ2 ratios, 

e.g. 0.4 (Hall & Smol, 1992), 0.42 (Reavie et al., 1995), 0.45 (Wunsam & Schmidt, 

1995) 0.29 (Hall & Smol, 1996), 0.50 (Gregory-Eaves et al., 1999), 0.83 (Kauppila et 

al., 2002). This comparison of λ1/ λ2 ratios indicates that TP can be used for developing 

a robust transfer function for this diatom training set.  
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4.4 Species Response Curves 

 

In this section the distribution of individual diatom species along the TP gradient is 

explored using Gaussian Logit Regression (GLR) based on a Gaussian unimodal model 

(see Chapter 3 on methods). Nutrient gradient was identified as a significant factor 

influencing the diatom assemblage patterns in the training set and being viable for 

constructing robust transfer functions. The species response analysis would help 

understand the linear or non-linear response of some significant diatom species to TP 

before further development of TP transfer functions using modelling methods based on 

species response models.  

 

Twenty-two common diatom taxa occurred with a maximum relative abundance above 

5% and an effective number (N2) of above ten and their response curves to TP are 

shown in Figure 4.11. Of the 22 common diatom taxa, eight taxa showed a unimodal or 

unimodal-like response curve, 12 displayed a monotonic decreasing sigmoid curve and 

two showed a monotonic increasing sigmoid curve along the TP gradient of 0-142 μg l-1. 

Abundances of Achnanthes scotica [ADCA], Anomoeoneis neoexilis [BEXI], Cyclotella 

comensis [CCMS], C. radiosa [PRAD], Cymbella gracilis [ENNG], C. microcephala 

[ENCM], Eunotia incisa [EINC], Fragilaria brevistriata [PSBR], F. exigua [SEXG], 

Frustulia rhomboids [FRHO], F. saxonica [FSAX] and Tabellaria flocculosa [TFLO]  

decreased rapidly with the increase of TP values in the 72-lake training set. The curves 

indicate their preference in oligotrophic lakes. In the mesotrophic (TP in the range of 

10-35 μg-1) and eutrophic (TP in the range of 35-100 μg-1) waters, Achnanthes 

minutissima var. minutissima [ADMI], Amphora pediculus [APED], Aulacoseira 

subarctica [AUSU], Cocconeis placentula [CPLA], Fragilaria capucina [FCAP], F. 

capucina var. gracilis [FGRA], F. pinnata [SPIN] and Gomphonema parvulum var. 

parvulum [GPAR] displayed a maximum abundance in this TP range. While in more 

eutrophicated lakes plankontic species, Asterionella formosa [AFOR] and 

Stephanodiscus parvus [SPAV], showed a monotonically increased abundance with the 

increase of nutrient level and their optimums are assumed to lie beyond the TP range of 

0-142 μg l-1.  
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Figure 4.11 Response curves of 22 common diatom species (maximum ≥ 5%, N2 ≥ 10) to TP using 
Gaussian Logit Regression (GLR) (Horizontal axis represented TP (μg l-1) and vertical axis 
represents the relative abundance for each taxon; ADMI Achnanthes minutissima var. minutissima, 
ADCA Achnanthes scotica, APED Amphora pediculus, BEXI  Anomoeoneis neoexilis, AFOR 
Asterionella formosa, AUSU Aulacoseira subarctica, CPLA  Cocconeis placentula, CCMS Cyclotella 
comensis, PRAD Cyclotella radiosa, ENNG Cymbella gracilis, ENCM   Cymbella microcephala, 
EINC Eunotia incisa, PSBR Fragilaria brevistriata, FCAP Fragilaria capucina, FGRA Fragilaria 
capucina var. gracilis, SEXG Fragilaria exigua, SPIN Fragilaria pinnata, FRHO Frustulia 
rhomboids, FSAX Frustulia saxonica, GPAR Gomphonema parvulum var. parvulum, SPAV 
Stephanodiscus parvus, TFLO  Tabellaria flocculosa). 
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4.5 Discussion and Conclusions 

 

The main objectives of this chapter were to investigate the properties of environmental 

and diatom data in this diatom training set and to explore the quantitative relationships 

between both data sets for the 72 lakes. Several multivariate methods, including direct 

and indirect gradient analysis, classification, and species response analysis have been 

performed for achieving the above aims. The variable TP is highlighted as the primary 

variable of interest in this study and its relationship with the diatom community is the 

key to the development of a robust TP transfer function. This section aims to discuss the 

results of the numerical analyses and some key findings will also be concluded.   

 

4.5.1 Characters of Environmental Variables 

 

The ordination of the 17 environmental variables displayed a relatively even distribution 

of sites along the vectors of environmental variables for the diatom training set lakes. 

The most significant gradient associated with PCA axis 1 was composed of 

environmental variables related with acidity and conductivity and the second important 

gradient was mainly composed of nutrient-related variables along the PCA axis 2. When 

constrained to the diatom data in CCA, both gradients were found to be the most 

significant ones in explaining the structure of the diatom community. Therefore the 

measured environmental variables related with both gradients accounted for the main 

variation in diatom species composition.  

 

The land cover variables peat and pasture are strongly correlated with the first PCA axis 

and remained a similar relationship with the first CCA axis. The other three land cover 

variables (urban, agriculture and forestry) were much less significant and also displayed 

little change in the length and direction of vectors relative to other variables in the PCA 

and CCA. The inverse relationship between forest coverage and nutrient gradients 

means that sites with low forest cover tend to have higher nutrient levels. Deforestation 

can make it easier for nutrient loads to be exported into the lakes through the catchment 

run-off (Jennings et al., 2003) and this can account for the higher nutrient status for 

lakes with lower forestry coverage. Similarly the inverse relationships between peatland 

coverage and acidity and conductivity variables may be due to the high input of humic 
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materials transported from the surrounding catchment into the waters (e.g. Dalton, 

1999).  

 

The physical variables (e.g. catchment area, mean and maximum depth) generally show 

a reduced influence on the diatom community in comparison to their relative long 

vector length in PCA. This suggests that the physical variables have direct and 

significant influence on chemical composition of the lakes but generally exert indirect 

influence on the diatom assemblages. These physical variables may still play important 

roles in controlling the species structure indirectly through influencing the 

hydrochemical variables (e.g. TP and pH). Lakes at high altitudes tend to have low pH, 

alkalinity and conductivity values and this is also shown in other studies (e.g. Stevenson 

et al., 1991). Two nutrient variables, TP and Chlorophyll-a, displayed an inverse 

relationship with lake depth (both mean and maximum) indicating that the nutrient level 

is generally low in deep lakes while shallow lakes are generally characterised of higher 

nutrient status. In shallow lakes, the intense sediment-water contact and low buffering 

capacity of nutrient loading make them more liable to nutrient enrichment in lake waters 

than deep lakes (Scheffer, 1998). This inverse relationship between nutrient level and 

lake depth was also indicated by many diatom-TP training sets (e.g. Dixit & Smol, 1994; 

Hall & Smol, 1996; Dixit et al., 1999; Enache & Prairie, 2002).  

 

TP and chlorophyll-a are strongly correlated and both are equal contributers to the total 

variance in the diatom assemblages. Chlorophyll-a is the most dominant chlorophyllous 

pigment of algae and cyanobacteria and is used to estimate algal biomass (Wetzel, 2001). 

It is generally an in-lake biological indicator and can be influenced by other variables 

like alkalinity and conductivity in addition to phosphorous concentration. In addition it 

is a surrogate for algal biomass and can reflect the combined influence of nutrient 

variables. Its relationship with diatom community is complex as diatoms have dual roles 

in constrained ordination analysis, both as the ecological variable and as part of the 

environment variable. Therefore TP is used as the primary nutrient variable in this study 

for further transfer function development to infer nutrient level.  

 

4.5.2 Diatom-Environment Relationships 
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High variation in assemblage composition was observed in the indirection ordination of 

diatom data. This was reflected by the species response curves of the common diatom 

taxa along the TP gradient (see Figure 4.11).  Eight of 22 common diatom taxa taxa 

showed a unimodal or unimodal-like response curve with 12 displaying a monotonic 

decreasing sigmoid curve and two showing a monotonic increasing sigmoid curve along 

the TP gradient of 0-142 μg l-1. The relatively long TP gradient in this diatom training 

set is well comparable with other TP training sets (e.g. Fritz et al., 1993; Gregory-Eaves 

et al., 1999; Kauppila et al., 2002; Miettinen, 2003; Ramstack et al., 2003). The 

distribution of individual taxa along the TP gradient in this study generally correspond 

well with what has been published in many other studies (e.g. Wunsam & Schmidt, 

1995; Lotter et al., 1998; Bradshaw & Anderson, 2001; Miettinen, 2003). 

 

The configuration of diatom taxa displayed the geometry of triangle in the CA plot of 

diatom data (see Figure 4.5) and a similar configuration of diatom distribution was also 

found in the CCA (see Figure 4.9).  This shows that the internal structure of the diatom 

assemblages was captured by the 17 measured environmental variables. In addition the 

diatom assemblages are completely dominated by the first two axes of both CA and 

CCA plots, which were strongly correlated with acidity-conductivity and nutrient 

gradients respectively. The influences of other environmental gradients are too weak to 

pull the diatom distribution away from the first two axes in ordination space and 

therefore produce the triangle configuration in the ordination analysis. The relative 

small divergence between eigenvalues of the first two axes in the CCA and the CA of 

the 72 lakes means that a large portion of total variance in the diatom assemblages is 

accounted for by the measured environmental variables. But other unmeasured or 

unknown variables can also influence the diatom distribution. Several environmental 

variables unmeasured in this study including epilimnetic CO2 (e.g. Philibert & Prairie, 

2002), water temperature (e.g. Bloom et al., 2003), salinity (e.g. Fritz, 1990) can exert 

significant influence the diatom assemblages. In addition the biotic interactions may 

also be important regulators on diatom growth and community structure, like selective 

predation by zooplankton (Lampert & Sommer, 1997). 

 

Despite the relatively long nutrient gradient in this diatom training set, the acidity and 

conductivity gradient stills plays a more important role in regulating the diatom 

assemblages. The acidity-conductivity gradient strongly correlated with the first CCA 

axis explained more of the total variance than the second axes which is mainly 
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composed of nutrient variables. This has also been found in several diatom training sets 

constructed for TP inference models (e.g., Reavie & Smol, 2001). The ratio of λ1/ λ2 of 

pH was higher than that of TP in this study as in several other studies (e.g., Dixit & 

Smol, 1994; Dixit et al., 1999; Enache & Prairie, 2002). Generally there is a strong 

relationship between diatoms and pH due to the direct physiological influence of pH on 

diatoms. A weaker diatom-TP relationship can be caused by the indirect diatom-TP 

relationship as other physical and hydrochemical factors (e.g. physical mixing, silica 

availability) are also involved (Reynolds, 1984). A weaker diatom-pH relationship than 

the diatom-TP one was also found in several diatom training sets and they generally 

included lakes with a relative narrow pH range (e.g. Hall & Smol, 1992; Bennion, 1994; 

Tibby, 2004).  

 

In the CCA of diatoms, TP alone accounted for 5.9% of total variance in species 

composition and this is comparable with other studies on TP transfer functions, e.g., 5% 

(Wunsam & Schmidt, 1995),  8.4% (King et al., 2000), 5.8% (Bradshaw & Anderson, 

2001). Its relative high ratio of λ1/ λ2 is well comparable with most other diatom-based 

TP transfer functions. The common diatom taxa also displayed high sensitivity to the TP 

gradient in both ordination and species response analyses. In spite of its secondary 

significance to the acidity-conductivity gradient in controlling the diatom assemblages, 

TP has been successfully used in constructing transfer functions in several other studies 

(e.g. Dixit et al., 1999; Reavie & Smol, 2001). All these features point to that TP can be 

potentially used for developing robust transfer functions for this diatom training set. 

 

4.5.3 Use of Diatoms in Verifying the Lake Typology  

 

The diatom clusters using Ward’s minimum clustering method display good 

correspondence with the lake typology classes mainly along the alkalinity gradient. 

Three groups of lakes with low, moderate and high alkalinities are clearly reflected in 

the diatom clusters for the 72 lakes. This strong influence of alkalinity on the biological 

community was also found by a study in the U.K. which employed the diatoms to 

validate the British Lake Typology of reference lakes (Bennion et al., 2004a). Alkalinity 

is one of the key factors in determining the diatom community in lakes and the lake 

typology classification based on alkalinity has strong ecological response. A major 

difference between this study and the work by Bennion et al. (2004) is that both 
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reference and degraded lakes are included in this study. The influence of alkalinity on 

the diatom community is indicated by the strong association of the acidity-conductivity 

gradient with the first axis of CCA of diatom data despite that impacted lakes were 

selected mainly along the TP gradient in this study. This confirms the applicability and 

reliability of the lake typology classification in identifying the lake types of impacted 

lakes under strong human disturbance (e.g. eutrophication). The influence of lake area 

and depth used in the Irish Lake Typology is also demonstrated in the diatom clusters 

but they exert much weaker impact than alkalinity. This may indicate that lake area and 

depth are not as significant as alkalinity in affecting the ecological status of lakes. But 

lake depth did show significant influence in the diatom community of 219 samples from 

the U.K. (Bennion et al., 2004a) and in comparison the relative small number of lakes 

(72) included in this study may provide insufficient data to evaluate the roles of both 

variables in affecting diatom community. Furthermore, more biological indictors should 

be included to fully assess the significance of the variables adopted in the Irish Lake 

Typology scheme in the overall ecological status. 

 

The use of biological classification of lakes can help identify the potentially 

misclassified sites, like Mullagh, Castle and Dunglow highlighted in this study (see 

Figure 4.10). This mismatching of diatom and physico-chemical classification can be 

due to the seasonal fluctuation of alkalinity in lake waters and therefore insufficient 

measurement can cause the misclassification of lake types. Seasonal change of 

alkalinity has been found in Irish lakes (Dalton, 1999; Irvine et al., 2001) and the use of 

fixed boundary of alkalinity in categorizing lakes can therefore be arbitrary. In addition 

insufficient lake bathymetry data can also influence the accuracy of mean depth used in 

lake type classification (Bennion et al., 2004a). As the biological indicators often shown 

a gradual change in response to the physico-chemical gradients (Jeppesen et al., 2000; 

Søndergaard et al., 2005), the overlap between the neighbouring lake types also 

occurred in this study, e.g. at the borders of low to medium and medium to high 

alkalinities. Therefore the gradual biological response can be inconsistent with the fixed 

boundary physico-chemical variables adopted in lake classification and this can be a 

challenge in implementing the Water Framework Directive.  

 

4.5.4 Conclusions 
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The use of surface sediment diatoms provided a vigorous tool in collecting integrated 

ecological information and they showed strong response to environment gradients in the 

multivariate analyses. This investigation showed that acidity and nutrient gradients were 

most significant in controlling the diatom assemblages. Peat and pasture coverage were 

strongly correlated with the acidity-conductivity gradient with physical variables being 

the least important environment variables for species composition in the Irish Ecoregion. 

Diatom assemblages displayed high heterogeneity and were distributed mainly along the 

acidity-conductivity and nutrient gradients. The diatom clusters displayed good 

correspondence with the lake groups based on alkalinity and less with the typology 

classes based on lake area or depth. This confirmed the importance of alkalinity in 

classifying the Irish lakes. TP can be used for developing a reliable transfer function as 

it explained a large portion of total variance in the diatom assemblages and some 

common taxa responded strictly along the TP gradient.  
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Chapter 5: Relationships between Surface Sediment Cladocera and 
Environment Variables of 33 Irish Lakes 

 

 

This chapter aims to reveal the ecological responses of Cladocera to the physical, 

hydrochemical and catchment variables based on the surface sediment remains of 33 

lakes in the Irish Ecoregion. The environmental characteristics of the 33 lakes and the 

surface sediment Cladocera assemblages are investigated and summarised separately. In 

addition the representability of Cladocera remains in the lake sediments is also 

evaluated via a comparison with contemporary Cladocera data collected for six Irish 

lakes. Cladocera data is then used to assess the lake typology classes of the 33 lakes 

based on cluster analysis. The relationship between Cladocera and environmental 

variables are then examined through constrained ordination analysis and species 

response curves are examined to check the ecological responses of individual Cladocera 

to significant environmental gradients.  

 

5.1 Environmental Variables 

 

Seventeen physical, chemical and land use variables (see Appendixes B, C and D) were 

included in this 33-lake Cladocera data set. Summary statistics of the physico-chemical 

data for the 33 lakes are shown in Table 5.1 and their frequency distributions are 

displayed in Figure 5.1. According to the Irish EPA Lake Typology classification 

scheme (see Chapter 3), eight lake types were included in this Cladocera training set. 

Lake Types 5 (medium alkalinity, shallow, small) and 12 (high alkalinity, deep, large) 

contained eight and six lakes respectively. Lake Types 1, 3, 7, 9 and 11 were composed 

of 3-5 lakes each and only one lake was included in Lake Type 10.  

 

Most of the 33 Cladocera training-set lakes are located in lowlands with altitudes of 

<150 m except Tay [TAY] with an altitude of 250 m (see Figure 5.1 and Appendix B).  

Surface areas of the 33 lakes are between 1.2 and 416.3 ha and the majority of the lakes 

are relatively small with a median value of 21.4 ha (Table 5.1). Catchment area ranges 

from 30 ha to 29042 ha and the ratio of catchment area to lake area is less than 30:1 for 

more than half of the 33 lakes. Around half of the lakes have a maximum depth of 

greater than 12 m and a median depth of greater than 4 m (Table 5.1). More than half of 

the lakes have pasture coverage of >50% while 30 of the 33 lakes have an urban 
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coverage of not more than 2%. Most of the lakes have peat coverage of less than 20%. 

Catchment forest cover is generally low and more than 20 lakes have forested area of 

less than 5% (Figure 5.1). Thirty of the 33 lakes have agriculture coverage of not more 

than 20%.  

 
Table 5.1 Summary of 17 environmental variables for 33 lakes. 
 

Variables Min Max Mean Median Standard 
deviation N N 

missing 

N 
non-
zero 

Physical         
Altitude (m) 7.0 250.0 59.7 50.0 49.3 31 2 31 
Catchment Area (ha) 30.0 29042.0 3779.2 390.5 7569.7 30 3 30 
Lake Area (ha) 1.2 416.3 48.7 21.4 78.2 32 1 32 
Catchment Area:Lake Area  2.8 2045.2 148.0 28.2 387.1 30 3 30 
Maximum Depth (m) 1.1 32.8 12.8 12.0 8.4 31 2 31 
Mean Depth (m) 0.7 17.1 5.7 4.4 4.1 32 1 32 
         
Land Cover         
Agriculture (%) 0.0 52.1 8.6 3.6 12.8 33 0 19 
Forestry (%) 0.0 23.1 4.4 0.0 6.8 33 0 14 
Pasture (%) 0.0 100.0 51.2 54.5 31.5 33 0 30 
Peat (%) 0.0 100.0 19.3 3.1 31.7 33 0 18 
Urban (%) 0.0 10.9 0.7 0.0 2.2 33 0 8 
         
Hydrochemical         
Alkalinity (mg l-1) -0.3 208.6 87.5 78.0 62.0 33 0 32 
Chlorophyll a (µg l-1) 0.6 62.7 13.1 9.2 13.4 33 0 33 
Colour (mg l-1 PtCo/Hazen) 1.0 208.5 57.8 36.0 49.6 31 2 31 
Conductivity (µS cm-1) 40.0 462.0 251.7 259.0 107.3 32 1 32 
pH 5.1 8.5 7.7 7.9 0.7 33 0 33 
TP (µg l-1) 4.0 142.3 43.3 34.7 35.7 33 0 33 

 

 

Most lakes have pH values of above 7 in the range of 7-8.5 (see Figure 5.1). The TP 

gradient is in the range of 4-142.3 µg l-1 for the 33 lakes, but most lakes have TP values 

below 100 µg l-1 (see Table 5.1 and Figure 5.1). The median TP value of 34.7 µg l-1 

indicates that there are nearly as many oligotrophic and mesotrophic lakes as the 

eutrophic and hypertrophic ones in the Cladocera training set. Alkalinity has a relatively 

wide range from -0.3 to 208.6 mg l-1 CaCO3, with median and mean values of 78.6 and 

87.8 mg l-1 CaCO3 respectively (Table 5.1). Most lakes fall into the conductivity range 

of 100-400 µS cm-1 and the median conductivity value of 259 µS cm-1. The majority of 

the environmental variables display strong skewness to right in the frequency 

histograms (Figure 5.1).  
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Figure 5.1 Histogram of 17 environmental variables in the Cladocera training set 
 

 

5.1.1 Ordination of Environmental Variables 

 

To further examine the data structure and the underlying gradients in the environmental 

and ecological variables, multivariate methods were applied in the Cladocera training 

set. Principal Component Analysis (PCA) was used to explore the physical, chemical 

and land use data. Normalising transformation of the environmental variables was 

performed to stabilize the variance prior to PCA. All the physical variables except 

maximum depth were log10-transformed, while TP, alkalinity, chlorophyll-a and peat 

coverage were log10 (1+)-transformed as they contained values of either zero or between 

0 and 1. All the other variables were square root transformed as they better approximate 

the normal distribution.  
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A correlation biplot of the first two PCA axes for all 17 environmental variables in the 

33-lake Cladocera training set is shown in Figure 5.2 and the summary statistics of the 

first four PCA axes in Table 5.2. The broken stick model revealed that the first three 

PCA axes were significant enough for further exploration (Jackson, 1993). The first 

three principal components explained 66.8% of the total variance in the environmental 

variables while the first two axes accounted for 54.7% of the total variance (Table 5.2).  
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Figure 5.2 PCA correlation bilot for 17 environmental variables of 33 lakes. 
 

 

The first principal component (axis one) accounted for 29.0% of the total variance in the 

environmental variables with an eigenvalue (λ1) of 0.290. This axis is closely positively 

linked with lake area (0.989, the biplot score), maximum depth (0.915) and catchment 

area (0.893) and negatively with colour (-0.914) and TP (-0.792) (see Table 5.2). The 

angle between TP and chlorophyll-a was nearly zero indicating a significant 
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correlationship between both nutrient variables. The small angles among the variables 

related with lake depth and lake and catchment area also indicated their close 

covariance. These two clusters of nutrient and physical variables showed closely 

negative correlation: nutrient status (either TP or chlorophyll-a) decreases with the 

increase of lake depth or area and vice versa. Sites sitting along the vectors of depth and 

area like Inchiquin [INQ] are therefore deep and large lakes with large catchment areas 

but with low TP and chlorophyll-a values. While Tullabrack [TUL] and Morgans [MOR] 

sitting along the vectors of TP and chlorophyll-a are typically eutrophic and shallow 

lakes with very small lake and catchment areas. 

 
Table 5.2 Summary statistics of PCA on the 17 environmental variables of 33 lakes 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

The eingenvalue (λ2) for the second axis is 0.257 and this axis explained 25.7% of the 

total variance. The second axis was positively correlated with peat (0.954, biplot score) 

and negatively correlated with pasture, pH and alkalinity (-0.984, -0.950 and -0.897) 

(see Figure 5.2). Alkalinity and pH are highly correlated, while peat and pasture are 

strongly negatively correlated. Sites sitting along the peat vector like Tay [TAY] are 

PCA Axes 1 2 3 4 Total  
Variance 

Eigenvalue (λ) 0.290 0.257 0.121 9.316 1 
Variance (%) 29.0 25.7 12.1 9.3  
Cumulative Variance (%) 29.0 54.7 66.8 76.1  
Total Unconstrained Eigenvalue     1 
      
Biplot scores for Environmental 
Variables 

     

Altitude -0.395 0.177 -0.835 0.031  
Catchment Area (CA) 0.893 0.391 0.472 -0.192  
Lake Area (LA) 0.989 0.235 -0.150 0.263  
CA:LA 0.210 0.290 0.783 -0.521  
MaxDepth 0.915 0.507 -0.245 0.212  
MeanDepth 0.666 0.496 -0.470 0.316  
Agriculture 0.182 -0.463 0.052 -0.044  
Forestry 0.068 0.159 0.484 0.927  
Pasture 0.053 -0.984 -0.326 -0.019  
Peat 0.185 0.954 0.443 0.138  
Urban 0.417 -0.361 0.101 0.688  
Alkalinity 0.622 -0.897 0.245 -0.035  
Chlorophyll-a -0.743 -0.472 0.273 0.437  
Colour -0.914 0.447 0.318 0.091  
Conductivity 0.754 -0.719 0.286 -0.171  
pH 0.540 -0.950 0.042 0.038  
TP -0.792 -0.511 0.350 0.253  
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covered with high coverage of peatland and also have very limited coverage of pasture. 

Sites located along the pH and alkalinity vectors (e.g. Sillan [SIL]) are very alkaline, 

while sites at the opposite end of the same vectors (e.g. Caum [CAU]) are characteristic 

of being circumneutral in pH and having a very low alkalinity. The third axis has an 

eigenvalue (λ3) of 0.121 and this explained 12.1% of total variance in the environmental 

variables. In the Table 5.2 we can see that the third axis is positively correlated with 

catchment area to lake area ratio (CA:LA, 0.783) and negatively correlated with altitude 

(-0.835).  

 

5.2 Surface Sediment Cladocera Data 

 

This section will first examine the reliability of surface sediment Cladocera samples in 

reflecting the modern Cladocera assemblage structure. The surface sediment Cladocera 

data from 33 lakes are then summarised and explored using numerical methods 

including indirect gradient analysis and cluster analysis.  

 

5.2.1 Comparison of Modern and Surface Sediment Cladocera 

 

Zooplankton often disarticulate into various fragments (e.g. carapaces, claws, 

postabdomens) after death and are then differentially preserved in lake sediments 

(Korhola & Rautio, 2001). Therefore the representation of live communities in sediment 

samples is a key to the use of sediment Cladocera in tracking the history of water 

quality and lake ecosystem change. A limited number of studies have been undertaken 

to verify the reliability of sediment Cladocera assemblages (e.g., Frey, 1960; Rautio et 

al., 2000; Jeppesen et al., 2003). In order to explore the data structure of surface 

sediment Cladocera assemblages, a comparison with modern Cladocera assemblages 

from the water columns is conducted to ascertain whether the fossil remains in the 

sediments are truly representative. A confirmation of close relationship between 

sediment and modern Claodcera assemblages from Irish lakes could provide a vigorous 

basis for constructing a surface sediment Cladocera-based TP transfer function. Littoral 

and planktonic Cladocera assemblages of six lakes are examined separately because of 

their differential preservation in the sediments and their distinctive habitat preferences 

across the whole lake area.  
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5.2.1.1 Littoral Cladocera 

 

Modern water samples for six lakes (Cullaun, Dromore, Egish, Inchiquin, Lene and 

Mullagh) were taken for chydorid analysis by de Eyto (2000) and the data are used here 

to compare with the chydorid assemblages from the surface sediments of the same lakes 

(see Table 5.3). Chydorids are mainly littoral dwellers in diverse habitats and their 

abundance and community structure often display strong seasonality. Monthly sampling 

for modern chydorid analysis were conducted for Loughs Inchiquin and Lene and 

quarterly sampling for the other four lakes between July 1996 and September 1997 in 

three main littoral habitats (rocks, plants and littoral waters) (de Eyto, 2000).  Surface 

sediment samples were collected in the summer of 2004 for these six lakes. Surface 

sediments were accumulated during the past several years and therefore fossil chydorid 

assemblages from the six lakes should be comparable with the modern samples.  

 

Thirty chydorid species were observed in both surface sediment and multiple water 

samples of all the six lakes (see Table 5.3). The highest species richness (21) occurred in 

the surface sediment of Cullaun while the lowest (6) was found in the water samples of 

Egish. The average species richness in surface sediment and water samples for all six 

lakes were 17.3 and 14.7, with a median value of 16.5 and 16 correspondingly. In four 

of the six lakes there was higher species richness in the surface sediment compared to 

the water samples and only in Lough Dromore were there two more species found in 

water column than in sediments. Species richness in Dromore (19) was also the highest 

among the 26 lakes analysed by de Eyto (2000). Species richness in one-off sampling of 

surface sediments is generally higher than that in multiple water samples for the same 

lake (see Table 5.3). Surface sediments captured a minimum of two-thirds of total 

number of species in the water samples with an average value of 80% for the 6 lakes. 

For example in Lough Egish, all the six speices counted in the seven water samples 

were identified in the surface sediment and furthermore 10 additional chydorid species 

occurred in the surface sediment. Therefore the surface sediments captured the main 

chydorid assemblages from different littoral habitats in the six lakes.  
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Table 5.3 Comparison of the presence (represented by the symbol ●) of 30 chydorid species in 
surface sediments (S) and water column (W) for 6 lakes (water column data from de Eyto (2000)) 
 

Lakes Cullaun Dromore Egish Inchiquin Lene Mullagh 
Species/Sample S W S W S W S W S W S W 
Acroperus harpae ● ● ● ● ● ● ● ● ● ● ● ● 

Alona affinis ● ● ● ● ● ● ● ● ● ● ● ● 

Alona costata ● ● ● ●   ● ● ● ● ● ● 

Alona guttata ●  ● ● ●  ●  ●  ● ● 

Alona intermedia ●      ●  ●    

Alona quadrangularis ●  ●  ●  ● ● ● ● ● ● 

Alona rectangula ● ● ● ● ●  ● ● ● ● ● ● 

Alona rustica   ●  ● ●     ●  

Alonella excisa ● ● ●  ●  ● ● ●    

Alonella exigua  ● ● ●   ● ● ●    

Alonella nana ● ● ● ● ●  ●  ● ● ● ● 

Alonopsis elongata ● ●   ●        

Anchistropus emarginatus ● ●  ●         

Camptocercus rectirostris ●  ● ● ●  ●     ● 

Chydorus piger ●    ●  ●    ●  

Chydorus sphaericus ● ● ● ● ● ● ● ● ● ● ● ● 

Eurycercus lamellatus ● ● ● ● ● ● ● ●  ● ●  

Graptoleberis testudinaria ● ● ● ● ●  ● ●   ● ● 

Leydigia acanthocercoides         ●    

Leydigia leydigiii     ●      ● ● 

Monospilus dispar ● ● ●    ● ●  ● ●  

Oxyurella tenuicaudis  ●   ● ●       

Phrixura rostrata ● ●      ● ● ●  ● 

Pleuroxus aduncus    ●         

Pleuroxus laevis ●  ● ●   ● ● ● ●   

Pleuroxus trigonellus ● ● ● ●   ● ● ● ● ●  

Pleuroxus truncatus  ●  ●   ● ●  ●   

Pleuroxus uncinatus ●   ●    ●   ● ● 

Pseudochydorus globosus    ●    ●  ●   

Rhynchotalona falcata  ●  ●      ●   

Species richness (No. 
captured in both samples) 

21 
(14) 

18 
(14) 

17 
(13) 

19 
(13) 

16 
(6) 

6 
(6) 

19 
(14) 

17 
(14) 

15 
(10) 

15 
(10) 

16 
(11) 

13 
(11) 

 

 

5.2.1.2 Planktonic Cladocera 

 

Planktonic Cladocera occurring in Irish lakes are mainly composed of taxa from two 

families, Daphniidae and Bosminidae (Irvine et al., 2001). In comparison with 

Chydoridae the preservation of planktonic Cladocera is usually poor in lake sediments 

except for Bosminidae (Korhola & Rautio, 2001). Daphniidae, a key component of 

aquatic ecosystem, are poorly preserved because their exoskeleton is too fragile to 
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survive decomposition and attack by fungi. Post-abdominal claws are normally the most 

abundant Daphniidae remains in the sediments. As a result the Daphniidae species is 

difficult to distinguish based mainly on post-abdominal claws and can only enable the 

identification of two species groups, Daphnia pulex group and D. longispina group. The 

modern zooplankton data were sampled 4-8 times in the Summer of 1996 in open 

waters of the same 6 lakes as used in the previous subsection (Irvine et al., 2001).  

 
Table 5.4 Comparison of the presence of planktonic Cladocera taxa (represented by the symbol ●)  
in surface sediment (S) and water samples (W) for six lakes (double symbols (●●) indicate the 
dominant taxa; data of water samples from Irvine et al. (2001)). 
 

Lake Cullaun Dromore Egish Inchiquin Lene Mullagh 
Taxa/Sample S W S W S W S W S W S W 

Bosmina longirostris ● ● ● ● ● ● ●  ● ● ●● ●● 

Bosmina longispina ●      ●  ●  ●  

Ceriodaphnia quadrangula        ●     

Ceriodaphnia pulchella            ● 

Daphnia longispina group ●● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● 

Daphnia pulex group   ●    ●      

Diaphanosoma brachyurum  ●           

Bythotrephes longimanus  ●      ●  ●   

Leptodora kindti ●  ● ● ●     ● ● ● 

Sida crystalline   ●  ●      ●  

Latona setifera ●            

 

 

In total nine species and two species groups occurred in all samples of the six lakes and 

Daphnia longispina group and Bosmina longirostris occurred in most of the samples 

(see Table 5.4). The planktonic Cladocera assemblages are generally composed of 1-4 

species in addition to one or two species groups and their species richness are relatively 

low in comparison with the species richness of 15-20 for chydorids in the six lakes. D. 

longispina group was dominant in both surface sediments and water samples of all six 

lakes except in water samples from Lough Cullaun. B. longirostris was sub-dominant in 

sediment and water samples of Mullagh. The dominant taxa in water samples were well 

captured in the surface sediment samples in all lakes except for Culluan where there 

were no clearly dominant taxa in water samples (Table 5.4). However, few other species 

or groups corresponded well with each other in water and sediment samples. Only 

Leptodora kindti was recorded in both types of samples in two lakes (Dromore and 

Mullagh). This may be due to not only the occurrence of differential preservation in the 
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sediment samples but also the spatial heterogeneity of the modern planktonic Cladocera 

distribution in the water column.  

 

5.2.2 Surface Sediment Cladocera 

 

In total 39 Cladocera taxa and groups were counted in the surface sediments of 33 Irish 

lakes and their summary statistics are shown in Table 5.5. Of the 39 taxa and groups 

only eight were planktonic and all the other 31 taxa or species group were littoral 

chydorids. Acroperus harpae, Alona affinis, A. guttata/rectangula group, A. 

quadrangularis and Alonella nana occurred in all 33 lakes while Latona setifera, 

Pleuroxus denticulatus and Leydigia acanthocercoides only occurred in one or two 

lakes (see Table 5.5). Planktonic Cladocera Bosmina longirostris and Daphnia 

longispina group were the most dominant taxa in most of the lakes with the highest 

maximum abundances (87% and 77% respectively), highest mean values (17% and 30%) 

and also highest standard deviations (21 for both). Among the littoral Cladocera 

(Chydoridae) Alona guttata/rectangula group, Chydorus sphaericus, Alona affinis, A. 

quadrangularis and Alonella nana are the most dominant taxa and they generally have 

mean values of relative abundance in the range of 4-8% for all the lakes (Table 5.5). 

Some common species like Acroperus harpae, Alonella exigua and Camptocercus 

rectirostris had relatively low values of maximum relative abundance (generally <6%) 

while some uncommon species like Alona rustica occurred with a maximum relative 

abundance of above 22%.  

 

The distribution of 31 common Cladocera taxa with occurrence in at least two sites and 

maximum relative abundances of above 1% are shown in Figure 5.3. Bosmina 

longirostris, a small planktonic cladoceran, has the highest abundance of over 80% at 

Caum [CAU] in this Cladocera training set and is also dominant in abundances of over 

40% at Rosconnell [ROS], Ballybeg [BAB], Rushaun [RUS], Mullagh [MUL] and 

Effernan [EFF]. The other Bosmina species in this training set, B. longispina is much 

less common and is most abundant (over 30%) at Tay [TAY]. The species replacement 

of B. longispina by B. longirostris has been well documented as a consequence of 

nutrient enrichment (e.g. Deevey & Deevey, 1971; Boucherle & Züllig, 1983). High 

abundance of bosminids can occur when fish predation is intense due to their small size 

(Dodson & Frey, 2001). Daphnia is the other common planktonic Cladocera genus in 
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this study and are composed of often abundant D. longispina group and much rare D. 

pulex group. Large-sized D. pulex group only occurs at Crans [CRA] in abundance of 

above 10%. In comparison D. longispina group has abundances of above 20% at 21 of 

the 33 sites and is dominant at Crans, Inchiquin [INQ], Morgans [MOR], Garvillaun 

[GAR], Mooghna [MOO], Dromore [DRO], Gortaganniv [GOR] and Bane [BAN] in 

abundances of over 50%. Large-sized Daphnia is sensitive to selective predation of 

fishes and high abundance of Daphnia is often found in lakes lack of or with low 

density of planktivorous fishes (Brooks & Dodson, 1965; Jeppesen et al., 1996; 

Lampert & Sommer, 1997). It is often rare or absent in highly acid lakes (Nilssen & 

Sandoy, 1990; Caroni, 2001) 

 

Littoral Acroperus harpae is often found in lakes with low production and alkalinity 

(Whiteside, 1970; Lotter et al., 1998) and associated with macrophytes (Freyer, 1968). 

It has abundances of above 5% only at sites Drumanure [DRU] and Atedaun [ATE]. 

Alona affinis and A. quadrangularis are common taxa in Ireland and were observed to 

have similar distribution (Duigan, 1992). A. affinis and A. quadrangularis are both 

cosmopolitan species inhabiting the bottom muds of lakes (Freyer, 1968). A. affinis is 

abundant at Muckanagh [MUC], Beaghcauneen [BEA] and Kiltooris [KIL] in this study. 

While A. quadrangularis occurs more often in lakes with high production (Whiteside, 

1970) and it is most abundant at Castle [CAS] and Tullabrack [TUL] in abundances of 

above 10%. Both Alona guttata and A. rectangula are very common and widespread 

chydorids in Ireland (Duigan, 1992). A. rectangula is often found in lakes with high 

production while A. guttata is found in nutrient-poor and acidic waters (Whiteside, 1970; 

Brodersen et al., 1998), but A. guttata was also found to survive nutrient enrichment 

(Duigan, 1992). The often indistinguishable headshields of both species in sediments 

lead to a combined species group and it is most abundant at sites Lisnahan [LIS], 

Tullabrack [TUL] and Lene [LEN] in abundances of over 20%. Alona intermedia, often 

found in acid-oligotrophic waters (Whiteside, 1970; Duigan, 1992), is most abundant at 

Lene [LEN] in abundance of ca. 15% but much less abundant at other sites like 

Beaghcauneen [BEA] and Moanmore [MOA]. Alona rustica is most abundant at sites 

Anascaul [ANS], Drumanure [DRU] and Tay [TAY] in abundances of above 10%. This 

is a typical species of oligotrophic lakes with low alkalinity in Europe (Whiteside, 1970; 

Duigan, 1992; de Eyto et al., 2003). Among the three Alonella species all of which 

occurred in most of the sites, A. excisa and A. nana are generally more abundant than A. 

exigua. A. excisa often has high abundance in acidic and nutrient-poor lakes (de Eyto et 
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al., 2003) and is most abundant at sites Anascaul [ANS], Atedaun [ATE] and Tullabrack 

[TUL] in abundances of above 5%. A. nana was found to have similar ecological 

preferences as A. excisa except that A. nana prefers higher nutrient levels (Whiteside, 

1970; Duigan, 1992).  

 
Table 5.5 Summary statistics of 39 Cladocera taxa or species groups counted in surface sediments of 
33 lakes (N = number of occurrence; N2 = Hill’s effective number of occurrence; max, mean and 
median refer to maximum, mean and median relative abundance (%); SD = standard deviation). 
 

Taxa N N2 Max Mean Median SD 
Acroperus harpae 33 19.91 5.80 1.87 1.25 1.52 
Alona affinis 33 18.38 18.24 4.10 3.44 3.65 
Alona costata 28 16.08 4.48 1.15 0.71 1.17 
Alona guttata/rectangula group 33 22.04 26.79 8.47 7.69 5.97 
Alona intermedia 21 5.88 14.53 1.18 0.63 2.54 
Alona quadrangularis 33 22.40 15.03 4.70 3.74 3.23 
Alona rustica 14 5.08 22.38 2.23 0.00 5.22 
Alonella excisa 27 14.23 9.79 2.25 0.90 2.58 
Alonella exigua 28 16.18 4.31 1.11 0.79 1.13 
Alonella nana 33 21.71 11.63 4.21 3.91 3.03 
Alonopsis elongata 8 6.39 1.39 0.15 0.00 0.30 
Anchistropus emarginatus 5 4.44 0.86 0.09 0.00 0.23 
Camptocercus rectirostris 23 13.59 2.78 0.59 0.40 0.70 
Chydorus piger 26 9.63 12.50 1.97 0.60 3.08 
Chydorus sphaericus 32 19.26 21.24 6.13 4.27 5.18 
Eurycercus lamellatus 26 15.14 4.42 1.00 0.63 1.08 
Graptoleberis testudinaria 31 18.06 9.03 2.35 1.65 2.14 
Leydigia acanthocercoides 2 1.98 0.70 0.04 0.00 0.15 
Leydigia leydigii 16 7.97 4.17 0.50 0.00 0.88 
Monospilus dispar 18 10.23 2.80 0.44 0.16 0.65 
Oxyurella tenuicaudis 4 2.45 2.49 0.13 0.00 0.47 
Phrixura rostrata 16 11.28 2.18 0.35 0.00 0.49 
Pleuroxus aduncus 7 6.42 0.88 0.12 0.00 0.24 
Pleuroxus denticulatus 1 1.00 0.41 0.01 0.00 0.07 
Pleuroxus laevis 17 10.51 2.00 0.35 0.06 0.52 
Pleuroxus sp. 4 3.22 0.88 0.06 0.00 0.18 
Pleuroxus trigonellus 22 14.15 2.65 0.60 0.41 0.70 
Pleuroxus truncatus 15 13.11 0.72 0.19 0.00 0.23 
Pleuroxus uncinatus 16 9.39 2.89 0.37 0.00 0.59 
Rhynchotalona falcata 8 5.78 2.10 0.22 0.00 0.49 
Bosmina longirostris 28 12.74 86.77 16.94 5.07 21.37 
Bosmina longispina 18 8.86 33.73 4.37 1.03 7.22 
Daphnia longispina group 32 22.00 77.35 29.71 26.67 21.01 
Daphnia pulex group 13 4.94 15.16 1.16 0.00 2.76 
Ilyocryptus silvaeducensis 4 3.12 0.67 0.05 0.00 0.16 
Leptodora kindti 10 5.78 3.47 0.34 0.00 0.74 
Latona setifera 1 1.00 0.44 0.01 0.00 0.07 
Sida crystalline 15 9.39 1.88 0.26 0.00 0.42 

. 
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Two Chydorus species are common in most of the 33 lakes but C. sphaericus is 

generally more abundant and common than C. piger. Despite its cosmopolitan 

distribution in different lake types, C. sphaericus often has the highest abundance in 

productive lakes with high alkalinity (Whiteside, 1970; Brodersen et al., 1998; de Eyto 

et al., 2003). It is a littoral dweller mainly associated with macrophytes and can occur in 

open water though its structure and adaption are not those of a planktonic animal 

(Freyer, 1968; de Eyto, 2000). This species has the highest abundance (around 20%) at 

Ballyallia [BAA] and is also abundant at Ballyteige [BAT], Ballybeg [BAB], Atedaun 

[ATE], Tullabrack [TUL] and Lisnahan [LIS] in abundances of above 10%. In 

comparison C. piger occurs most frequently on sand-rock substrates (Duigan & Kovach, 

1991) and is often found in lakes with low productivity and alkalinity (Whiteside, 1970; 

Duigan, 1992). It has high abundance of above 10% at Beaghcauneen [BEA] and 

Moanmore [MOA].  

 

Eurycercus lamellatus is a large-sized littoral cladoceran mainly associated with 

macrophytes (Duigan, 1992) and is often found in lakes with low productivity and 

alkalinity (Whiteside, 1970). This species occurred in abundances of less than 5% in 

this study and is most abundant at Ballyallia [BAA] and Kiltooris [KIL]. Graptoleberis 

testudinaria occurres frequently on macrophytes and was usually found in nutrient-rich 

waters (Duigan, 1992) but it has also occurred in less productive lakes (Brodersen et al., 

1998). It was abundant at sites like Kiltooris [KIL], Tullabrack [TUL], Ballyteige [BAT], 

Lisnahan [LIS] and Ballycar [BAC] in abundances of above 5%. Leydigia leydigii, a 

benthic-dwelling species, is typically found in nutrient-rich waters with high alkalinity 

(Whiteside, 1970; Duigan, 1992). It is not abundant in this study and was found at 

Lisnahan [LIS] and Tullabrack [TUL] in abundances of less than 5%. Six species of the 

littoral Pleuroxus genus were identified from the 33 sites with the numbers of 

occurrence ranging from one to 22. They also occurred in very low abundances of less 

than 3% in all samples.  
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Figure 5.3 Distribution of 31 common Cladocera taxa (maximum abundance at least 1%, 2 sites) along the TP (μg l-1) gradient of 33 lakes (taxa are listed in alphabetic 
sequence in either planktonic or littoral group; lakes are ordered according to their TP values with the lowest TP at the bottom). 
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5.2.3 Indirect Gradient Analysis of Cladocera Data 

 

Gradient analysis techniques depend on the species response to environmental gradients. 

Detrended Correspondence Analysis (DCA) was used to determine the gradient length 

of the Cladocera data before performing the analysis. The length of the first axis was 

1.83 SD units with rare species downweighted. This implied that the Cladocera taxa are 

generally behaving monotonically along the gradient and statistical techniques based on 

linear response model is more appropriate as the gradient length is less than 2 SD units 

(Birks, 1995). Therefore Principal Component Analysis (PCA) is used here to examine 

the structure of Cladocera data. Summary statistics of PCA on Cladocera data is shown 

in Table 5.6. The first five axes are statistically significant under the broken stick model. 

The first four axes explained 51.2% of the total variance of the Cladocera data in the 33-

lake training set and the first and second axes explained 18.2% and 13.3% respectively. 

PCA plots of species and site scores are displayed in Figure 5.4 and Figure 5.5. 

 
Table 5.6 Summary statistics of PCA on Cladocera data in the 33-lake Cladocera training set. 
 

PCA Axes 1 2 3 4 Total Variance 
Eigenvalue (λ) 0.182 0.133 0.101 0.095 1 
Variance (%) 18.2 13.3 10.1 9.6  
Cumulative Variance (%) 18.2 31.5 41.6 51.2  
Total Unconstrained Eigenvalue     1 

 

 

Selected Cladocera taxa with high species scores are listed along the first five axes in 

Table 5.7 to aid the interpretation of the PCA plot of species in Figure 5.4. More 

Cladocera taxa are located on the right side of the plot than the left side and also the 

lengths of vectors on the right side are generally longer than those on the left indicating 

stronger species turnover between sites. Most taxa close to the second axis are located 

in the lower part of the plot with long vectors. The first axis is positively correlated with 

Chydordiae taxa like Alonella excisa (0.735, species score), Camptocercus rectirostris 

(0.705) and Chydorus piger (0.700), and negatively related to planktonic taxa like 

Daphnia pulex group (-0.489), D. longispina group (-0.423) and Bosmina longirostris (-

0.356) (see Table 5.7 and Figure 5.4). Several planktonic taxa are also important 

components along other PCA axes, including Leptodora kindti (-0.751) in the third axis 

and D. longispina group (-0.696) and B. longirostris (0.407) in the fourth axis (Table 

5.7). Some important chydorid taxa for these axes are Chydorus Sphaericus, Alona 
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rustica, Monospilus dispar, Eurycercus lamellatus, Alonella exigua, Leydigia leydigii 

and Oxyurella tenuicaudis.  

 
Table 5.7 Species scores of selected Cladocera taxa along the first five PCA axes (taxa are ordered 
acording to their species cores) 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

In PCA plot sites which are located close to each other have similar species 

compositions and therefore surface sediment Cladocera assemblages at sites like 

Garvillaun [GAR] and Lisnahan [LIS] have quite similar structure. Comparison of the 

site (Figure 5.5) and species vectors (Figure 5.4) is helpful with disclosing the 

assemblage structure. Sites close to a particular species vector are composed of that 

species with a higher than average relative abundance, while sites located in the 

opposite direction only have low abundances of that species. Loughs Anascaul [ANS] 

and Tay [TAY] on the top right of Figure 5.5 are composed of taxa with relative 

abundances much higher than averages, like Alona rustica, Monospilus dispar and 

Rhynchotalona falcata sitting at the top right of Figure 5.4. Sites close to the origin of 

the plot like Bane [BAN] and Lene [LEN] are composed of species in average 

abundances in Figure 5.5.  

 

Code Taxon Score Code Taxon Score 
PCA axis 1 PCA axis 3 

ALOEXC Alonella excisa 0.735 ALOEXI Alonella exigua 0.397 
CAMREC Camptocercus rectirostris 0.705 ALORUS Alona rustica 0.330 
CHYPIG Chydorus piger 0.700 CHYPIG Chydorus piger 0.324 
ALONAN Alonella nana 0.688 PHRROS Phrixura rostrata -0.640 
ALOAFF Alona affinis 0.682 PLEUNC Pleuroxus uncinatus -0.693 
OXYTEN Oxyurella tenuicaudis -0.160 LEPKIN Leptodora kindti -0.751 
LEYLEY Leydigia leydigii -0.202    
BOSLOR Bosmina longirostris -0.356 PCA axis 4 
DAPLOG Daphnia longispina group -0.423 LEYLEY Leydigia leydigii 0.694 
DAPPUG Daphnia pulex group -0.489 BOSLOR Bosmina longirostris 0.407 
   GRATES Graptoleberis testudinaria 0.341 

PCA axis 2 PLELAE Pleuroxus laevis -0.428 
ALORUS Alona rustica 0.645 UNKCH Unknown Chydorid -0.439 
MONDIS Monospilus dispar 0.611 DAPLOG Daphnia longispina group -0.696 
RHYFAL Rhynchotalona falcata 0.465    
BOSLOS Bosmina longispina 0.351 PCA axis 5 
CHYPIG Chydorus piger 0.220 OXYTEN Oxyurella tenuicaudis 0.719 
PLELAE Pleuroxus laevis -0.512 UNKCH Unknown Chydorid 0.507 
ALOGR Alona guttata/rectangula group -0.549 LEYLEY Leydigia leydigii 0.407 
ACRHAR Acroperus harpae -0.549 ALOEXI Alonella exigua -0.327 
EURLAM Eurycercus lamellatus -0.609 GRATES Graptoleberis testudinaria -0.330 
CHYSPH Chydorus Sphaericus -0.737 CHYSPH Chydorus Sphaericus -0.353 
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Figure 5.4 PCA of Cladocera data in the 33-lake Cladocera training set (only species are shown). 
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Figure 5.5 PCA of Cladocera data in the 33-lake Cladocera training set (only sites are shown). 
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5.3 Classification of Cladocera Assemblages 

 

Surface sediment chydorid remains were first explored in conjunction with lake types 

by Whiteside (1970). Surface sediment Cladocera have also been used to examine 

Cladocera distribution and ecology (Duigan & Kovach, 1991; de Eyto & Irvine, 2002; 

de Eyto et al., 2003; Simpson, 2005a) and their relationship with macrophyte 

communities (Duigan & Kovach, 1994). Cladocera are used here to evaluate lake 

typology classification. This section aims to classify the Cladocera data from 33 lakes 

and compare the biological clustering with the Irish Lake Typology classes. Planktonic 

Cladocera are not included in this cluster analysis as they are liable to factors like fish 

predation (Brooks & Dodson, 1965; Jeppesen et al., 1996; Lampert & Sommer, 1997). 

Ward’s minimum variance method, a kind of agglomerative cluster analysis, was used to 

extract the cluster structure in the chydorid data for the 33 lakes and four clusters of 

sites are produced in Figure 5.6. 
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Figure 5.6 Dendrogram of surface sediment chydorid of 33 lakes using Ward’s minimum variance 
method (Clusters 1 to 4 are framed from the left to the right and see Appendix A on site names). 
 

 

A summary of the four chydorid clusters and related lake types are detailed in Table 5.8. 

Alona guttata/rectangula group and A. quadrangularis are predominant in the first two 

clusters. A. guttata and A. rectangula generally have distinct nutrient preferences, the 

former preferring nutrient-poor and acidic lakes and the latter preferring more 
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productive lakes (Brodersen et al., 1998). A. quadrangularis was often found in a 

variety of waterbodies in Ireland (Duigan, 1992). The subdominant taxa in Clusters 1 

and 2 represent two different habitats (see Table 5.8): Alona rustica, A. intermedia, 

Chydorus piger and Alonella excisa in Cluster 1 are indicative of an oligotrophic 

environment with low alkalinity; Alona affinis, A. nana and Phrixura rostrata in Cluster 

2 are indicative of mesotrophic environment with higher alkalinity.  

 
Table 5.8 Summary of chydorid clusters classified using Ward’s minimum method and related lake 
types (B = benthic habitat, P = macrophyte-associated and S = semi-planktonic). 
 

Chydorid 
cluster 

Cluster  
description Common taxa Habitat No. of 

lakes Lake types 

Alona guttata/rectangula B 
Alona quadrangularis B 
Alona rustica M 
Chydorus piger B 
Alonella excisa B 

1 
Acidophilous and  
oligotrophic taxa sub-
dominant 

Alona intermedia B 

6 

Mainly low 
alkalinity,  
Mainly 
deep,  
Small 

Alona guttata/rectangula B 
Alona quadrangularis B 
Alona affinis B 
Alonella nana B 
Acroperus harpae M 

2 
Mesotrophic taxa 
subdominant, no 
acidophilous taxa  

Phrixura rostrata B 

9 

Mainly high 
alkalinity,  
Mainly 
deep,  
Mainly large 

Chydorus sphaericus S & M 
Alona guttata/rectangula B 
Graptoleberis testudinaria M 
Alona affinis B 
Alonella excisa B 

3 

Alkaline and meso-
eutrophic taxa dominant 
with oligotrophic taxa 
subdominant (more 
macrophyte-associated 
taxa than Cluster 2) Eurycercus lamellatus M 

8 

High 
alkalinity,  
Deep and 
shallow,  
Mainly 
small 

Chydorus sphaericus S & M 
Alona guttata/rectangula B 
Alonella nana B 
Graptoleberis testudinaria M 
Alona quadrangularis B 

4 

Alkaline and meso-
eutrophic taxa dominant, 
with eutrophic taxa 
subdominant 

Leydigia leydigi B 

10 

Mainly 
medium 
alkalinity, 
Mainly 
shallow,  
Small 
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Figure 5.7 Comparison of four Ward’s minimum clusters of littoral Cladocera (chydorids) (Figure A) and 8 EPA lake typology classes (Figure B) of 33 lakes in the 
Cladocera training set (both classification are superimposed on PCA plots of chydorid data; three ovals indicate three groups of lakes with medium, high and low 
alkalinities respectively from the left to the right of Figure B; the arrows point to misclassified sites based on chydorid data).  
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Both Cluster 3 and Cluster 4 are dominated by Chydorus sphaericus. A high abundance 

of this species often occurs in lakes with high productivity and alkalinity (Brodersen et 

al., 1998) but it can be found in different lake types of Ireland (de Eyto & Irvine, 2002). 

Alona guttata/rectangula group and Graptoleberis testudinaria are also subdominant in 

both clusters and G. testudinaria was found to be abundant in nutrient-rich waters in 

Ireland (Duigan, 1992). The subdominant A. nana and A. quadrangularis in Cluster 4 

are generally found in more productive lakes than the subdominant A. excisa and A. 

affinis in Cluster 3 respectively (Whiteside, 1970; Duigan, 1992). The subdominance of 

the eutrophic and alkaline Leydigia leydigii in Cluster 4 also indicates a productive lake 

environment while Eurycercus lamellatus in Cluster 3 is generally not abundant in 

productive waters (Whiteside, 1970; Brodersen et al., 1998).  

 

A comparison of the four chydorid clusters with the eight lake typology classes is 

superimposed on PCA plots of chydorid data (see Figure 5.7). The four chydorid 

clusters generally display distinct clustering from each other with slight overlap 

between Clusters 3 and 4 (Figure 5.7 A). Three lake groups with low, high and medium 

alkalinities are outlined in three ovals and they also show good homogeneity within 

each group (see Figure 5.7 B). Lakes with low alkalinity (Lake Types 1 and 3) 

correspond well with the chydorid Cluster 1, which is reflected by the sub-dominance of 

acidophilous and oligotrophic taxa (see Table 5.8). Lakes with medium alkalinity (Lake 

Types 5 and 7) are also consistent with the chydorid Cluster 4 (compare plots A and B 

of Figure 5.7). The other lake group with high alkalinity (Lake Types 9-12) corresponds 

well with the chydorid Clusters 2 and 3. Therefore the lake groups with different 

alkalinity are well reflected by the chydorid clusters and they show good concordance in 

the clustering configuration. However, several sites with low or medium alkalinity (e.g. 

Tullabrack [TUL] and Drumanure [DRU] as labelled in Figure 5.7 B) are located within 

the high alkalinity lake group and they show strong dissimilarity between the chydorid 

assemblage and related lake type. In addition the lake groups outlined in plot B is not 

ordered along the alkalinity gradient. The lake group in the middle of the PCA plot has 

high alkalinity while the lake groups with low and medium alkalinities display the 

biggest discrepancy between the three lake groups. This may indicate that other 

physico-chemical variables exert significant influence on the chydorid assemblages of 

lakes with medium or high alkalinity. Noticeably the high abundance of eutrophic taxa 

(e.g., Chydorus sphaericus and Leydigia leydigii) in chydorid Cluster 4 may indicate 
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that nutrient level may account for the considerable dissimilarity between chydorid 

Clusters 4 and 1 in addition to alkalinity (see Table 5.8).  

 

5.4 Direct Gradient Analysis  

 

In the previous section PCA was used to investigate the internal pattern of surface 

sediment Cladocera assemblages of 33 lakes. This section aims to examine the 

relationship between Cladocera assemblages and environmental variables and also 

select the most significant variables influencing the Cladocera assemblages. 

Redundancy Analysis (RDA) is used to constrain the ordination analysis of Cladocera 

data with 17 environmental variables. 

 

5.4.1 Redundancy Analysis (RDA) 

 

Summary RDA information for the first four axes is shown in Table 5.9 and RDA 

biplots of species and sites are displayed in Figure 5.8 and Figure 5.9 respectively. The 

eigenvalues for the first four axes were 0.149, 0.115, 0.086 and 0.057 and each axis 

explained 14.9%, 11.5%, 8.6% and 5.7% of the total variance in the Cladocera data. The 

four axes explained 40.7% of total variance of Cladocera assemblages in comparison 

with 51.2% explained by the first four PCA axes of Cladocera data indicating that the 

measured variables captured a large portion of the total variance in the Cladocera data 

(see Table 5.9).  

 

Nutrient variables like chlorophyll-a and TP were strongly positively correlated with the 

first axis as indicated by their high scores of 0.648 and 0.556 (see Table 5.9). Alkalinity, 

pH and conductivity are strongly negatively correlated with the second axis and they 

have highly negative scores along this axis as shown in Table 5.9. Leydigia leydigii, 

Oxyurella tenuicaudis, Bosmina longirostris, Daphnia pulex group and D. longispina 

group are positively related with nutrient variables (see Figure 5.8) and they are 

generally in high abundances at sites close to the nutrient vectors including 

Cullaunyheeda [CUY], Garvillaun [GAR] and Dromore [DRO]. Alonella excisa, Alona 

intermedia and Camptocercus rectirostris are strongly negatively correlated (Figure 5.8) 

and they are abundant at sites Beaghcauneen [BEA], Anascaul [ANS] and Tay [TAY] 

(Figure 5.9). Several species like Alona rustica, Monospilus dispar, Rhynchotalona 
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alcate, Chydorus piger and Bosmina longispina are closely negatively correlated with 

both nutrient and acidity variables at sites like Ballybeg [BAB] and Morgans [MOR]. 

Pleuroxus trigonellus and C. sphaericus are positively linked with both conductivity 

and acidity gradients and they have high abundances at sites like Ballycar [BAC], 

Mooghna [MOO] and Ballyallia [BAA] (Figure 5.9). The high species-environment 

correlation scores also display strong association between species and the environment 

gradients for the first four RDA axes (see Table 5.9). 

 
Table 5.9 Summary of RDA of Cladocera data constrained by 17 environmental variables. 
 

RDA Axes 1 2 3 4 Total  
Variance 

Eigenvalue (λ) 0.149 0.115 0.086 0.057 1 
Species-Environment Correlation 0.925 0.938 0.954 0.842  
Cumulative Variance (%) 14.9 26.4 34.9 40.7  
Constrained Eigenvalue     0.611 
Total Unconstrained Eigenvalue     0.389 
      
Biplot scores for constraining variables      
Altitude 0.428 0.512 -0.126 0.423  
Catchment Area (CA) -0.512 0.024 0.607 -0.139  
Lake Area (LA) -0.315 0.223 0.616 -0.125  
CA.LA -0.372 -0.191 0.199 -0.063  
Maximum Depth -0.151 0.344 0.736 0.216  
Mean Depth 0.071 0.506 0.666 0.328  
Agriculture 0.257 -0.313 0.088 -0.084  
Forestry 0.419 0.050 0.253 -0.332  
Pasture 0.254 -0.679 0.022 0.115  
Peat -0.400 0.529 0.187 -0.268  
Urban 0.146 -0.230 0.077 -0.054  
Alkalinity 0.172 -0.698 0.421 -0.115  
Chlorophyll-a 0.648 -0.199 -0.366 -0.233  
Colour 0.142 0.287 -0.386 -0.091  
Conductivity -0.035 -0.583 0.410 -0.218  
pH 0.288 -0.604 0.349 -0.104  
TP 0.556 -0.330 -0.393 -0.062  
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Figure 5.8 RDA biplot of Cladocera taxa and 17 environmental variables for the 33-lake Cladocera 
training set. 
 

 

An obvious feature, when comparing the unconstrained PCA plot of species (Figure 5.4) 

and RDA plot of species and environmental variables (Figure 5.8), is that the 

configuration of Cladocera taxa remained very similar except the exchange of their 

positions along the second axis.  Species located to the left side of the second axis in 

PCA have moved to the right side in RDA and vice versa. Also when we compare the 

configuration of environmental variables in RDA with PCA plot of environmental 

variables in Figure 5.2, the main pattern remains the same except that most 

environmental variables have moved to the opposite side along the second axis (Figure 

5.2). This implies that the main pattern of Cladocera taxa revealed in PCA is captured in 

the RDA constrained by the measured environmental variables.  
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Figure 5.9 RDA biplot of sites and 17 environmental variables for the 33-lake Cladocera training 
set. 
 

 

5.4.2 Selecting Significant Environmental Variables 

 

This section aims to identify significant environmental variables influencing the 

Cladocera data among the 17 environmental variables. Partial RDA constrained by only 

one environment variable can provide information on the independent contribution of 

each variable to the total variance of the biological community. Summary information 

on partial RDAs of Cladocera data constrained by each of the 17 environmental 

variables is provided in Table 5.10 as well as the results of significance tests. Five 

variables, agriculture, catchment area/lake area ratio (CA:LA), colour, forestry and 

urban are not statistically significant at the P-level of 0.05 (see Table 5.10). Variance 

inflation factors (VIF) for the other 12 environmental variables (not shown here) are all 

below 20 indicating that each of the 12 variables have unique contribution to the total 
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variance. Altitude, catchment area, mean depth, pasture coverage, alkalinity, 

Chlorophyll-a and TP are statistically significant at the 99.9% level (see Table 5.10). 

Among the 17 environmental variables Chlorophyll-a makes the largest contribution 

(8.9%) to the total variance in the Cladocera data followed by alkalinity and TP (8.4% 

and 8.1% respectively).  

 
Table 5.10 Summary of partial RDAs constrained by only one of the 17 environmental variables 
(Ratio of eigenvalue of the first axis (λ1) to that of the second one (λ2) and significance levels are also 
shown; variables were ordered according to their λ1/λ2 ratios; variables significant at the P-value of 
0.001 are marked with * using 999 Monte Carlo permutation tests). 
 

Variable λ1 λ1/λ2 
% variance 
explained P-value 

Altitude 2.390 0.446 7.7 0.001* 
Catchment Area (CA) 2.41 0.491 7.8 < 0.001* 
Lake Area (LA) 2.01 0.372 6.5 0.006* 
CA:LA 1.28 0.250 4.1 0.166 
Maximum Depth 2.26 0.405 7.3 0.006 
Mean Depth 2.4 0.426 7.7 < 0.001* 
Agriculture 0.99 0.186 3.2 0.407 
Forestry 1.51 0.300 4.9 0.068 
Pasture 2.24 0.413 7.2 0.001* 
Peat 2.21 0.426 7.1 0.003 
Urban 0.75 0.137 2.4 0.734 
Alkalinity 2.6 0.471 8.4 < 0.001* 
Chlorophyll-a 2.75 0.608 8.9 < 0.001* 
Colour 1.46 0.260 4.7 0.078 
Conductivity 2.14 0.380 6.9 0.002 
pH 2.31 0.431 7.5 0.002 
TP 2.5 0.519 8.1 < 0.001* 

 

 

Forward selection can help select significant environmental variables together with 

evaluation of their ecological significance (see Chapter 3 on methods). The nutrient 

gradient (Chlorophyll-a and TP) proves to be the most significant variables influencing 

the Cladocera assemblage along the first axis of RDA. Chlorophyll-a reflects the 

combined influence of nutrient variables on algae biomass because of its close and 

complex relationship with nutrient variables, particular phosphorus and nitrogen (Dillon 

& Rigler, 1974; Wetzel, 2001). In this 33-lake Cladocera training set a close positive 

relationship occurs between TP and Chlorophyll-a (r = 0.751 (Pearson), P <0.001). 

However, Chlorophyll-a can also be strongly influenced by other factors like light 

availability (turbidity), resuspension, flushing and lake depth (Scheffer, 1998). This may 

account for a slightly bigger contribution of Chlorophyll-a (8.9%) to the total variance 

of Cladocera data than that of TP (8.1%) (see Table 5.10). Automatic forward selection 
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often omits those variables that are closely correlated with other variables even though 

they are ecologically significant. Therefore TP is manually selected as the first variable 

in the forward selection due to its ecological significance. Both manual and automatic 

forward selections were performed in the R program. Chlorophyll-a, maximum depth, 

alkalinity and altitude are the automatically selected variables and all four variables 

explained around 29.1% of the total variance in Cladocera data. The manually selected 

variables TP, maximum depth, alkalinity and catchment area explain 28.2% of the total 

variance. Both groups of variables account for nearly half of the total constrained 

variance (61.1%) by all 17 environmental variables in RDA (see Table 5.9). Both 

selections are acceptable as the minimum adequate models for this Cladocera training 

set in consideration of less than 1% difference in variance explained by both models.  

 

The forward selected variables have a significant relationship with the Cladocera 

assemblages and can be used for calibration analysis for transfer function development 

(ter Braak, 1987b). The ratios of λ1 to λ2 for all variables are displayed in Table 5.10. 

Only Chlorophyll-a and TP produced λ1:λ2 ratios of above 0.5. Transfer functions with 

relatively low λ1:λ2 ratios of TP have been constructed, e.g. 0.42-0.44 for diatom-based 

TP transfer functions in Canada (Hall & Smol, 1992; Reavie et al., 1995) and 0.48 

(Amsinck et al., 2005) and 0.72 (Lotter et al., 1998) for Cladocera-based TP models. TP 

in the diatom training set of the current study (see Chapter 4) has a λ1:λ2 ratio of 0.673 

and this is slightly higher than that (0.519) in this Cladocera training set. Cladocera-

based training set can produce lower λ1:λ2 ratios in constrained ordination analysis than 

diatom-based one as diatoms are the primary producers in lake systems and can be more 

sensitive to and affected by the lake conditions than cladocerans, the secondary 

producers in lakes. The variance explained by TP (8.1%) is comparable with other 

Cladocera training sets, e.g. 8.0% (Lotter et al., 1998), 5.8% (Amsinck et al., 2005). 

Therefore TP is viable for further calibration analysis for developing transfer functions 

although other factors also influence the Cladocera assemblages.  

 

5.5 Species Response Curves of Cladocera 

 
This section explores the species response curves to highlight the response of individual 

Cladocera taxa to the environment gradients. This method can also aid the 

understanding of species response in direct gradient analysis. In comparison with the 

diatom responses explored in many studies (e.g., Birks et al., 1990; Smilauer, 1995; 
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Anderson, 1997b), few such analyses have been conducted for Cladocera species 

(Davidson, 2005; Simpson, 2005a). Gaussian logit regression (GLR) method was 

applied to 20 common Cladocera taxa (maximum relative abundance above 3%, Hill’s 

number above 10). Their distributions along TP, Chlorophyll-a and alkalinity are shown 

in Figure 5.10, Figure 5.11 and Figure 5.12 respectively.  
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Figure 5.10 TP response curves of 20 common Cladocera taxa using Gaussian Logit Regression 
(GLR) (Horizontal axes represent TP (μg l-1) and vertical axes represent the relative abundances 
(%); ACRHAR Acroperus harpae, ALOAFF Alona affinis, ALOCOS Alona costata, ALOGR Alona 
guttata/rectangula group, ALOINT Alona intermedia, ALOQUA Alona quadrangularis, ALORUS 
Alona rustica, ALOEXC Alonella excisa, ALOEXI Alonella exigua, ALONAN Alonella nana, 
CHYPIG Chydorus piger, CHYSPH Chydorus Sphaericus, EURLAM Eurycercus lamellatus, 
GRATES Graptoleberis testudinaria, LEYLEY Leydigia leydigii, BOSLOR Bosmina longirostris, 
BOSLOS Bosmina longispina, DAPLOG Daphnia longispina group, DAPPUG Daphnia pulex group, 
LEPKIN Leptodora kindti). 
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Littoral species like Alona costata [ALOCOS], A. intermedia [ALOINT], Chydorus 

piger [CHYPIG], C. sphaericus [CHYSPH] and Leydigia leydigii [LEYLEY] display 

strong responses to TP and chlorophyll-a. A. intermedia, C. piger and Alonella excisa 

[ALOEXC] responded to an increase in both nutrient variables with monotonically 

decreased abundance and showed a strong preference for waters poor in nutrients 

(Figure 5.10 and Figure 5.11). In comparison species like C. sphaericus and A. costata 

showed unimodal responses along the nutrient gradient: the abundance increases with 

the elevated nutrient level, maximises at a certain point and then decreases with a higher 

nutrient level. Planktonic Bosmina longirostris [BOSLOR] and B. longispina [BOSLOS] 

also display strong responses along the TP and chlorophyll-a gradients. 
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Figure 5.11 Chlorophyll-a response curves of 20 common Cladocera taxa using Gaussian Logit 
Regression (GLR) (Horizontal axes represent Chlorophyll-a (μg l-1) and vertical axes represent the 
relative abundances (%); see Figure 5.10 for taxa names). 
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Acroperus harpae [ACRHAR], Alonella nana [ALONAN] and Eurycercus lamellatus 

[EURLAM] showed stronger responses to Chlorophyll-a than to TP. Abundances of A. 

harpae changed little with increased TP but showed a clear unimodal response to 

chlorophyll-a. A. nana and E. lamellatus display a truncated unimodal model along the 

chlorophyll-a gradient and a monotonical decline with increase in TP. In contrast 

Alonella exigua [ALOEXI] and Graptoleberis testudinaria [GRATES] display a 

unimodal response to TP but a monotonic decrease with an increase in chlorophyll-a 

(see Figure 5.10 and Figure 5.11). The species group [ALOGR] composed of Alona 

guttata and A. rectangula showed no clear response to TP but their abundance was 

relatively high in waters with low chlorophyll-a and decreased rapidly with increases in 

chlorophyll-a.  
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Figure 5.12 Alkalinity response curves of 20 common Cladocera taxa using Gaussian Logit 
Regression (GLR) (Horizontal axes represent alkalinity (mg l-1) and vertical axes represent the 
relative abundances (%); see Figure 5.10 for taxa names). 
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Several species like Alona rustica [ALORUS] and C. piger were found to be more 

sensitive to alkalinity than nutrient levels. Both species show strong preferences for low 

alkalinity and their abundances decrease abruptly with an increase in alkalinity (see 

Figure 5.12). L. leydigii displays unimodal responses to both nutrient and alkalinity 

gradients: its abundance increases with elevated nutrients and alkalinity but decreases 

after certain threshold levels of nutrients and alkalinity are passed. A similar trend also 

occurs with the planktonic Daphnia pulex group [DAPPUG] and Chydorus Sphaericus. 

The response models of D. longispina group [DAPLOG] along TP and chlorophyll-a 

are much less clear when compared with the unimodal response to alkalinity. Many 

littoral species like A. harpae, A. exigua and Alona quadrangularis [ALOQUA] show 

little sensitivity to alkalinity and therefore their response curves are more or less flat 

along the alkalinity gradient (see Figure 5.12).   

 

5.6 Discussion and Conclusions 

 

5.6.1 Representation of Sediment Cladocera 

 

The examination of similarity between sediment and live Cladocera assemblages can 

provide a strong basis for further exploration. Comparison of modern and surface 

sediment chydorid assemblages in six lakes revealed that relatively high species 

richness (in the range of 15-20) occurred in most of the surface sediment and all-year 

water samples of six Irish lakes. Surface sediments captured the main assemblage 

structure of live chydorids observed in water samples during the all-year investigation. 

In addition the more intensive sampling of water samples generally provided less 

species than the surface sediment sampling. This could be due to seasonal changes in 

live communities and spatial heterogeneity of chydorid habitats. Strong seasonal 

variations in chydorid species have been observed in the monthly and seasonal sampling 

of 29 Irish lakes (Irvine et al., 2001). Different littoral species can have distinct habitat 

preferences, e.g. vegetation, rock, sand and mud (Freyer, 1968; Hofmann, 1987b; Hann, 

1989). In contrast the surface sediments from the profoundal lake area may integrate the 

chydorids from different habitats of the whole lake. The exoskeleton fragments of 

littoral groups often occur abundantly in the deep-water sediments of lakes and 

therefore are highly representative of modern chydorid assemblages (Frey, 1960; Frey, 

1988a). Planktonic Daphina longispina group were dominant in most of the sediment 
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and water samples of the six lakes. This dominant species group and the common 

species Bosmina longirostris in water samples are also recovered from the surface 

sediment samples. This corresponds well with findings from other studies on the good 

agreement between surface sediment records and contemporary data (Rautio et al., 2000; 

Jeppesen et al., 2003). Apparent dissimilarity occurred between the sediment and water 

samples for the uncommon planktonic taxa. The poor preservation of the planktonic 

Cladocera remains in the sediments may be partly responsible for the lack of 

correspondence of rare taxa between the sediment and water samples (Korhola & Rautio, 

2001).  

 

5.6.2 Cladocera Distribution and Classification  

 

Thirty-nine Cladocera taxa and species groups were counted in this 33-lake Cladocera 

training set including 28 littoral species and one species group of chydords. This is 

comparable with contemporatory chydorid investigations of Irish waters. Thirty-one 

species of chydorids were found from 29 lakes of West and Central Ireland (de Eyto & 

Irvine, 2002) and 41 chydorid taxa were collected from 287 sampling sites across 

Ireland (Duigan & Kovach, 1991). This implies that the chydorid remains in the surface 

sediments of lakes can generally reflect the biogeography of the contemporary lake 

community. Acroperus harpae, Alona affinis, A. quadrangularis and Alonella nana were 

found to be the common taxa in Ireland during the two contemporary surveys and all of 

these species occurred in all of the 33 lakes in this study. Chydorus sphaericus is 

probably the most ubiquitous chydorid species in Ireland (Duigan & Kovach, 1991) and 

it was found in 32 of the 33 lakes in this study. It is abundant in lakes with high nutrient 

content and a high abundance of this species has indicated nutrient enrichment in 

Ireland (de Eyto & Irvine, 2002) and also other European ecoregions (e.g. Whiteside, 

1970; de Eyto et al., 2003). C. sphaericus is only absent in Lough Anascaul, the site 

with the lowest TP level (4 μg l-1) in the Cladocera training set. This lake is mainly 

surrounded with peatland, has low pH and alkalinity. Alona rustica has the highest 

abundance in this lake. Duigan (1992) found that A. rustica often occurs in lakes poor in 

nutrients or with high coverage of peatland. Rare species in the modern investigations 

are generally also uncommon in the surface sediments, including Leydigia Leydigii, 

Oxyurella tenuicaudis and Anchistropus emarginatus. However, several species like 

Alona intermedia, Alonella excisa and Graptoleberis testudinaria were infrequent in the 
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modern surveys (e.g., in 5-9 of the 29 lakes by de Eyto & Irvine (2002)) but they were 

collected in 21-31 of the 33 lakes in this study. This suggests that the use of chydorid 

assemblages in surface sediments can be advantageous over the contemporary surveys 

of live communities. The results of modern surveys are often limited by the sampling 

time and sites while chydorids from different habitats can be continuously accumulated 

in surface sediment of deep waters.  

 

Some disadvantages of surface sediment sampling compared to contemporary survey 

are apparent in the planktonic Cladocera assemblages. Six planktonic species and two 

species groups were collected from surface sediments the 33 lakes in this study. In 

comparison a 31-lake zooplankton survey (Irvine et al., 2001) collected 16 species of 

planktonic Cladocera in Ireland. The low species diversity in the sediments can result 

from that the majority of the planktonic Cladocera have poor preservation in sediments 

(Rautio et al., 2000). Postabdominal claws are the most abundant fragments of 

Daphniidae in surface sediments and only two Daphina species groups (D. longispina 

and D. pulex groups) can be identified for the Daphniidae family. In comparison six 

species of the Daphina genus and three species of the Ceriodaphina genus were 

identified for the Daphniidae family in the contemporary survey (Irvine et al., 2001). 

Poor preservation of planktonic Cladocera in lake sediments and their low taxonomic 

resolution are the main clogs for them to be reliable indication of the original live 

community. Predation by fishes can also selectively eliminate the planktonic taxa like 

large-sized Sida crystalline and Daphnia pulex group and therefore reduce their 

preservation in sediments (Lampert & Sommer, 1997; Jeppesen et al., 2002). The lack 

of fish density data in this study prevented the assessment of the predation impacts on 

planktonic Cladocera.  

 

Thirty-three lakes were classified into four clusters in terms of chydorid assemblages. 

All the four clusters conformed well to the physico-chemical lake typology classes of 

low, medium and high alkalinities. However, in the clusters dominated by Chydorus 

sphaericus, an indicator species of alkaline and meso-eutrophic lakes, the subdominant 

species were different with one group containing eutrophic species like Leydigia 

leydigii and the other including mesotrophic species like Alonella excisa. Differences in 

species nutrient preference may account for the inconsistence of the lake groups along 

the alkalinity gradient as the group with high alkalinity was placed in the middle of the 

groups with low and medium alkalinities in the PCA of chydorid data. The high 
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abundance of eutrophic species in lakes of medium alkalinity influenced its position in 

PCA away from the group with low alkalinity. This result was expected as lakes were 

selected along the TP gradient for this 33-lake training set and lakes with high TP were 

included. In summary the chydorid clustering is comparable with the lake typology 

classes mainly based on alkalinity. Therefore alkalinity had strong ecological response 

in the surface sediment chydorids. However, only 33 lakes were included in this study 

covering eight of the 13 Irish lake types and sampling additional sites with a full 

coverage of the Irish lake types would help fully assess the chydorid clustering and lake 

typology. In addition, the exclusion of degraded lakes can improve the assessment as 

chydorids are strongly influenced by the human disturbance, like nutrient enrichment. 

Biological responses in different lake of 709 Danish lakes along the TP gradient were 

evaluated and most biological indicators were found to respond strongly to the increase 

in TP for different lake types (Søndergaard et al., 2005). Therefore TP can potentially be 

used to categorize the lake types in implementing the Water Framework Directive.  

 

5.6.3 Cladocera-Environment Relationships 

 

The relatively short DCA gradient length of 1.8 SD for this 33-lake Cladocera training 

set is comparable with several Cladocera training sets, e.g. 0.9 for Cladocera in 83 lakes 

(Simpson, 2005a). 1.5 for littoral Cladocera in 69 lakes (Lotter et al., 1998) and 2.0 for 

littoral Cladocera in 32 lakes (Brodersen et al., 1998). This implies that the Cladocera 

structure is relatively different between sites and species turnover along underlying 

environmental gradients is relative strong. But this gradient length of less than 2 SD 

indicates that most species respond linearly to underlying ecological gradients (ter 

Braak, 1987b). Longer ecological gradients were found in other studies, e.g. 3.1 for 

zooplankton (mainly composed of Cladocera) in 36 lakes (Amsinck et al., 2005), 3.0 for 

Cladocera in 28 lakes (Sweetman & Smol, 2006). All the measured variables explained 

61.1% of the total variance of Cladocera data in constrained ordination and therefore the 

main pattern of community structure is captured. TP, Chlorophyll-a, alkalinity, lake 

depth, altitude and catchment area played important roles in explaining the total 

variance of the Cladocera data.  

 

TP was also found to be one of the most significant variables in determining the surface 

sediment Cladocera community in other studies (e.g. Brodersen et al., 1998; Bos & 
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Cumming, 2003). The strong correlation between TP and Chlorophyll-a in this study 

has long been observed in many studies (e.g. Dillon & Rigler, 1974; OECD, 1982). 

Phosphorus can influence the food quality (e.g. algae) of Cladocera and also directly 

affect the body growth of planktonic Cladocera (Sterner & Hessen, 1994; Urabe et al., 

1997). A change in nutrient levels can cause the loss of macrophyte habitat, increased 

fish predation and deficiency of oxygen at the sediment-water interface and all these can 

affect the Cladocera community directly (Jeppesen et al., 2001; Vadeboncouer et al., 

2003). In this study a large portion of the total variance in Cladocera data was explained 

by Chlorophyll-a and TP. Around seven to nine of the 20 common Cladocera taxa 

displayed unimodal or unimodal-like responses along the TP or Chlorophyll-a gradient. 

All these confirmed that the nutrient variables had significant influences on the 

Cladocera assemblages in this study. The importance of alkalinity (or other acidity 

variables) in Cladocera distribution was reported in many studies (e.g., Whiteside, 1970; 

Krause-Dellin & Steinberg, 1986; Uimonensimola & Tolonen, 1987). The acid-tolerant 

species Bosmina longirostris displayed a decreased abundance with increase in 

alkalinity and Alona rustica and Chydorus piger were typically acidophilous taxa in this 

study. However, only around five of the 20 common taxa displayed unimodal- or 

unimodal-like response along the alkalinity gradient and this implied that alkalinity had 

a weaker effect on the species than the nutrient variables. It was found that changes in 

species abundance and community structure may be indirectly affected by acidity 

(Nilssen & Sandoy, 1990). These changes can be directly influenced by acidity-related 

factors like predation and macrophyte habitat (Steinberg et al., 1988; Korhola & Rautio, 

2001).  

 

Three physical variables, altitude, lake depth and catchment area, were identified as 

important factors determining the Cladocera assemblages. The altitudinal distribution of 

Cladocera has been observed in modern surveys and the influence of altitude was often 

related to air temperature (e.g. Green, 1995). The strong temperature-Cladocera 

relationship has enabled the construction of two temperature transfer functions based on 

sediment Cladocera (Lotter et al., 1997; Korhola, 1999). However, temperature may not 

account for all the variation in Cladocera community explained by altitude. A decrease 

in pasture land coverage was found with the increase in altitude in this training set and 

therefore altitude may influence the Cladocera community through related change in 

land use type. The change in macrophyte cover and predator-prey relationships along an 

altitude gradient may also indirectly affect the Cladocera assemblages. Therefore more 
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work is needed before a clear altitude-Cladocera relationship can be built. As littoral 

Cladocera dwell mainly in the shallow part of the lake and planktonic Cladocera in the 

open water, it is not unexpected that a high abundance of chydorids can be found in 

shallow lakes and abundant planktonic Cladocera in deep lakes. Lake depth has been 

recognized as an important factor for surface sediment Cladocera distribution in several 

studies (Bos & Cumming, 2003; Simpson, 2005a; Sweetman & Smol, 2006). A 

quantitative inference model has developed for lake depth using the Cladocera 

assemblages (Korhola et al., 2000). However, transfer functions based on variables of 

intrinsic morphometric features of each lake like water depth can be problematic as the 

variable may not be appropriate for a space-for-time substitution in environmental 

reconstruction (Birks, 1998). Therefore lake depth is not considered for further 

development of transfer functions in this study. The influence of catchment area on 

Cladocera data may be exerted through the hydro-chemical variables and land cover 

variables. A large catchment area can provide more nutrients for a lake which is mainly 

surrounded by pasture lands or more humic materials if peatland is the main land cover 

type. In either way the catchment area can change the hydro-chemical conditions and 

therefore affect the Cladocera assemblages.   

 

5.6.4 Conclusions 

 

Cladocera (particularly Chydoridae) remains in surface sediments are a faithful 

indication of the modern community of the whole lake and can therefore be reliably 

used in tracking the history of lake environment. This can have important implications 

in water quality monitoring as the one-off surface sediment sampling can provide a 

more thorough investigation than multiple water sampling methods in recovering 

Cladocera community. Nutrient variables, alkalinity, altitude, catchment area and lake 

depth all had significant influences on the Cladocera assemblages. Strong ecological 

response of chydorids to alkalinity was also evident in the good agreement between the 

chydorid clusters and the physico-chemical lake typology classification. TP accounted 

for a large portion of the total variance of Cladocera data and both community structure 

and individual species displayed strong responses along the TP gradient. TP therefore 

can be used for constructing vigorous transfer functions for this Cladocera training set. 

In all Cladocera can serve as an independent and reliable indicator for TP like diatoms 

as illustrated in the previous chapter.  
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Chapter 6: Construction and Evaluation of TP Transfer Functions 
 

 

This chapter employs calibration methods in constructing TP inference models for 

diatoms and Cladocera in the Irish Ecoregion by quantifying the responses of both 

indicators along a TP gradient. A useful guide for deciding whether to use linear or 

unimodal-based modelling methods is based on the length of the first axis of Detrended 

Canonical Correspondence Analysis (DCCA) constrained by TP only. A short gradient 

length of less than 2 SD suggests that linear modelling methods are appropriate while a 

gradient length longer than 2 SD suggests unimodal-based methods. This criterion has 

been widely used in transfer function development (e.g. Philibert & Prairie, 2002; 

Miettinen, 2003; Werner & Smol, 2005). Unimodal-based methods were also found to 

perform well in the case of a short gradient length (<2 SD) by some studies (e.g.  Lotter 

et al., 1998; Dalton, 1999). It is recommended that the comparative studies between the 

linear and unimodal-based methods be taken while applying this criterion (Birks, 1995).  

 

The transformation of environment and ecological data can critically influence model 

performances (Birks, 1995), but selection of optimal transformation has been rarely 

considered in model development (e.g. Cumming & Smol, 1993; Koster et al., 2004). 

Both untransformed and log-transformed TP and untransformed and square root 

transformed ecological data will be explored in the model development. Also both jack-

knifing and bootstrapping are practiced for model cross-validation. Performances of all 

the data transformation and model cross-validation are assessed before an optimal 

format is selected for model development. In addition, the removal of outlier sites in the 

training set can also improve the model performance (e.g. Hall & Smol, 1992; Gasse et 

al., 1995). This chapter will present a wide range of transfer functions in detail as there 

has been insufficient presentation of transfer function performance results in model 

selection (H.J. Birks, personal communication). The constructed TP models are then 

evaluated through comparing model performances and TP optima of the same taxa with 

those from other published models. In addition diatom- and Cladocera-inferred TP for 

the same 29 sites are compared to assess both TP models. All the inference models are 

developed using the software C2 (version 1.4.2) (Juggins, 2003).  
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6.1 Diatom-based TP Transfer Functions 

 

The diatom training set is composed of 72 lakes across the Irish Ecoregion with a TP 

range of 0-142 μg l-1. Surface sediments of these sites consist of 233 common diatom 

taxa with maximum relative abundance of ≥ 1% and occurrence in at least three sites. 

As shown in Chapter 4, TP has been identified as one of the most significant 

environmental variables influencing the assemblage structure of surface sediment 

diatoms. A relatively high λ1/λ2 ratio (0.673) in a partial CCA constrained by TP 

indicates that TP is statistically powerful for the development of inference models. 

DCCA constrained by TP gives a long gradient length of 3.435 for the diatom data, 

indicating that non-linear modelling methods, Weighted Averaging (WA) and Weighted 

Averaging Partial Least Square (WA-PLS), are appropriate for developing TP transfer 

functions for the diatom training set.  

 

Data manipulation is also employed in model construction as it can affect the model 

performance depending on different calibration methods (Koster et al., 2004). Both log-

transformed and untransformed TP data are included in the WA and WA-PLS modelling 

and the inference models with transformed TP data show better performances (not 

illustrated here). Models based on log-transformed TP and either untransformed or 

transformed diatom data are used. Two cross-validation methods, jack-knifing and 

bootstrapping, were performed respectively for each model and jack-knifing generally 

showed a better performance than bootstrapping (n=1000). Therefore only models 

cross-validated with jack-knifing are reported here.  

 

6.1.1 Weighted Averaging (WA) Modelling 

 

A summary of 16 WA modelling results for the diatom training set is shown in Table 6.1. 

Eight WA models are produced for 72 lakes using classical or inverse deshrinking 

methods, with or without tolerance downweighted and based on untransformed or 

square root transformed diatom data as shown in Table 6.1. WA models based on the 

untransformed ecological data outperform the models based on square root transformed 

data when diatom species with wide tolerance (ecological amplitude) are downweighted 

(see Table 6.1). For example, the model WATOL_Cla (tolerance downweighted, classical 

deshrinking) based on raw diatom data has lower root mean square error (RMSE) and 
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RMSE of prediction (RMSEP) and higher coefficient of determination (r2)  and jack-

knifed r2 (r2
jack) than the same WATOL_Cla but based on the square-root transformed 

diatom data. The former model also has lower average and maximum bias (both 

apparent and jack-knifed). But when tolerance downweighting is not applied, the WA 

models based on square-root transformed data outperform the same WA models based 

on untransformed diatom data.  

 
Table 6.1 Summary of WA models for the diatom training set (TP data are log10(1+)-transformed; 
both raw and square-root transformed taxa data are used; WA_Inv = inverse deshrinking, WA_Cla = 
classical deshrinking, WATOL_Inv = tolerance downweighted and inverse deshrinking, WATOL_Cla = 
tolerance downweighted and classical deshrinking; jack-knifing is used for cross-validation; the 
optimal model is highlighted in bold).  
  

Sites Taxa 
data Model r2 RMSE r2

Jack RMSEP Average 
BiasJack 

Max. 
BiasJack 

72 raw WA_Inv 0.734 0.226 0.576 0.285 -0.009 0.800 
72 raw WA_Cla 0.734 0.263 0.584 0.317 -0.011 0.653 
72 raw WATOL_Inv 0.804 0.193 0.644 0.263 0.013 0.848 
72 raw WATOL_Cla 0.804 0.216 0.649 0.288 0.017 0.772 
72 sqrt WA_Inv 0.722 0.230 0.608 0.274 -0.003 0.795 
72 sqrt WA_Cla 0.722 0.271 0.616 0.305 -0.004 0.640 
72 sqrt WATOL_Inv 0.798 0.196 0.621 0.272 0.018 0.868 
72 sqrt WATOL_Cla 0.798 0.220 0.624 0.301 0.022 0.797 
70 raw WA_Inv 0.775 0.197 0.646 0.248 -0.008 0.451 
70 raw WA_Cla 0.775 0.224 0.650 0.268 -0.010 0.308 
70 raw WATOL_Inv 0.866 0.152 0.743 0.213 0.018 0.411 
70 raw WATOL_Cla 0.866 0.163 0.745 0.224 0.021 0.328 
70 sqrt WA_Inv 0.772 0.199 0.682 0.235 -0.003 0.511 
70 sqrt WA_Cla 0.772 0.226 0.686 0.253 -0.003 0.384 
70 sqrt WATOL_Inv 0.866 0.152 0.720 0.223 0.026 0.529 
70 sqrt WATOL_Cla 0.866 0.164 0.721 0.236 0.030 0.467 

 

 

Among the eight WA models, model WATOL_Inv based on untransformed diatom data 

gives the highest r2 (0.804) with the lowest RMSE (0.193). These measures of model 

performance (e.g. r2, RMSE) are generally over-optimistic due to the lack of 

independent test of model performance, therefore jack-knifed measures are used to 

produce more realistic models through cross-validation. The model WATOL_Inv based on 

untransformed data still shows a good performance because of its lowest RMSEP 

(0.263), second highest r2
jack (0.644), a relatively low jack-knifed average bias (0.013) 

but it still has a second highest jack-knifed maximum bias (0.848). None of the eight 

WA models consistently give the best performance when all the measures of model 

performances are considered. However, the WATOL_Inv based on raw diatom data gives 

the best performance if maximum bias is ignored.  
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Figure 6.1 Relationship between observed TP and predicted TP and TP residuals in a jack-knifed 
WATOL_Inv model of 72 lakes (two outlier lakes are labelled with site codes; TP are log10-transformed 
and diatom data are untransformed).  
 

 

Figure 6.1 shows the observed and WATOL_Inv predicted TP values (log-transformed) as 

well as the TP residual values (observed minus predicted TP). A positive relationship 

between observed and predicted TP values of the model WATOL_Inv is apparent. It is also 

evidenced in the TP residuals that predicted TP is underestimated at the lower end of TP 

gradient and overestimated at the higher end of the TP gradient. TP residuals also show 

the highest discrepancy between observed and predicted TP values for two sites (Veagh 

[VEA] and Caragh [CAR]) as labeled in Figure 6.1. Accordingly sites VEA and CAR 

are removed as outliers and WA inference models based on 70 lakes are developed and 

summarized in Table 6.1.  

 

In comparison with the WA models based on square root transformed ecological data, 

the WA models based on untransformed data from 70 lakes perform better when 

tolerance is downweighted. However, among the eight WA models of 70 lakes, the 

WATOL_Inv based on untransformed diatom data performs the best with the lowest 

RMSEP (0.213) and RMSE (0.152), highest r2 (0.866) and almost highest r2
jack (0.743, 

second to 0.745 of WA TOL_Cla) and relatively low bias values (see Table 6.1). Also after 

two outlier sites are removed, the performance of WATOL_Inv of 70 lakes is clearly 

improved in comparison with the full WATOL_Inv model, e.g. the RMSEP is reduced from 

0.263 to 0.213, and the r2
jack value is raised from 0.644 to 0.743. Therefore the 

WATOL_Inv based on the untransformed diatom data of 70 lakes shows the best 
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performance among all the 16 WA models in consideration of the coefficients of 

determination (r2) and their associated errors with a moderate maximum bias. 

 

6.1.2 Weighted Averaging Partial Least Square (WA-PLS) Modelling 

 

WA-PLS is another unimodal modelling method for developing transfer functions and 

differs from WA in that it exploits the residual structure in species data to optimise the 

species parameters in transfer functions (see Section 3.4.3 in methods). Performances of 

twenty variations of the WA-PLS model are summarised in Table 6.2. The measures of 

model performance with cross-validation, e.g. the jack-knifed coefficient of correlation 

(r2) and RMSEP, are used for selecting the optimum WA-PLS model (Birks, 1998).  

 
Table 6.2 Summary of the first five component WA-PLS models for the diatom training set (TP data 
are log10(1+)-transformed; both raw and square-root transformed taxa data are used; jack-knifing 
is used for cross-validation; the optimal model is highlighted in bold).  
 

Sites Taxa 
data Component r2 RMSE r2

Jack RMSEP Average 
BiasJack 

Max. 
BiasJack 

72 raw 1 0.734 0.226 0.576 0.285 -0.010 0.800 
72 raw 2 0.878 0.152 0.544 0.307 -0.009 0.813 
72 raw 3 0.932 0.114 0.558 0.307 -0.015 0.737 
72 raw 4 0.955 0.092 0.580 0.301 -0.011 0.749 
72 raw 5 0.975 0.069 0.575 0.308 0.007 0.711 
72 sqrt 1 0.722 0.230 0.608 0.274 -0.008 0.793 
72 sqrt 2 0.871 0.157 0.581 0.288 -0.010 0.884 
72 sqrt 3 0.934 0.112 0.574 0.293 -0.012 0.775 
72 sqrt 4 0.975 0.069 0.585 0.291 -0.012 0.754 
72 sqrt 5 0.990 0.043 0.592 0.291 -0.006 0.791 
70 raw 1 0.775 0.197 0.646 0.248 -0.009 0.451 
70 raw 2 0.895 0.135 0.617 0.267 -0.007 0.526 
70 raw 3 0.935 0.106 0.631 0.267 -0.012 0.479 
70 raw 4 0.958 0.085 0.650 0.264 -0.008 0.450 
70 raw 5 0.974 0.067 0.636 0.277 0.009 0.478 
70 sqrt 1 0.772 0.199 0.682 0.235 -0.005 0.504 
70 sqrt 2 0.892 0.137 0.652 0.248 -0.007 0.538 
70 sqrt 3 0.948 0.095 0.649 0.251 -0.008 0.536 
70 sqrt 4 0.980 0.058 0.673 0.243 -0.007 0.496 
70 sqrt 5 0.992 0.038 0.674 0.245 -0.003 0.451 

 

 

Two WA-PLS models based on both untransformed and square-root transformed diatom 

data from 72 lakes are developed and the first five components of both models are 

shown in Table 6.2. The first components of both models generally outperform other 

components with lowest RMSEP and highest or almost highest jack-knifed coefficients 
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of correlation (r2
jack) among all the five components. For example, the first component 

of WA-PLS model based on raw diatom data produces the lowest RMSEP of 0.285 and 

a high r2
jack of 0.576 (second to 0.580 of the fourth component of the same model). In 

comparison with the WA-PLS model based on raw diatom data of 72 lakes, the model 

based on square root transformed diatom data outperforms with a higher RMSEP and 

r2
jack (see Table 6.2). The first component WA-PLS model (WA-PLS-1) with 

transformed diatom data produces a RMSEP of 0.274 and r2
jack of 0.608. The scatter 

plots between observed TP values and predicted TP and TP residuals for this model are 

shown in Figure 6.2. The same trend of predicted TP values along the TP gradient 

observed in the WA TOL_Inv also occurs in the WA-PLS-1 model, with overestimation at 

the low end of the TP gradient and underestimation at the upper end. VEA and CAR are 

again identified as outliers similar to the model WA TOL_Inv (see Figure 6.1).  Therefore, 

these two sites are removed and the WA-PLS models were re-run with 70 lakes (Table 

6.2). After the removal of two sites the model performance is improved in comparison 

with the 72-lake model. The WA-PLS models based on square-root transformed diatom 

data performs best and the first component performs better than the other four 

components. Therefore, the optimal WA-PLS model is based on the squared root 

transformed diatom data of 70 lakes and its first component produces the lowest value 

of RMSEP (0.235) and the highest r2
jack (0.682).  The WA-PLS-1 predicted TP, TP 

residuals and observed values for 70 lakes are shown in Figure 6.2. A good relationship 

between observed and WA-PLS-1 predicted TP is apparent. In addition predicted TP is 

clearly underestimated at the lower end of TP gradient and overestimated at the higher 

end of the TP gradient. 
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Figure 6.2 Relationship between observed TP and predicted TP and TP residuals of WA-PLS-1 
model of 70 lakes (TP are log10-transformed and diatom data are square root transformed). 
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6.1.3 Model Comparison and Evaluation  

 

Two unimodal modelling methods, WA and WA-PLS, have been applied based on both 

untransformed and transformed diatom data and cross-validated with jack-knifing in the 

previous sections. The removal of two outlier sites (CAR and VEA) from the full 72-

lake diatom training set improves the performance of both WA and WA-PLS models. In 

WA modelling of 70 lakes, the model WATOL_Inv based on untransformed diatom data 

gives the best performance with a RMSEP of 0.213 and r2
jack of 0.743 (see Table 6.1). 

The first component of the WA-PLS model based on square root transformed diatom 

data from 70 lakes outperforms the other components of the same model with a RMSEP 

of 0.235 and r2
jack of 0.682 (see Table 6.2). Therefore the optimum unimodal model for 

the 70-lake diatom training set is the WATOL_Inv based on the untransformed diatom data 

as it outperforms the first component of WA-PLS based on the transformed species data 

in reducing the RMSEP by 0.022 and improving r2
jack by 0.061 (compare Table 6.1 and 

Table 6.2). This model also has relatively low bias.  

 

Twenty-five diatom TP training sets including the current study and their performances 

are summarised in Table 6.3. The optimum WA model for the Irish Ecoregion is 

comparable with most other diatom TP transfer functions in terms of lake size, TP range 

and model performances. Only five of the 25 training sets have training set lakes (see 

Table 6.3). A Finish TP transfer function based on 78 lakes with a TP gradient (3-125 μg 

l-1) has a performance with r2
jack of 0.73 and RMSEP of 0.19 (Miettinen, 2003). Several 

TP transfer functions based on a smaller number of lakes or a shorter TP gradient often 

display weaker predictability and/or higher prediction error, including the training set 

composed of 59 lakes from British Columbia of Canada with a TP range of 6-42 μg l-1 

(Reavie et al., 1995), an Alaskan training set of 51 lakes with a TP gradient of 3-83 μg l-

1 (Gregory-Eaves et al., 1999), a 43-lake Swedish transfer function (Bradshaw & 

Anderson, 2001) and an Australian training set composed of 33 lakes and reservoirs 

(Tibby, 2004). In all the performance of the inference model developed for 70 lakes 

from the Irish Ecoregion shows strong predictability and low prediction error and is 

comparable with most other TP transfer functions based on diatoms.   
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Table 6.3 Summary of diatom-TP transfer functions and their performances (each training set is ordered in the name of its country and region; - = no data). 

Study Area Sites Range of 
TP (μg/l) TP Data 

TP data 
Transfor-

mation 

 
Model r2 RMSE r2 

jack/boot RMSEP References 

Europe (Northwest) 152 5-1190 Annual mean log WA-PLS 2 0.91 0.15 0.81 0.21 (Bennion et al., 1996) 
Europe (Central) 86 2-266 Not mentioned log WATol 0.57 0.32 - 0.35 (Wunsam & Schmidt, 1995) 
Denmark 29 24-1145 Annual mean log WA-PLS 2 0.86 - 0.37 0.28 (Bradshaw et al., 2002) 
England (Southeast) 30 25-646 Annual mean log WA 0.79 0.16 - 0.28 (Bennion, 1994) 
Finland (south) 61 3-89 Autumn log WA-PLS - - 0.76 0.16 (Kauppila et al., 2002) 
Finland (southeast) 78 3-125 Autumn log WA 0.81 0.16 0.73 0.19 (Miettinen, 2003) 
Ireland 70 4-142 Annual mean Log(1+) WATol 0.87 0.15 0.74 0.21 Current study 
Northern Ireland 49 15-800 Annual mean log WA 0.80 0.73 0.19 0.24 (Anderson & Rippey, 1994) 
Northern Ireland 43 25-800 Annual mean log WA 0.75 0.17 - - (Anderson et al., 1993) 
Sweden 43 7-369 Annual mean log WATol 0.79 0.15 0.36 0.27 (Bradshaw & Anderson, 2001) 
Switzerland (Alps) 68 6-520 Early spring log WA-PLS 2 0.93 0.11 0.79 0.19 (Lotter et al., 1998) 
Canada (BC) 59 6-42 Spring-autumn none WA 0.73 - 0.46 0.48 (Reavie et al., 1995) 
Canada (BC) 46 5-28 May-October ln (1+) WA 0.73 0.21 - - (Hall & Smol, 1992) 
Canada (Ontario) 54 3-24 Spring none WA 0.62 3.50 - - (Hall & Smol, 1996) 
Canada (Ontario) 64 4-54 Spring none WA 0.64 7.00 0.47 10.00 (Reavie & Smol, 2001) 
Canada (Ontario) 30 6-49 Spring log WA 0.57 - 0.44 0.20 (Werner & Smol, 2005) 
Canada (Quebec) 76 9-1687 Mainly summer none WA-PLS 2 0.89 - 0.51 3.20 (Philibert & Prairie, 2002) 
Canada (Quebec) 41 3-30 June-August none WA-PLS 0.89 - - 2.37 (Enache & Prairie, 2002) 
USA (Alaska) 51 3-83 Summer log WA 0.77 0.16 0.52 0.23 (Gregory-Eaves et al., 1999) 
USA (Michigan) 41 1-51 July ln (1+) WA 0.73 0.41 - - (Fritz et al., 1993) 
USA (Minnesota) 55 7-139 May-October log WA 0.68 0.19 - 0.25 (Ramstack et al., 2003) 
USA (Northeast) 257 3-48 Not mentioned ln WA 0.55 - - 0.79 (Dixit et al., 1999) 
USA (Northeast) 64 1-155 Annual mean ln (1+) WA 0.66 0.62 - - (Dixit & Smol, 1994) 
Australia (Southeast) 33 7-451 Annual mean log WA-PLS 2 0.94 0.11 0.69 0.25 (Tibby, 2004) 
China (East) 43 30-515 Not mentioned log WA - - 0.82 0.12 (Dong et al., 2006) 
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A TP transfer function based on diatoms from Northern Ireland was developed by 

Anderson et al. (1993). The model is composed of 49 lakes from Northern Ireland with 

a TP range of 15-800 μg l-1 and it also has high predictability with an r2
boot of 0.73 and 

an RMSEP of 0.244 (Anderson & Rippey, 1994). The optimum WA model developed in 

the current study outperforms the transfer function from North Ireland with a stronger 

predictability (the cross-validated r2 improved by 0.013) and a lower prediction error 

(RMSEP reduced by 0.031). However, the TP gradient covered is much shorter but 

more lakes are included in the current study than the one from Northern Ireland.  

 

6.1.4 TP Optima of Diatom Taxa 

 

TP optima and tolerance of 233 common diatom taxa inferred by the WA model selected 

are listed in Appendix G. TP optima values for the 233 common taxa are all below 100 

μg l-1 and only 19 taxa have TP optima of above 40 μg l-1. Furthermore, nearly half (112 

taxa) of the common taxa, have TP optima of less than 10 μg l-1 (see Appendix G).  All 

these features reflect the predominance of lakes located at the low end of TP gradient in 

this training set. The estimated TP tolerance for most taxa lies within 3 μg l-1 and only 

19 taxa have TP tolerances greater than 3 μg l-1, indicating relatively narrow ecological 

amplitudes for most taxa in the study lakes. The tolerances of diatom taxa in this study 

are relatively small in comparison with other studies with reports on tolerances of 

diatom taxa. Nearly half of the 164 diatom taxa in a Canadian training set have TP 

tolerance of above 5 μg l-1 though it has a short TP gradient of 3-30 μg l-1 (Enache & 

Prairie, 2002). 

 

An epilithic algae investigation of 32 Irish lakes by DeNicola et al. (2004) with a TP 

gradient of 3.6-90.5 μg l-1 also provided information on TP optima for some diatom taxa. 

TP optima of some common taxa in the Irish Eco-region indicated are shown in Table 

6.4 as well as those from other Ecoregions. Eight of the ten diatom taxa in both studies 

with TP optima values are mainly benthic or littoral dwellers in lakes, including 

Fragilaria pinnata, F. construens f. venter and Gomphonema parvulum. Their TP 

optima generally show good correspondence with each other and also a similar 

sequence of species succession along the TP gradient is evident in both studies, e.g. 13.3 

and 19.4 μg l-1 for Tabellaria flocculosa, 23.1 and 23.6 μg l-1 for F. pinnata and 25.6 and 

25.3 μg l-1 for F. capucina var. gracilis respectively. However, Aulacoseira ambigua and 
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Asterionella formosa, display relative big divergence in both studies with TP optima of 

22.7 and 36.0 μg l-1 for both species in the current study in comparison with 50.3 and 

21.9 μg l-1 respectively in the study by DeNicola et al. (2004). Both species are 

commonly found in open waters and their dissimilarity in TP optima could be due to the 

fact that the epilithic algae were sampled only once in the littoral area at a water depth 

of 0.5-1 m and planktonic taxa are not well represented (DeNicola et al., 2004).  

 
Table 6.4 Comparison of WA-inferred TP (μg l-1) optima of selected diatom taxa of the current 
study (Ireland1) with those from the same Irish Ecoregion (Ireland2) (DeNicola et al., 2004), 
England (Bennion, 1994), Sweden (Bradshaw & Anderson, 2001), Finland (Miettinen, 2003) and the 
Alps  (Wunsam & Schmidt, 1995) (Taxa are listed according to their TP optima in Ireland1; - = no 
available data). 
 

Taxon Ireland1 Ireland2 England Sweden Finland the Alps 
Cyclotella comensis 7.9 - - 26 - 10.4 
Fragilaria brevistriata 8.9 - 94.8 - 28.0 13.4 
Cyclotella radiosa 10.9 - 70.8 - 12.5 17.8 
Cyclotella pseudostelligera 12.7 - 158.1 55 18.5 - 
Tabellaria flocculosa 13.3 19.4 50.2 - 17.5 - 
Achnanthes minutissima 14.6 21.4 66.1 34 15.8 13.3 
Stephanodiscus alpinus 16.4 - - 46 11.2 10.4 
Aulacoseira ambigua 22.7 50.3 95.7 57 23.4 19.0 
Fragilaria pinnata 23.1 23.6 93.8 - 19.1 20.6 
Navicula radiosa 23.4 - 60.0 - 20.0 - 
Fragilaria construens f. venter 24.9 21.9 71.1 - 21.4 17.2 
Fragilaria capucina var. gracilis 25.6 25.3 - - 21.0 16.4 
Cocconeis placentula 27.3 20.9 89.9 - 14.3 - 
Aulacoseira subarctica 29.1 - - 72 23.8/17.1 - 
Cyclostephanos dubius 29.3 - 214.8 64 29.1 - 
Aulacoseira islandica 33.1 - - 44 16.0 13.2 
Nitzschia palea 33.9 23.0 129.1 - 26.3 12.8 
Gomphonema parvulum 34.9 29.9 138.4 - 22.6 - 
Aulacoseira granulata 35.1 - - 51 30.6 52.4 
Asterionella formosa 36.0 21.9 152.8 61 16.4 - 
Stephanodiscus hantzschii 43.1 - 288.4 74 51.5 111.2 
Diatoma tenuis 43.7 - - 66 29.0 - 
Stephanodiscus parvus 46.7 - 200.9 125 - 26.8 

 

 

Five species with TP optima published from North Ireland (Anderson, 1997b) show 

higher TP optima values than those in the current study but to a varying degree: slightly 

higher for Cyclotella radiosa and A. subarctica with TP optima at the low end of TP 

gradient and much more higher for taxa with high TP optima, like Stephanodiscus 

parvus and S. hantzschii. This is a result of the high numbers of eutrophic and 
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hypertrophic lakes and much longer TP gradient of 15-800 μg l-1 in the North Irish 

training set, e.g. more than half of the 54 lakes have TP values of above 50 μg l-1. In 

contrast only 13 of 72 lakes in the current study have TP values of above 50 μg l-1. 

 

A comparison of TP optima of some common diatom taxa from the Irish Ecoregion with 

those from the European Ecoregions is also shown in Table 6.4. As expected diatom 

taxa from the Irish Ecoregion generally display a similar sequence of TP preferences as 

those from other European Ecoregions, e.g. Cyclotella comensis and C. radiosa 

preferring nutrient-poor waters, Aulacoseira ambigua and Fragilaria construens f. 

venter favouring more nutrient-enriched lakes and Stephanodiscus hantzschii and S. 

parvus as typical taxa in eutrophic and hypertrophic waters (see Table 6.4). However, 

some taxa display very variable TP preferences among training sets and European 

Ecoregions: C. pseudostelligera prefers lower end of TP gradient in Ireland and Finland 

but are found at the higher end in England. An obvious feature in Table 6.4 is the low 

TP optima values for diatom taxa from Ireland, Finland and the Alps, in comparison 

with those from England and to a less degree Sweden. For the same taxa from Southeast 

England TP optimum is generally 3-7 times higher than Ireland, like the relative ratios 

of 4.2 (152.8 μg l-1 (England) /36.0 μg l-1 (Ireland)) for Asterionella formosa and 6.7 

(288.4/43.1) for Stephanodiscus hantzschii. Certain species from England have TP 

optima more than ten times higher than those from Ireland, like Cyclotella 

meneghiniana, C. pseudostelligera and Fragilaria brevistriata. This is due to the much 

longer TP gradient (25-646 μg l-1) in the English training set (see Table 6.3). This 

English training set is mainly composed of shallow lakes and ponds (< 3m depth) with a 

limited range of lake types from a small geographical area in comparison to the Irish 

Ecoregion training set. Diatom species from Sweden also shows higher TP optima, 

approximately 1.3-3 times those from Ireland.  

 

6.2 Cladocera-based TP Transfer Functions 

 

The Cladocera training set consists of 31 common taxa (maximum relative abundance 

of ≥ 1% and in at least two sites) in the surface sediments of 33 Irish lakes with a TP 

range of 4-142.3 μg l-1. DCCA constrained by TP only gives a gradient length of 0.886 

for the Cladocera training set, indicating that a linear-based method is appropriate for 

developing a Cladocera-based TP transfer function (Birks, 1995). However, non-linear 
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methods are also recommended for model development as they can still outperform the 

linear method for compositional data with short gradients (ter Braak et al., 1993; Birks, 

1998)guangjie.chen. Therefore Partial Least Squares (PLS), WA-PLS and WA are all 

practiced for model comparison. Log10-transformed TP and square root transformed 

Cladocera data are used in all three models as they provide models with better 

performances than those based on untransformed data (the latter are not illustrated here). 

Jack-knifing is used in all models for cross-validation. Summaries of the 28 variations 

of TP inference models are shown in Table 6.5. 

 
Table 6.5 Summary of Cladocera-based TP inference models (TP and Cladocera data are log10- and 
square root transformed respectively in all models; jack-knifing is used for cross-validation; the 
optimal model is highlighted in bold). 
 

Sites Model RMSE r2 r2
Jack RMSEP Average 

BiasJack 
Max. 

BiasJack 
33 PLS 1 0.308 0.409 0.182 0.369 0.001 0.776 
33 PLS 2 0.268 0.554 0.223 0.364 0.004 0.779 
33 PLS 3 0.236 0.655 0.274 0.353 -0.001 0.866 
33 PLS 4 0.190 0.775 0.286 0.353 -0.008 0.767 
33 PLS 5 0.168 0.824 0.355 0.332 -0.007 0.728 
31 PLS 1 0.268 0.541 0.310 0.331 0.003 0.694 
31 PLS 2 0.198 0.750 0.477 0.288 0.010 0.416 
31 PLS 3 0.173 0.808 0.551 0.267 0.004 0.487 
31 PLS 4 0.139 0.876 0.569 0.264 0.006 0.419 
31 PLS 5 0.121 0.907 0.601 0.252 0.003 0.414 
33 WA-PLS 1 0.254 0.601 0.375 0.318 -0.006 0.654 
33 WA-PLS 2 0.211 0.722 0.384 0.321 -0.016 0.584 
33 WA-PLS 3 0.160 0.842 0.384 0.331 -0.024 0.435 
33 WA-PLS 4 0.147 0.866 0.398 0.327 -0.027 0.485 
33 WA-PLS 5 0.136 0.885 0.460 0.306 -0.020 0.480 
31 WA-PLS 1 0.186 0.780 0.620 0.244 -0.001 0.369 
31 WA-PLS 2 0.131 0.891 0.729 0.206 -0.001 0.325 
31 WA-PLS 3 0.104 0.931 0.742 0.201 0.004 0.288 
31 WA-PLS 4 0.094 0.943 0.742 0.201 0.002 0.264 
31 WA-PLS 5 0.083 0.956 0.736 0.205 0.005 0.229 
33 WA_Inv 0.254 0.601 0.374 0.318 0.003 0.665 
33 WA_Cla 0.327 0.601 0.424 0.354 0.003 0.595 
33 WATOL_Inv 0.227 0.679 0.434 0.305 -0.011 0.466 
33 WATOL_Cla 0.276 0.679 0.448 0.358 -0.024 0.326 
31 WA_Inv 0.185 0.780 0.622 0.244 0.007 0.362 
31 WA_Cla 0.210 0.780 0.642 0.243 0.007 0.256 
31 WATOL_Inv 0.161 0.835 0.687 0.221 -0.007 0.328 
31 WATOL_Cla 0.176 0.835 0.676 0.239 -0.015 0.247 

 

 

6.2.1 Partial Least Square (PLS) Modelling 
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Performances of the first five components of the PLS models based on square-root 

transformed Cladocera data from 33 lakes are listed in Table 6.5. The performance of 

each PLS model is based on cross-validated RMSE and r2 (ter Braak & Juggins, 1993; 

Birks, 1995). A practical method to select the optimal number of components in a PLS 

model is a 5% or more reduction in RMSEP with each additional component (Birks, 

1995). The addition of the second component of the PLS model based on all the 33 

lakes shows a little improvement in the RMSEP in comparison with the first component 

and therefore PLS 1 (first component) model is selected as the optima PLS model for 

the 33 lakes (see Table 6.5). However, the performance of PLS 1 model is relatively 

poor with a moderate RMSEP of 0.396 and a low r2
jack of 0.182 and the removal of two 

outlier sites (Sillan [SIL] and Lisnahan [LIS]) with high TP residuals (not shown here) 

help to improve the model performance evidently (Table 6.5). The optima PLS model 

based on 31 lakes is the third component (PLS 3) with an RMSEP of 0.267 and r2
jack of 

0.551 as the fourth component gives a less than 5% reduction of RMSEP than the PLS 3. 

The scatter plots of observed TP and predicted TP and TP residuals are shown in Figure 

6.3 for the PLS 3 model based on 31 lakes. A good correlation between observed and 

predicted TP values is shown and overestimation at the low end of observed TP gradient 

and underestimation at the high end are evidenced in the TP residual plot.  
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Figure 6.3 Scatter plots of observed and predicted TP and TP residuals for the PLS 3 model of 31 
lakes (two lakes are labelled with site codes; TP data are log10-transformed and Cladocera data are 
square root transformed). 
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6.2.2 Weighted Averaging Partial Least Square (WA-PLS) Modelling 

 

Performances of the first five components of WA-PLS models are summarised in Table 

6.5. Each of the five WA-PLS components outperforms the PLS model with lower 

RMSEP and higher jack-knifed r2. After identifying and removing two sites (SIL and 

LIS, the same sites removed in the PLS model) with high TP residuals, the performance 

of each of the five WA-PLS components is improved (see Table 6.5). The second 

component of the WA-PLS model based on 31 lakes gives the best performance as no 

additional component can significant improve its RMSEP of 0.206 and r2
jack of 0.729. 

The correlation between observed TP and TP values predicted by the WA-PLS 2 model 

is shown in Figure 6.4. Underestimation at the high end of observed TP occurs for this 

model but with a narrow range (-0.2-0 log10TP) of residuals, while overestimation at the 

low end occurs with a wider range (0-0.6 log10TP) (see Figure 6.4).  
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Figure 6.4 Scatter plots of observed TP and predicted TP and TP residuals of the WA-PLS 2 model 
of 31 lakes (TP data are log10-transformed and Cladocera data are square root transformed). 
 

 

6.2.3 Weighted Averaging (WA) Modelling 

 

Both inverse and classical deshrinking with and without tolerance downweighted were 

performed for WA modelling. Among the four WA models of 33 lakes the model with 

inverse deshrinking and tolerance downweighted gives the lowest RMSEP of 0.305 and 

second highest r2
jack of 0.434. After the removal of sites SIL and LIS as in PLS and WA-

PLS modelling, performance of the same model is improved significantly with an 
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RMSEP of 0.221 and r2
jack of 0.687 (see Table 6.5). Observed and predicted TP values 

by this model for 31 lakes display strong correlation as shown in Figure 6.5. Both 

overestimation and underestimation occur along the low-middle part of the observed TP 

gradient and underestimation occurs for the high end of the TP gradient (see Figure 6.5).  
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Figure 6.5 Relationship between observed and predicted TP and TP residuals of WA TOL_Inv of 31 
lakes (TP data are log10-transformed and Cladocera data are square root transformed).  
 

 

6.2.4 Model Comparison and Evaluation  

 

Both linear- and unimodal-based modelling methods have been performed based on 

log10-transformed TP data and square-root transformed Cladocera data of 33 lakes (see 

Table 6.5). The unimodal-based modelling method WA-PLS generally outperforms the 

linear-based method PLS for the same set of data. After removal of outlier sites Sillan 

[SIL] and Lisnahan [LIS], performances of all three models are substantially improved 

in both RMSEP and jack-knifed coefficient of determination (r2). The best models are 

the third component PLS model (RMSEP = 0.267, r2
jack = 0.551), the second component 

WA-PLS model (RMSEP = 0.206, r2
jack = 0.729) and the WA TOL_Inv model (RMSEP = 

0.221, r2
jack = 0.687). Of these three the optimal model with best predictability and least 

prediction error for the 31 lakes is the WA-PLS-2 model.  
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Table 6.6 Comparison of Cladocera-inferred TP transfer functions from Denmark1 (Brodersen et 
al., 1998), Denmark2 (Amsinck et al., 2005), Switzerland (Lotter et al., 1998), Canada (Bos & 
Cumming, 2003) and Ireland (current study) (TP data are log-transformed in all models).  
 

Study area Sites TP range 
(μg/l) Indicator Model r2 RMSE r2

jack/boot 
RMSEP 

jack/boot 
Denmark1 32 16-765 Chydorid WA - - 0.79 0.24 
Denmark2 36 27-327 Cladocera WA 0.53 0.11 0.32 0.29 

Switzerland 68 6-520 Chydorid WA-PLS-1 0.63 0.24 0.49 0.28 
Canada (BC) 49 2-146 Cladocera WA 0.73 0.25 0.61 0.30 

Ireland 31 4-142 Cladocera WA-PLS-2 0.89 0.18 0.73 0.21 

 

 

In comparison with four other published Cladocera-based TP transfer functions, the 

Irish training set has a similar TP gradient (4-142.6 μg l-1) as that of Canada (British 

Columbia),  and is shorter than the two Danish and the Swiss training sets (see Table 

6.6). The Irish Ecoregion training set is of similar size as those from the Denmark, but is 

smaller than the Canadian and the Swiss data sets which have lake numbers of 49 and 

68 lakes respectively. The Irish, Canadian and Danish models are based on the whole 

Cladocera assemblages, while the other two inference models only use the littoral 

Cladocera assemblages (see Table 6.6). The performance of the Irish Ecoregion TP 

transfer function is comparable with the other four TP transfer functions and gives the 

lowest RMSEP (0.21). The Danish training set containing 32 lakes with a long TP 

gradient (16-765 μg l-1) has stronger predictability (r2
boot = 0.79) but higher prediction 

error (RMSEP = 0.24). The WA-PLS-2 model for the Irish Ecoregion with an r2
jack of 

0.73 outperforms all the other transfer functions in both predictability and prediction 

error (see Table 6.6).  

 

6.2.5 TP Optima of Cladocera Taxa 

 

The Weighted Averaging (WA) method is used to produce the TP optima of common 

Cladocera taxa in the 31-lake training set as many taxa display a unimodal-like response 

along the TP gradient as shown in Figure 5.8. TP optima and tolerance of 30 common 

Cladocera taxa are listed in Table 6.7. Rhynchotalona falcata and Bosmina longispina 

have the lowest TP optima of 10.4 and 13.2 μg l-1 respectively; while Oxyurella 

tenuicaudis and Leydigia leydigii have the highest TP optima of 96.1 and 61.9 μg l-1 

among all the 30 Cladocera taxa (see Table 6.7). All the other Cladocera taxa have TP 

optima in the range of 16-41 μg l-1. Most Cladocera taxa have estimated TP tolerances 
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of less than 3 μg l-1 with the highest value of 3.05 μg l-1 for Alona rustica (see Table 6.7), 

reflecting relatively narrow ecological amplitude for most taxa in the study lakes.  

 
Table 6.7 Weighted averaging TP optima and tolerance of 30 common Cladocera taxa (≥1 % at two 
sites) for 31 Irish lakes (TP optimum and tolerance are back-transformed to μg l-1 units; N2 data 
are based on square root transformed data; littoral and planktonic taxa are separated and listed in 
alphabetic order). 
 

Taxon Count Max 
(%) N2 Optimum 

(μg l-1) 
Tolerance  

(μg l-1) 
Acroperus harpae 31 5.80 26.56 29.92 2.51 
Alona affinis 31 18.24 25.51 25.69 2.55 
Alona costata 26 4.48 21.71 29.92 2.30 
Alona guttata/rectangula group 31 21.55 27.93 27.44 2.62 
Alona intermedia 20 14.53 14.79 17.82 2.44 
Alona quadrangularis 31 15.03 27.12 27.54 2.53 
Alona rustica 13 22.38 8.52 24.59 3.05 
Alonella excisa 26 9.79 20.73 21.70 2.62 
Alonella exigua 27 4.31 22.68 29.67 2.42 
Alonella nana 31 11.63 27.36 28.35 2.55 
Alonopsis elongate 7 1.39 6.68 16.87 2.19 
Camptocercus rectirostris 22 2.78 18.82 20.48 2.27 
Chydorus piger 24 12.50 17.07 28.13 2.32 
Chydorus sphaericus 30 21.24 25.56 31.59 2.35 
Eurycercus lamellatus 25 4.42 21.15 29.50 2.28 
Graptoleberis testudinaria 29 9.03 24.20 30.10 2.33 
Leydigia leydigii 14 2.59 11.89 61.86 1.61 
Monospilus dispar 17 2.80 14.38 20.42 2.72 
Oxyurella tenuicaudis 4 2.49 3.20 96.05 1.68 
Phrixura rostrata 15 2.18 13.94 23.63 2.63 
Pleuroxus laevis 17 2.00 14.59 29.93 2.48 
Pleuroxus trigonellus 21 2.65 18.30 34.80 2.25 
Pleuroxus uncinatus 15 2.89 13.18 27.44 2.02 
Rhynchotalona falcate 7 2.10 6.50 10.44 2.06 
Bosmina longirostris 26 86.77 18.11 36.30 2.04 
Bosmina longispina 17 33.73 13.44 13.20 2.08 
Daphnia longispina group 31 77.35 26.98 29.32 2.60 
Daphnia pulex group 11 15.17 8.65 41.06 1.98 
Leptodora kindtii 9 3.47 7.48 20.44 2.32 
Sida crystalline 15 1.88 13.27 23.86 2.07 

 
 

A comparison of TP optima for some common taxa with those from other Ecoregions is 

summarised in Table 6.8. Rhynchotalona falcata and Alona intermedia have the lowest 

TP optima in Ireland similar to those from Denmark. In meso-eutrophic lakes taxa like 

Monospilus dispar, Camptocercus rectirostris, Alona affinis, amd Eurycercus lamellatus 

are then commonly found across the Ecoregions. Among species with high TP optima 

three species, Chydorus sphaericus, Pleuroxus trigonellus and Leydigia leydigii, are 

generally dominant in Cladocera assemblages both in Ireland and Denmark.  TP optima 

for these taxa are generally higher in Denmark than those in Ireland mainly due to the 
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larger number of eutrophic and hypertrophic lakes included the Danish training set (half 

of the 32 lakes have TP of above 100 μg l-1 in comparison to only two of the 33 lakes in 

the current study). Some common taxa were also comparable between Ireland and 

Canada in TP optima, like Camptocercus rectirostris, Eurycercus lamellatus and 

Daphnia pulex group. However, many species in Canada show morphological 

differences from those in Europe (Chengalath, 1987) and therefore it is difficult to 

compare some taxa like C. sphaericus, a common species across Europe (e.g. de Eyto et 

al., 2003).  

 
Table 6.8 Comparison of WA-inferred TP (μg l-1) optima of selected Cladocera taxa from Ireland 
(current study), Denmark1 (Brodersen et al., 1998), Denmark2 (Amsinck et al., 2005) and British 
Columbia of Canada (Bos & Cumming, 2003) (taxa are ordered according to their TP values 
estimated by this study). 
 

Taxa Ireland Denmark1 Denmark2 BC, Canada 
Rhynchotalona falcata 10.4 26 - - 
Alona intermedia 17.8 19 - - 
Monospilus dispar 20.4 40 42 - 
Leptodora kindtii 20.4 - - 33 
Camptocercus rectirostris 20.5 50 38 21 
Alonella excisa 21.7 29 - 16 
Sida crystallina 23.9 - 48 26 
Alona rustica 24.6 24 - - 
Alona affinis 25.7 50 50 16 
Alona guttata/ alcate lar group 27.4 25/109 75 24 
Alona quadrangularis 27.5 78 46 24 
Chydorus piger 28.1 27 - 13 
Alonella nana 28.3 28 70 15 
Eurycercus lamellatus 29.5 46 60 23 
Alona costata 29.9 31 - - 
Acroperus harpae 29.9 44 50 23 
Graptoleberis testudinaria 30.1 32 62 43 
Chydorus sphaericus 31.6 123 76 - 
Pleuroxus trigonellus 34.8 99 59 21 
Daphnia pulex group 41.1 - - 53 
Leydigia leydigii 61.9 102 51 27 

 

 

6.3 Comparison of Diatom- and Cladocera-inferred TP for 29 Sites 

 

TP inference models have been developed based on diatoms and Cladocera respectively 

in the previous sections. The optimum TP inference models are the WATOL_Inv for the 

70-lake diatom training set and the second component of WA-PLS from the 31-lake 

cladocera training set. Twenty-nine lakes are common to both training sets, therefore a 

comparison of TP values predicted for these sites can provide a unique insight into the 
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performances of models based on two different biological indicators, diatoms and 

Cladocera (see Figure 6.6). Both TP models were based on log10-tranformed TP. In lake 

monitoring and management the measurement units (μg l-1) are used for TP data. 

Therefore TP predicted by both models are compared in both transformed unit (log10-

tranformed TP) and measurement unit (μg l-1 TP) for theoretical and practical 

performance interpretation.  

 

Diatom- and Cladocera-inferred TP for the 29 sites display good correlations (r = 0.816 

and 0.854) with the observed data in Figure 6.6 (a) and (b). There are several outlier 

sites with slight deviance from the 1:1 line for both the diatom-inferred TP and the 

Cladocera-inferred TP, like Anascaul [ANS], Inchiquin [INQ] and Lene [LEN]. In the 

plot (c) good agreement between diatom- and Cladocera-predicted TP is evident with an 

r of 0.682 with several sites displaying moderate deviance from 1:1 line, e.g. Inchiquin, 

Lene and Mullagh [MUL]. This confirms that the diatom and Cladocera inference 

models are performing well and they show close correspondence in log10-transformed 

TP for most of the 29 sites.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.6 Comparison of observed TP, diatom- and Cladocera-inferred TP for 29 lakes (TP are 
log10-transformed in plots a-c and back-transformed in plots d-f; Pearson’s correlation coefficient is 
highlighted in each plot; sites with strong deviance from the 1:1 line are labelled with site codes). 
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However, when TP data are back-transformed to the measurement unit (μg l-1), the 

relationship between the diatom-predicted and observed data decreases with an r of 

0.572 (Figure 6.6 (d)). Similarly there is a decreased correlation between diatom- and 

Cladocera-inferred TP with an r of 0.476 (Figure 6.6 (f)). In plot (d) with diatom-

inferred and observed TP several sites display strong divergence from the 1:1 line, 

including Inchiquin [INQ], Mullagh [MUL], Tullabrack [TUL] and Morgans [MOR] 

and these sites also displayed strong deviation from the 1:1 line in plot (f) with diatom- 

and Cladocera-predicted TP (Figure 6.6). These outlier sites labelled in plot (f) show 

stronger deviance from the 1:1 line than sites labelled in plot (c) with log10-transformed 

TP. In plot (f) most sites with big deviance from the 1:1 line are also obvious outliers in 

plot (d) with diatom-inferred and observed TP (Figure 6.6). In contrast the relationship 

between the Cladocera-inferred TP and the observed data is improved with an r of 0.927. 

This is also confirmed by the absence of obvious outlier sites in plot (e). This indicates 

that Cladocera-based model performs better than the diatom-based model when TP is 

back-transformed for the 29 sites.  

 

6.4 Discussion and Conclusions 

 

6.4.1 Data Transformation 

 

Transformation of both measured TP and biological data has been shown to influence 

the model performances in the model development for both diatom and Cladocera 

training sets. Log-transformation of TP data improves the performances of all the 

models for both training sets. However, insignificant improvement of model 

performance was observed after log-transformation of TP data in an 82-lake diatom 

training set in Northeast America (Koster et al., 2004). It was suggested that weaker 

sensitivity of diatom assemblages to TP than to pH/alkalinity in the American training 

set could account for the minor influence of TP data transformation. The current study 

in contrast indicates that model performance is improved in both WA, WA-PLS and PLS 

models after the data transformation even though TP is of secondary importance after 

pH/alkalinity in explaining the diatom assemblage variation (see Chapter 4). The 

improved influence of log-transformed TP data on diatom and Cladocera model 

performance could be due to the more normalized distribution of TP in the current 
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training set, which would strengthen the unimodal response of diatom and Cladocera 

species to TP (Koster et al., 2004). Untransformed biological data only outperform the 

square root transformed data in the WA model with tolerance downweighted in the 

diatom training set, but this model gives the best performance with the lowest RMSEP 

and highest or almost highest r2
jack among all the WA and WA-PLS models for diatom 

data. This implies that in some cases untransformed ecological data can provide 

valuable information on the strength of relationship between biological assemblages and 

environmental variables. This phenomenon was also observed by Koster et al. (2004), 

where untransformed species data provided a model which predicted TP values in better 

accordance with the measured data. Therefore lack of data manipulation may result in 

lower model performance and therefore valuable information for further model 

evaluation, application and ecological interpretation may be lost. It is therefore 

recommended to test all possible inference models with both transformed and 

untransformed ecological and environmental data, before model selection is made on 

the basis of model performances. 

 

6.4.2 Diatom and Cladocera TP Models 

 

Performances of WA modelling and WA-PLS modelling generally show no great 

differences in regard to RMSEP and bias for the diatom training set. The WA model 

generally outperforms the WA-PLS model in regard of jack-knifed r2 for the diatom 

training set. The short gradient length (0.886 SD) in the Cladocera data indicated that a 

linear response model was appropriate, however, the linear PLS models were generally 

outperformed by the unimodal-based models, WA and WA-PLS in terms of RMSEP and 

jack-knifed r2. In particular the WA-PLS model displayed a significantly improved 

performance in comparison to the PLS model for the same set of data, indicating that 

non-linear ecological responses played a significant role. This is also evidenced by the 

response curves of Cladocera taxa along the TP gradient as shown in Figure 5.8 where 

almost half of the 20 common Cladocera taxa showed unimodal-like response curves. A 

better performance of unimodal-based WA-PLS in comparison to linear-based PLS for 

datasets with short ecological gradients has also been found by Birks (1998) for the first 

component of both models. Therefore the gradient length determined by the DCCA 

constrained by the environmental variable of interest (like TP in this study) may not be a 

good guide for selecting either linear or non-linear modelling methods. After suggesting 
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this criteria for method selection, Birks (1995) also highlighted that this guide may not 

work for specific data sets due to the lack of knowledge on model development, 

including the statistical properties of the reconstruction methods and the amount of 

noise within the data. Therefore non-linear modelling methods are recommended for 

model development when the ecological responses show linearity due to the short 

gradient length as determined by DCCA.  

 

The strong performances of both TP models were evidenced by the close correlation 

between the log10-transformed TP predicted by diatom and Cladocera models at 29 sites. 

However, the much reduced correlation between the back-transformed TP given by both 

models implies that the optimal models based on transformed TP will produce stronger 

prediction errors when their reconstructed TP is back-transformed and used in the 

ecological assessment of lakes. This could pose a challenge for the application of TP 

inference models in identifying the reference conditions and setting targets for lake 

restoration. The relationship between TP residuals and observed values shows the same 

trend with overestimation at the low end of TP gradient and underestimation at the high 

end in the diatom and Cladocera models as in other studies (e.g. Bennion (1994), Lotter 

et al. (1998)). Therefore care is needed to be taken when these models are applied to 

fossil samples for environmental reconstruction as more errors can be created when the 

reconstructed values are near either end of the training set environment gradient. Other 

model methods, including WA with classical deshrinking and cross-validation with 

bootstrapping for sample-specific errors, can be used in reconstruction to get reliable 

and consensus results (Birks et al., 1990; Birks, 1998).  

 

In the absence of sampling additional sites the removal of outlier sites was found to 

improve the performance of inference model (Gasse et al., 1995; Tibby, 2004). The 

removal of two oligotrophic sites, Veagh [VEA] and Caragh [CAR], significantly 

improved the performance of both WA and WA-PLS models for the diatom training set. 

Lough Veagh is identified as outlier site mainly due to its measured TP value of zero. 

Zero values used in model development indicate no statistical relationship with the 

ecological data and this explains the big divergence between the observed and predicted 

TP and TP residual. The surface sediment diatom assemblage in Caragh is dominated by 

Aulacoseira subarctica (49.5%), a meso-eutrophic species while the measured TP value 

is only 5.5 μg l-1. Also in the 33-lake Cladocera training set, Lough Sillan [SIL] is a 

hypertrophic lake with a medium to large lake area (140 ha) with an observed TP of 141 
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μg l-1 but a high abundance (19.2%) of oligo-mesotrophic Bosmina longispina in the 

surface sediments (see Figure 5.3). Lough Lisnahan [LIS] is small  (5.9 ha) and shallow 

(mean depth 1.44 m) and it also serves as source of water supply for local town Kilkee 

(Wemaëre, 2005). A high ratio of volume of daily abstraction in comparison to the lake 

volume can disturb the biological communities. Therefore the deviation between 

observed and predicted TP values is significant. Performance of Cladocera-inferred TP 

models were also evidently improved after both sites were excluded (see Table 6.5).  

 

Littoral diatom taxa in the current study show analogous TP optima for the same taxa as 

inferred by a contemporary littoral algae survey of 32 Irish lakes (DeNicola et al., 2004). 

But TP optima of some taxa, particularly planktonic ones, display dissimilarity between 

both studies. This is a result of different sampling methods used. Only epilithic algae 

were sampled in the contemporary survey. Surface sediments used in this study 

generally contain diatom remains from a wide range of habitats in lakes. Therefore the 

surface sediment samples can provide more reliable information on the diatom 

responses to the nutrient level of lake waters. The same diatom taxa generally have 

similar TP optima in Finland (Miettinen, 2003) and the Alps (Wunsam & Schmidt, 1995) 

and both training sets have a similar TP gradient as the current study. Much higher TP 

optima were found in English lakes which contained more eutrophic lakes and covered 

a longer TP gradient (Bennion, 1994). Similarly a higher number of eutrophic lakes in 

the Danish training set (Brodersen et al., 1998) is a probable cause of higher TP optima 

for some Cladocera taxa.. Therefore TP optimum of the same Cladocera or diatom 

species can vary between training sets depending on the features of training set, 

including the length of TP gradient, Ecoregion feature, number of sites, geographical 

area and lake types.  

 

6.4.3 Sources of Uncertainty 

 

Although the Irish Ecoregion TP inference models based on diatoms and Cladocera are 

robust with high predictability and low prediction errors and bias, there are still many 

possible sources of error as highlighted by Anderson (1995a). These errors include 

taxonomic harmonization, spatial variability of biological assemblages in surface 

sediments and the influence of unmeasured variables. As the top 2-3 cm of 17 samples 

were sampled using an Echman Grab, rather than top 0.5-1 cm sampled by the gravity 
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corer for all other lakes, the inconsistent sampling methods can contribute to the errors 

of inference model. Furthermore, another potential error source is the water chemistry 

variability, both temporal and spatial variability, in this training set. Many of the training 

set lakes were only sampled for hydrochemistry on one occasion, generally in the 

summer season and water sampling and hydrochemical analysis were conducted by 

several projects in Ireland between 1996 and 2001. The lack of internal consistency and 

multiplicity of water sampling and analysis may reduce the reliability of hydrochemical 

data used in this study (Birks, 1998). Even so, the strong predictability and low errors of 

the developed TP inference models indicate that these factors may increase the model 

errors and reduce the accuracy of inference models but these influences are still 

relatively insignificant for the diatom and Cladocera models developed.  

 

6.4.4 Conclusions 

 

A diatom-based TP model (r2
jack = 0.743, RMSEP = 0.213, n = 70) using WA with 

tolerance downweighted and inverse deshrinking, and a Cladocera-based TP model 

(r2
jack = 0.729, RMSEP = 0.206, n = 31) using the second component of WA-PLS were 

developed for the Irish Ecoregion. Data transformation of both TP and biological data 

and removal of outlier sites significantly improved the performances of inference 

models. It is therefore strongly recommended that data manipulation of both 

environment and ecological data be tested before an optimal model can be decided. A 

close correlation between diatom and Cladocera-inferred TP for the same 29 sites also 

validated the performance of both diatom and Cladocera inference models developed. 

The construction of optimal inference models has not been easy due to the insufficient 

knowledge on related statistical methods and data properties. The selection of linear or 

non-linear modelling methods determined by the gradient length of DCCA constrained 

by the environment variable of interest can be misleading as shown in the development 

of Cladocera-TP models in this study. In the case of a short ecological gradient both 

linear and non-linear methods (particularly WA-PLS) should be performed for model 

comparison. Comparison of TP optima of some common taxa with those from other 

training sets show that TP optima for diatom or Cladocera taxa can vary between 

training sets depending on the gradient length, lake types, number of sites, Ecoregion 

feature etc.  
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Chapter 7: Identification of Reference Status of Seven Irish Lakes 

 

 

Determination of reference status is a key factor for lake restoration and management 

under the Water Framework Directive (WFD) (European Union, 2000). Examination of 

the degree of deviation from the reference conditions is required to assess water quality 

status. However, very limited lake water monitoring data can provide long-term 

information on water quality in the absence of significant human influence. 

Palaeolimnological methods have been successfully applied providing the information 

on pre-impact conditions for polluted lakes (e.g. Smol, 2002; Cohen, 2003). These 

methods have included the ‘top and bottom’ approach which assumes that sediment core 

bottom samples represent reference conditions of study lakes (e.g. Dixit et al., 1999; 

Bennion et al., 2004a).  

 

The establishment of pre-impact conditions in lakes has been a priority task to help 

implement the WFD for Ireland (Irvine et al., 2002), as well as other EU member states 

like UK (Bennion et al., 2004a) and Denmark (Søndergaard et al., 2005). 

Eutrophication has long been the principal pressure on lake water quality in Ireland 

(Jennings et al., 2003; Toner et al., 2005). This Chapter aims to reconstruct TP levels 

under the pre-impact conditions using the TP inference models developed in Chapter 6. 

As single palaeolimnological proxies have their own strengths and weaknesses, multi-

proxy analysis on the other hand can be advantageous in reaching consensus results and 

identifying the disagreement among proxies (Lotter, 2005). Both diatoms and Cladocera 

are combined and employed to infer nutrient status via the examination of the top and 

bottom of sediment cores for seven impacted lakes. TP values inferred by diatom- and 

Cladocera-based transfer functions provide independent reconstructions of nutrient 

status and comparison of both indicators can help cross-validate the reference 

conditions of the seven study lakes. 

 

7.1 Study Sites 

 

Seven sites were selected for top-bottom analysis of sediment cores and they are mainly 

located in the west and North of Ireland (see Figure 7.2), with three lakes (Atedaun, 

Ballybeg and Inchiquin) from Co. Clare, two from Co. Cavan (Loughs Sillan and 
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Mullagh) and the other two from Counties Tyrone (Lough Crans) and Monaghan 

(Lough Egish). They are all located at altitudes below 150 m and Loughs Egish, 

Inchiquin and Sillan have lake areas of greater than 100 ha while the other four have 

lake areas of less than 50 ha. Catchment areas of the seven lakes vary widely between 

60-28,250 ha and are mainly covered by pasture (> 50%) (Table 7.1), except for 

Atedaun and Inchiquin, whose pasture cover are surpassed by the mixed semi-natural 

areas (Wemaëre, 2005). The main bedrock geology for these seven lakes includes 

Carboniferous Limestone and Silurian Quartzite (Taylor et al., 2006). All the seven 

lakes have medium to high alkalinity values between 52.0-161.8 mg l-1 with high pH 

values in the range of 7.8-8.5 (see Table 7.1). Five lake types are represented by these 

seven lakes as shown in Table 7.1: two lakes in Lake Type 9 (small, shallow, high 

alkalinity), two in Lake Type 12 (large, deep, high alkalinity), one in each of Lake Types 

5 (small, shallow, medium alkalinity), 7 (small, deep, medium alkalinity) and 8 (large, 

deep, medium alkalinity) respectively.  

 

Egish

Crans

Sillan

Mullagh

Atedaun

Ballybeg

Inchiquin

0 25 50 75 10012.5
Kilometers  

Figure 7.1 Site location map of 7 study lakes. 
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Table 7.1 Summary of main physico-chemical and catchment features of seven lakes. 
 

Lake 
Name 

Irish 
Grid 

Reference 

Alt. 
(m) 

Lake 
Area 
(ha) 

Catch. 
Area 
(ha) 

Max 
Depth 

(m) 

Mean 
Depth 

(m) 

Alkal. 
(mg l-1) pH TP 

(µg l-1) 

Pasture 
Land 
(%) 

Lake 
Type 

Atedaun R 295 885 22 38.0 28250.0 13.0 1.4 135.4 8.0 36.7 38.4 9 
Ballybeg R 330 739 10 19.7 414.0 5.7 2.7 128.0 7.9 84.3 53.7 9 
Crans H 711 568 95 8.5 59.5 12.0 6.7 78.0 8.5 89.0 85.0 7 
Egish H 795 132 162 121.7 784.3 12.0 5.0 69.0 8.1 344.0 86.4 8 
Inchiquin R 268 897 35 106.9 14714.0 31.0 12.2 161.8 8.2 19.3 32.0 12 
Sillan H 700 070 94 140.0 - 12.0 6.0 140.0 8.3 141.0 79.8 12 
Mullagh N 677 855 120 35.1 114.2 8.1 2.3 52.0 7.8 55.0 95.7 5 

 

 

Six of the seven lakes are eutrophic and hypertrophic and only Lough Inchiquin is 

mesotrophic with the lowest TP value of 19.3 μg l-1 based on the trophic classification 

of OECD (1982). Generally all these seven lakes are impacted not only by agricultural 

activities as evidenced by the dominant land cover of pasture lands for all seven lakes, 

but also influenced by urban and industrial development surrounding these lakes. For 

example, the total area farmed relative to the whole drainage area is 68%, 73% and 64% 

for Loughs Atedaun, Ballybeg and Inchiquin respectively based on an agricultural 

census in 2000 (Wemaëre, 2005). Cattle density for Loughs Mullagh and Egish was 

surveyed and found to be 2.85 and 1.68/ha in 1990 (Irvine et al., 2001). There is a 

creamery and meat-processing factory close to Loughs Egish and Sillan respectively 

(Taylor et al., 2006). Treated sewage is channelled to Lough Sillan and there is a 

caravan site close to the lake. Lough Inchiquin also serves as the source of water supply 

for the local town of Corrofin (Wemaëre, 2005).  

 

All seven lakes were cored in August and September 2004 using a Renberg gravity corer. 

The lengths of lake cores vary between 31-41cm. The dating based on 210Pb, 241Am and 
137Cs measurements and sedimentation rates for six of the seven lakes are summarised 

in Table 7.2. An irregular 210Pb concentration profile was measured for the sediment 

core of Atedaun and this precluded the use of other lake models to estimate chronology 

and sedimentation rate (Dalton et al., 2006). Estimated ages for core bottoms of the 

other six lakes ranged from late 18th Century (Egish) to the middle of 20th Century 

(Mullagh). The author conducted Cladocera analysis and Manel Leira provided diatom 

data for the same samples. Diatom and Cladocera assemblages are summarised for each 

of the seven lakes in the following section before the application of TP inference models 

for quantitative reconstruction of TP. 
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Table 7.2 Depth and estimated ages of bottom samples of seven lakes (Taylor et al., 2006). 
 

Lake Depth of Bottom 
Sample (cm) 

Estimated 
Sedimentation Rate 

(g cm-2 yr -1) 

Estimated Age 
(±1 SD) 

Atedaun 39-40 - - 
Ballybeg 30-31 0.026 ± 0.002 ca. 1889 AD ± 11 at 29-30cm 
Crans 39-40 0.028 ± 0.007 ca. 1825 AD ± 37 at 38-39cm 
Egish 31-32 0.017 ± 0.004 ca. 1781 AD ± 50 at 30-31cm 
Inchiquin 40-41 0.12 ± 0.02 ca. 1931 AD ± 8 at 38-39cm 
Mullagh 38-39 0.04 ± 0.01 Pre-1950 AD ± 8 at 37-38cm 
Sillan 38-39 0.053 ± 0.012 ca. 1905 AD ± 13 at 37-38cm 
 

 

7.2 Diatom and Cladocera Assemblages of Top and Bottom Samples 

 

In the core top and bottom samples of the seven study lakes 114 diatom taxa and 34 

Cladocera taxa occur respectively. Common diatom and Cladocera assemblages for the 

core top and bottom of the seven lakes are shown in Figure 7.2 and Figure 7.3. All the 

diatom and Cladocera species or species group are expressed in relative abundance (%).  

 

7.2.1 Lough Atedaun 

 

Forty-three and 46 diatom taxa occur in the sediment core bottom and top from Lough 

Atedaun respectively and diatom assemblages in both samples are mainly composed of 

non-planktonic taxa. The dominant taxa are meso-eutrophic taxa, Cocconeis placentula, 

Achnanthes minutissima and Amphora pediculus and only slight differences are found 

for these dominant taxa between the core top and bottom (see Figure 7.2). Changes in 

diatom assemblages include a moderate increase in the subdominant eutrophic taxa 

Cyclostephanos invisitatus and meso-eutrophic Gomphonema pumilum, as well as an 

decrease of oligo-mesotrophic Cymbella microcephala, Navicula cryptotenelloides and 

Fragilaria brevistriata in the core top. Lough Atedaun is currently a eutrophic lake with 

a mean TP value of 36.7 μg l-1 (see Table 7.1) and the dominance of meso-eutrophic 

diatom taxa correspond well with the current nutrient status. The dominance of non-

planktonic diatoms also reflects the shallow lake basin of Atedaun (mean depth = 1.2 m). 

 

 



 176

 

 

 

Atedaun0-0.5
Atedaun39-40
Balllybeg0-0.5

Balllybeg30-31
Crans0-0.5

Crans39-40
Egish0-0.5

Egish31-32
Inchiquin0-0.5

Inchiquin40-41
Mullagh0-0.5

Mullagh38-39
Sillan0-0.5

Sillan38-39

0 20

Ach
nan

the
s m

inu
tis

sim
a v

ar 
minu

tis
sim

a

0 20

Amph
ora

 ped
icu

lus

0 20

Cocc
on

eis
 plac

entu
la

0 20

Cyc
lotel

la 
ps

eu
dos

tel
lig

era

0 20

Cyc
lotel

la 
radio

sa

0

Cym
be

lla
 m

icr
oce

pha
la

0 20

Fragil
ari

a b
revis

tria
ta

0 20

Fragil
ari

a e
llip

tic
a

0 20

Fragil
ari

a p
inn

ata

0 20

Fragil
ari

a u
lna

 va
r a

ng
us

tis
sim

a
0

Gom
ph

on
em

a la
ter

ipun
cta

tum

0 20

Gom
ph

on
em

a pu
milu

m

0

Navic
ula

 cr
yp

tot
en

ell
oid

es

0

Navic
ula

 m
ini

ma

0

Navic
ula

 ps
eud

oc
on

str
ue

ns

0 20

Aste
rio

ne
lla

 fo
rm

os
a

0

Aula
co

se
ira

 am
big

ua

0 20 40

Aula
co

se
ira

 gr
an

ula
ta

0 20 40

Aula
co

se
ira

 is
lan

dica
 va

r is
lan

dica

0 20 40

Aula
co

se
ira

 su
barc

tic
a

0

Cyc
loste

ph
ano

s d
ub

ius

0

Cyc
loste

ph
ano

s i
nv

isit
atu

s

0 20 40 60

Steph
an

od
isc

us
 han

tzs
ch

ii

0 20 40

Steph
an

od
isc

us
 parv

us

Non-planktonic Planktonic

 
Figure 7.2 Comparison of dominant diatoms (above 5%) in surface and bottom sediments of seven study lakes (data provided by Manel Leira).
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Cladocera species richness displayed little change between the core bottom (23) and top 

(21). Chydoridae taxa, which prefer the littoral areas of lakes, are dominant among the 

Cladocera assemblage for both surface and bottom sediment samples (see Figure 7.3). 

Dominant littoral Cladocera taxa, including Chydorus sphaericus and Alona 

guttata/rectangula group, show relatively stable abundance between core bottom and 

top. C. sphaericus is often found to tolerate a wide range of environments but prefers 

eutrophic conditions (de Eyto et al., 2002). Subdominant taxa in the core bottom like 

Alonella exigua and Graptoleberis testudinaria, typically found in mesotrophic lakes 

with abundant macrophytes (Duigan, 1992), display a decrease in relative abundance 

between the core bottom and core top. A reduction in macrophyte cover was found to 

support less plant-associated chydorids (Jeppesen, et al., 2001). A sharp increase in 

planktonic Daphnia longispina group occurred between the core bottom to core top with 

the disappearance of oligo-mesotrophic Bosmina longispina group. These changes 

correspond well with reduced abundances of plant-associated taxa like A. exigua and G. 

testudinaria, indicating an increased nutrient status in association with a decrease in 

macrophyte cover (see Figure 7.3).  

 

7.2.2 Lough Ballybeg 

 

The abundance of diatom taxa decreased by 25% from 32 taxa in the core bottom to 24 

in core top from Ballybeg. Non-planktonic diatoms dominate in the core bottom, 

including Gomphonema pumilum, G. lateripunctatum, Fragilaria brevistriata and 

Cymbella microcephala (see Figure 7.2). These oligo-mesotrophic taxa are replaced by 

planktonic diatoms in the core top sample, particularly Stephanodiscus hantzschii which 

has a relative abundance of over 50%. Other subdominant planktonic taxa include S. 

parvus, Fragilaria ulna var. angustissima and Asterionella formosa. These species are 

good indicators of lake eutrophication. The complete shift from a benthic-dominated to 

a planktonic-dominated assemblage points to a change from a nutrient-poor to a 

nutrient-enriched lake. 
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Figure 7.3 Comparison of dominant Cladocera (over 5%) in core top and bottom sediments of seven lakes. 
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The Cladocera assemblages show little variation in species richness unlike the diatom 

assemblages. The planktonic cladoceran assemblage was more abundant than chydorid 

assemblage in both top and bottom samples and the abundance and structure of 

planktonic Cladocera changed only slightly (see Figure 7.3). The littoral species C. 

sphaericus was dominant in both top and bottom samples and the main changes of note 

are an increase in C. sphaericus in the surface sample, and a concomitant decrease in 

plant-associated species Acroperus harpae. These small changes in the Cladocera 

assemblages may indicate an increase in nutrient status but no major change is implied 

based on the minor assemblage shift between the core bottom and top. The dominance 

of meso-eutrophic taxa, mainly including littoral C. sphaericus and planktonic Bosmina 

longirostris, suggest a relative stable meso-eutrophic nutrient level at Ballybeg between 

the core bottom and top.  

 

7.2.3 Lough Crans 

 

Meroplanktonic and meso-eutrophic Aulacoseira subarctica is dominant in the core 

bottom from Crans in relative abundance of nearly 40% with subdominant taxa A. 

ambigua and Stephanodiscus hantzschii in much lower abundances (see Figure 7.2). In 

comparison, both A. islandica and S. parvus are co-dominant in the core top with 

relative abundance of above 30%, while S. hantzschii and Asterionella ormosa are 

subdominant in abundances of around 10%. Diatom species richness decreased 

dramatically from 35 in the bottom sample to 14 in the core top. The shift from diatom 

assemblage dominated by meso-eutrophic taxa in the bottom sample to the one 

dominated by eutrophic taxa implies an increase in nutrient level from the reference 

period to the current day. This may explain the sharp decrease in diatom species 

abundance between the core bottom and the top samples.  

 

In comparison to the large decrease in diatom species richness, only a slight decrease in 

species richness was observed for Cladocera assemblages with 20 taxa in the core 

bottom and 17 at the top. Planktonic taxa were much more dominant in the surface 

compared to the bottom sediment (see Figure 7.3). This may indicate a shift away from 

littoral species coincident with a decrease in suitable littoral habitat. The dominant 

Cladocera shifted from Bosmina longirostris in the bottom sample to the Daphnia 
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longispina group in the surface sediment with increased abundance in the D. pulex 

group. Littoral taxa display reduced abundance in the core bottom compared to the top. 

The high abundance of planktonic Cladocera in the surface sample may reduce the 

relative weight of littoral taxa among the total Cladocera assemblage and obscure a 

direct comparison with the littoral assemblage in the bottom sample.  

 

7.2.4 Lough Egish 

 

The dominant diatom species in the core bottom from Lough Egish is Aulacoseira 

subarctica, which was also dominant in the bottom sediment of Lough Crans, but in 

lower abundance of around 20%. Subdominant taxa are mainly oligo-mesotrophic, 

including both planktonic Cyclotella radiosa and periphytic Fragilaria brevistriata and 

F. elliptica. In the core top planktonic and eutrophic taxa Stephanodiscus parvus and S. 

hantzschii are dominant in abundances of ca. 30% and 20% respectively. Planktonic 

Aulacoseira subarctica, Asterionella frmosa and Cyclostephanos dubius are 

subdominant in abundances of less than 10%. The shift from a diatom assemblage 

dominated by a mixture of planktonic and epiphytic diatoms to one dominated by 

planktonic diatoms indicates a change from a meso-eutrophic state in the core bottom to 

an eutrophic state at the top. However, only a minor decrease of species abundance from 

43 to 37 was observed between the core bottom and the top. 

 

There is little change in species richness in the Cladocera assemblages from 21 in the 

bottom to 20 in the core top corresponding to the relative stable species richness of 

diatom community. Nevertheless, Cladocera assemblage structure changes completely 

from being chydorid-dominated in the bottom sample to being planktonic-dominated in 

the surface sample (see Figure 7.3). This shift in the Chydoridae community over the 

core sedimentation period includes a decline in relative abundance from nearly 50% to 

less than 10% for Alona rustica, a common species in dystrophic water bodies and 

generally absent in enriched environments (Duigan, 1992). The surface assemblage is 

dominated by the planktonic Daphnia longispina group in abundance of around 80% 

and sub-dominated by the planktonic Bosmina longirostris in abundance of 10%. The 

complete shift in assemblage structure reflects an unambiguous increase in the nutrient 

status of Lough Egish between the sedimentation periods.  

 



 181

7.2.5 Lough Inchiquin 

 

Benthic diatom taxa are the main components in the bottom sample of Inchiquin, 

including the dominant oligo-mesotrophic Amphora pediculus and subdominant 

ubiquitous Achnanthes minutissima (see Figure 7.2). The latter taxa becomes dominant 

in the surface assemblage and planktonic taxa are the main subdominant taxa, e.g. 

mesotrophic Cyclotella pseudostelligera and eutrophic Stephanodiscus hantzschii. 

Alhough the abundance of planktonic diatoms increases in the surface assemblage 

compared to that in the bottom assemblage, benthic taxa are still common in the surface 

sediment in constrast to the predominance of planktonic taxa in surface sediments of 

Loughs Ballybeg, Crans and Egish mentioned above. Therefore, a moderate shift from a 

benthic assemblage in the core bottom to a planktonic-benthic assemblage in the core 

top may indicate a moderate change in water quality in Lough Inchiquin. Diatom 

species richness decreases by 22% from 37 in the core bottom to 29 at the core top. 

 

The planktonic Daphnia longispina group are dominant in both top and bottom samples 

and its abundance increases from around 40% in the bottom to 70% in the recent 

sediments (see Figure 7.3). No obvious shift in dominant taxa can be observed within 

the Chydoridae assemblage between the core bottom and the top, but most of common 

chydorids display decreased abundance, e.g. C. sphaericus decreased from 20% in the 

bottom to less than 10% in the top. Generally, no significant change was observed in the 

Cladocera assemblage structure except the moderately increased abundance of 

planktonic taxa between the core bottom and the top. At the same time, a slight increase 

in Cladocera species richness from 22 in the core bottom to 24 in the core top was found 

in Lough Inchiquin. 

 

7.2.6 Lough Mullagh 

 

Three epiphytic diatom taxa Fragilaria pinnata, F. elliptica and F. brevistriata co-

dominate the bottom assemblage in the sediment core from Mullagh, with benthic 

Navicula pseudoconstruens and N. minima sub-dominant (see Figure 7.2). However, 

these common taxa in bottom sample diminish dramatically in the surface sediment 

sample and are all replaced by planktonic taxa. Aulacoseira granulata is dominant in 

abundance of around 40% with Stephanodiscus parvus and Asterionella formosa sub-
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dominant. The obvious diatom succession from benthic taxa in the core bottom to the 

planktonic and eutrophic taxa indicates a changed water quality with an increased 

nutrient level for Lough Mullagh. This was also reflected by the decrease in diatom 

species richness from 34 at the core bottom to 28 at the core top. 

 

Both bottom and surface Cladocera assemblages are dominated by planktonic Bosmina 

longirostris but with increased abundance from a basal 20% to over 40% in the surface 

sediments (see Figure 7.3). The subdominant taxa changed from the Daphnia pulex 

group in the core bottom to the D. longispina group in the core top. All the common 

littoral taxa in the bottom sample show decreased abundance in the core top including C. 

sphaericus, a dominant chydorid species. Therefore, the increased proportation of 

planktonic taxa in the recent sediments may reflect a change in water quality for Lough 

Mullagh but no clear trend is indicated by the Cladocera assemblage. Species richness 

in Cladocera assemblage decreases from 25 in the core bottom to 20 in the core top 

concurrent with the decrease in diatom species richness. 

 

7.2.7 Lough Sillan 

 

Diatom species richness was reduced by one-quarter from 48 in the core bottom to 36 in 

the core top at Lough Sillan. Planktonic Aulacoseira ambigua and epiphytic Achnanthes 

minutissima co-dominate the bottom assemblage in abundances of around 10%, with 

mainly planktonic taxa sub-dominating including Aulacoseira subarctica, A. granulata 

and Cyclotella radiosa (see Figure 7.2). The domimance of these mesotrophic and 

eutrophic taxa, as well as the high diversity of diatom taxa, reflect a meso-eutrophic 

lake environment. In the core top dominant taxa are the planktonic A. granulata in 

abundance of around 20%, with A. subarctica, Asterionella formosa and Stephanodiscus 

parvus sub-dominating. The clear shift in dominant diatom taxa and concurrent 

reduction in species richness point to an increased nutrient level.  

 

Dominant Cladocera taxa shifts from Bosmina longirostris in the bottom sample to the 

Daphnia longispina group in the surface sediment, and both are typical taxa in open 

waters (see Figure 7.3). Oligo-mesotrophic Bosmina longispina sub-dominates in both 

samples with only slight change in abundance. No clear change in littoral Cladocera was 

observed, however, they only represent a proportion (25-34%) of the Cladocera 
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assemblage (see Table 7.3). Cladocera species richness increases from 24 in the core 

bottom to 28 in the core top in contrast to the clear reduction in diatom species richness. 

The Cladocera taxa show moderate change in assemblage structure between the core 

bottom and top and may therefore indicate insignificant changes in aquatic environment 

in Lough Sillan.  

 

7.2.8 Assessment of the Roles of Planktonic Cladocera in Indicating Nutrient Level 

 

Planktonic Cladocera, particularly the Daphnia longispina group and Bosmina 

longirostris, are dominant in most of the top and bottom samples of the seven lakes 

(Figure 7.3). Detailed ratios of the planktonic and littoral Cladocera are summarised in 

Table 7.3. Six of the seven lakes show clear increases in the ratio of planktonic to 

littoral Cladocera in the core bottom compared to the top except for Lough Ballybeg. 

The most distinct increase in planktonic/littoral ratio is found in Loughs Egish (0.16 in 

the core bottom to 11.02 at core top) and Crans (4.12 to 25.27). The increased 

planktonic/littoral ratio corresponds with the decrease in mesotrophic Alona rustica in 

Egish but no clear change in chydorid assemblages can be found for Lough Crans. The 

proportions of littoral and planktonic Cladocera are interdependent when both groups 

are included in the Cladocera assemblage as indicators of lake environments (Hofmann, 

1987b). Therefore, the higher proportion of planktonic Cladocera may obscure the 

change in the littoral Cladocera assemblage in indicating nutrient level. For example, 

the whole Cladocera assemblages from Lough Sillan (see Figure 7.3) show little change 

between the core bottom and the top, however, most of the mesotrophic chydorid taxa 

show decreased abundances (e.g. Alona intermedia, Alonella excisa, Chydorus piger 

and Monospilus dispar) (see Figure 7.4). Therefore, high abundances of planktonic 

Cladocera can reduce the strength of chydorid assemblage in reflecting the actual 

nutrient level when both groups are included.  

 
Table 7.3 Summary of planktonic and littoral Cladocera for the seven lakes. 

 

Lake Atedaun Ballybeg Crans Egish Inchiquin Mullagh Sillan 
Depth (cm) 0-1 39-40 0-1 30-31 0-1 39-40 0-1 31-32 0-1 40-41 0-1 38-39 0-1 38-39 

% Planktonic 30 12 60 66 96 80 92 14 84 46 74 43 75 66 

% Littoral 70 88 40 34 4 20 8 86 16 54 26 57 25 34 
Planktonic/ 

Littoral 0.43 0.14 1.48 1.94 25.27 4.12 11.02 0.16 5.07 0.86 2.8 0.75 3.03 1.94 
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Figure 7.4 Comparison of the dominant taxa (5%) of chydorid assemblage in surface and bottom 
samples of Lough Sillan. 
 

 

Planktonic Cladocera mainly occupy open water habitats and they are important 

components of the zooplankton community in lakes (Wetzel, 2001). Some planktonic 

taxa have been well documented as good indicators of nutrient level, e.g. a shift from 

Bosmina longispina to B. longirostris as a consequence of eutrophication (Frey, 1988a). 

However, the population and structure of planktonic Cladocera are liable to selective 

predation by invertebrate and vertebrate predators, particularly fish (e.g. Brooks & 

Dodson, 1965; de Bernardi et al., 1987; Jeppesen et al., 2001). The abundance and 

structure of planktonic Cladocera in lake sediments have been observed to correspond 

well with fish introductions (Leavitt et al., 1994; Jacques et al., 2005) and change in 

fish population structure and stocking (Leavitt et al., 1989). The use of planktonic 

Cladocera remains in lake sediments can also be problematic as the remains of some 

planktonic Cladocera are often not as well represented as littoral chydorids in lake 

sediments (Frey, 1988a; Rautio et al., 2000).  Care is needed be taken when the full 

Cladocera assemblage in lake sediments are used for inferring the history of water 

quality. Both the inclusion and exclusion of planktonic Cladocera should be explored 

before a consensus conclusion is made on water quality. 

 

7.3 Comparison and Evaluation of Diatom- and Cladocera-inferred TP 

 

The TP inference models based on diatoms and Cladocera developed in Chapter 6 can 

be applied in surface and bottom samples of the seven lakes to reconstruct the nutrient 

levels. A TP transfer function based on only littoral Cladocera (chydorids) (not 

illustrated here) was also developed to exclude the influence of planktonic Cladocera. A 
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third component Partial Least Square (PLS-3) model gave the best performance with an 

r2
jack of 0.664 and RMSEP of 0.226. This model was based on square root transformed 

chydorid data and log10-transformed TP from 32 lakes. Prediction errors can vary 

between samples from different lakes. Bootstrapping is used in the reconstruction as this 

method can provide sample-specific errors (Birks et al., 1990). Four diatom- and 

Cladocera-based TP models, which were cross-validated with bootstrapping and gave 

the best performances, are selected for TP reconstruction for the seven lakes. All the 

four models are based on log10-transformed TP data. Reconstructed and back-

transformed TP (μg l-1) with errors for the top and bottom samples of the seven study 

lakes inferred by these four models are shown in Figure 7.6. In Weighted Averaging 

(WA) models, overestimation at low end of TP gradient and underestimation at high end 

observed can exaggerate the errors of predicted TP values. Therefore, diatom-based WA 

models based on 70 lakes are applied with both classical and inverse deshrinking. The 

WA-PLS-2 model is based on the full Cladocera assemblages from 31 lakes and PLS-3 

model based on chydorids from 32 lakes. The results for each of the seven lakes are 

summarized below. 

 

For Lough Atedaun, all the predicted TP values of the top sample given by the four 

models are close to the observed TP value of 36.7 μg l-1. The TP estimated by the PLS-3 

model are higher in both bottom and top samples than the other three models (see 

Figure 7.6). For Lough Ballybeg, PLS-3 and WA-PLS-2 models give higher TP values 

for both core top and bottom than the two diatom-based WA models. All the models 

show the same trend of a decreased TP in the bottom than in the core top with an 

increase of 30-40 μg l-1 TP by the diatom models compared to ca. 10 μg l-1 by the two 

Cladocera models. For the surface sediment of Lough Crans, PLS-3, WA-PLS-2 and 

WA_Inv models all give an inferred TP similar to the observed TP of 89 μg l-1. Little 

change in TP estimated by the Cladocera-based models can be observed between the 

core bottom and top (see Figure 7.6). However, the diatom models infer a significant 

increase in TP values by ca. 60-80 μg l-1. For the surface sediment from Lough Egish, 

predicted TP by all the four models show good correspondence in the range of 45-70 μg 

l-1. The inferred values, however, deviate substantially from the observed TP value of 

344 μg l-1 (see Table 7.1). TP predicted for the core bottom by the four models are all 

consistent in the TP range of 20-30 μg l-1. All the four models shows an increase in 

inferred TP by around 20-40 μg l-1 between the core bottom and top indicating a clear 

trend of eutrophication (see Figure 7.6). 
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Figure 7.5 Comparison of TP values predicted for the core bottom and top for seven lakes by four 
inference models (Horizontal axis shows the TP values (μg l-1); see text on details of PLS-3, WA-PLS-
2, WA_Inv and WA_Cla models; error bar represents prediction error; observed TP for Egish (344 μg l-

1) is not shown).
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The PLS-3, WA_Inv and WA_Cla models all gave predicted TP of around 35-40 μg l-1 for 

the surface sediment from Lough Inchiquin and this is higher than the observed TP of 

19.3 μg l-1. The chydorid-based PLS-3 model estimated a slight increase in TP between 

the core bottom and top, while the diatom models inferred a more pronounced increase. 

A higher TP (ca. 80 μg l-1) is estimated by the PLS-3 model compared to the other three 

models (ca. 40-50 μg l-1) for the surface sediment from Lough Mullagh (see Figure 7.6). 

For the bottom sample, all the four models gave predicted TP in the range of ca. 20-40 

μg l-1. Predicted TP for the surface sediment of Lough Sillan is in the range of around 

30-50 μg l-1 based on the PLS-3 and the two WA models compared to ca. 10 μg l-1 by 

the WA-PLS-2 model. All the results are in strong contrast with the observed TP of 141 

μg l-1.  Little change was found in estimated TP based on the WA-PLS-2 model between 

the core bottom and top while the PLS-3 model indicated an increase of less than 10 μg 

l-1 TP. Both diatom models suggested an increase of 20-30 μg l-1 in TP between the core 

bottom and top.  

 

The quantitative TP inference models show obviously increased nutrient level in Loughs 

Ballybeg, Egish and Mullagh between core bottom and core top based on both diatoms 

and Cladocera. For the other four lakes (Atedaun, Crans, Inchiquin and Sillan), 

Cladocera-based models display little changes in estimated TP between the core bottom 

and the top in comparison to the clearly increased TP suggested by the diatom models. 

Therefore predicted TP for the bottom samples based on the two diatom-based WA 

models are ca. 20 μg l-1 for all the seven lakes, lower than those estimated for the core 

top of all seven lakes and also lower than observed TP values except for Lough 

Inchiquin (see Figure 7.6). The WA-PLS-2 model based on the full Cladocera gives 

similar TP values for the bottom samples of four lakes (Atedaun, Egish, Inchiquin and 

Sillan) but higher TP by 20-40 μg l-1 for the other three lakes. TP estimated by the PLS-

3 model based on littoral Cladocera are higher than those by the other three models for 

the bottom samples of all seven lakes. This model also produces higher inferred TP 

values for the surface sediments of the seven lakes than all the other models, except for 

the TP predicted by the WA_Cla model for Loughs Crans and Inchiquin and the two WA 

models for Lough Sillan. 

 

The two diatom-based WA models with inverse and classical deshrinking show good 

agreement in predicting TP for the core surface and bottom samples. TP values 

estimated by the WA_Cla model are slightly higher than those by the WA_Inv for both the 
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top and bottom samples of all seven lakes. Such deviation between WA_Cla- and WA_Inv-

inferred TP is stronger in the core top than that for the core bottom, particulary at Lough 

Crans. Generally, both methods show comparable predictability and no major 

divergence in predicted TP indicating model consensus in the reconstruction of the 

nutrient levels. For the core bottom samples from all the seven lakes, the predicted TP 

by the two diatom WA models based on diatoms are ca. 20 μg l-1, lower than the TP 

estimated by the two Cladocera-based models except for Loughs Egish and Sillan, 

where nearly identical TP are reconstructed by both diatom- and Cladocera-based TP 

models.  

 

7.4 Discussion and Conclusions 

 

7.4.1 Discussion 

 

The weighted averaging method disregards species abundance and therefore the 

accuracy of its prediction is dependent on the distribution of the environmental variable 

in the training set (Braak & Looman, 1986). WA reliably estimates the species optima 

only in the special case of an even or uniform distribution of sites over the whole range 

of the environmental gradient. The TP distribution in the 70-lake diatom training set is 

strongly skewed towards the low end of the TP gradient as nearly half of the study sites 

have TP of less than 10 μg l-1 in the context of a TP range of 0-142 μg l-1 (see Table 4.1). 

While the TP distribution of the 31- or 32-lake Cladocera training set is less skewed and 

the median TP value for the data set is around 35 μg l-1 (see Table 5.1). The WA-inferred 

TP based on the diatom taxa is under-estimated because of this uneven TP distribution. 

This underestimation may account for the generally lower diatom-inferred TP than those 

predicted by the Cladocera-based models for the bottom samples and the lower inferred 

TP compared to the observed measurements for Loughs Ballybeg, Egish and Sillan. 

Therefore, the actual nutrient level for the reference state of the seven study lakes 

should be higher than the TP predicted by the diatom-based WA models. 

 

TP values inferred by the chydorid-based model were higher than TP inferred by the 

other three models for Loughs Atedaun, Ballybeg and Mullagh. These three lakes are all 

shallow with mean depths of 1.4, 2.7 and 2.3 m respectively (see Table 7.1). A higher 

TP inferred by the chydorid-based model could be due to the synchrony of abundant 
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chydorids with a TP peak during summer in shallow lakes. In a 14-month sampling 

period of chydorids in 11 Irish lakes (de Eyto, 2000), high abundance of chydorids 

occurred mainly between June and September and very low chydorid abundance was 

observed mainly between October and April. Hydrochemical data from Loughs 

Mullagh, Ballybeg and Atedaun generally displayed a peak in TP values during the 

summer season (Free, 2002; Wemaëre, 2005). In shallow lakes the intensive sediment-

water interaction and relatively high temperature of sediments in the summer lead to the 

release of phosphorus from the sediments to the water column and increase the total 

phosphorus concentration during the summer (Scheffer, 1998). In contrast, seasonal 

nutrient dynamics in deep lakes follows an opposite direction, where a continuous loss 

of nutrients from the epilimnion to the hypolimnion occurs in the summer before the 

autumn turnover when the well-mixed water enables the return of nutrients into the 

water column and therefore increases the nutrient level. This feature in deep lakes could 

account for a higher or at least similar TP inferred by the diatom- and full Cladocera-

based inference models in comparison to that predicted by the chydorid-based models in 

lakes of Crans, Inchiquin and Sillan, particularly for the surface sediments (see Figure 

7.6). Higher estimated TP by the chydorid-based model than the model based on full-

species Cladocera may also be due to the influence of planktonic Cladocera. High 

abundance of planktonic Cladocera and factors other than nutrient levels (like 

predation) can reduce the accuracy of the whole Cladocera model.  

 

The comparison of diatom-, Cladocera- and Chydorid-inferred TP for the core top with 

the measured TP is complicated due to the strong inter-annual and intra-annual 

variability of TP measurements. The mean and range of TP for the seven study lakes 

during 1996-2003 are shown in Table 7.4 based on published data. Low-frequency 

water sampling was conducted for Loughs Atedaun, Ballybeg, Crans and Egish in 

comparison to more frequent water sampling for 4-7 years for the other three lakes. 

These four lakes still show strong inter-annual and intra-annual fluctuation in TP. TP 

estimated by all the four inference models for the surface sediments of Atedaun, 

Ballybeg and Crans generally display good comparability with the annual mean of 

observed TP. This indicates that the diatom and Cladocera assemblages are reliable 

indicators for the average nutrient status of these lakes and the high TP variability exerts 

limited influence on the biological assemblages. TP predicted by the four inference 

models for Lough Egish show big divergence from the observed mean TP of 334 μg l-1 

with an intra-annual range of 226-421 μg l-1 in 1997 (Free, 2002). Good correspondence 
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in inferred TP, however, exists between the models based on diatoms, Cladocera and 

littoral Cladocera. This poor comparability between observed and inferred TP may be 

due to the strong variability in the measured TP as the annual range can be greater in 

eutrophic lakes (e.g. Gibson et al., 1996; Bennion & Smith, 2000). High-frequency 

water sampling in Lough Sillan between 1998 and 2003 shows a wide range of annual 

mean TP between 63.7 and 85.3 μg l-1 (see Table 7.4). Similarly, the annual mean TP 

fluctuated between 44.3 and 61.6 μg l-1 and the intra-annual fluctuation displays a wider 

range between 29 and 80 μg l-1 in 1996 in Lough Mullagh. This strong inter-annual 

variability in nutrient levels of Sillan and Mullagh can account for the dissimilarity 

between the measured and estimated TP by the inference models. 

 
Table 7.4 Summary of recent TP measurements and TP ranges for the seven study lakes. 
 

Lake Year of 
Sampling 

Sampling 
frequency 

Mean TP 
(μg l-1) 

TP range 
(μg l-1) Reference 

Atedaun 2000 4 36.7 17.3-83.7 (Wemaëre, 2005) 
 1997 1 23.0 - (Irvine et al., 2001) 
      

Ballybeg 2001 7 84.3 49.3-123.7 (Wemaëre, 2005) 
 2000 8 74.5 28.7-166.1 (Wemaëre, 2005) 
      

Crans 1987 1 241.0 - (Gibson, 1991) 
 1989/90 - 89.0 - DARD (1991) 
      

Egish 1997 6 336.2 226-421 (Free, 2002) 
 1996 3 358.3 279-429 (Free, 2002) 
      

Inchiquin 2001 10 16.8 - (Toner et al., 2005) 
 2001 8 19.3 12.4-30.4 (Wemaëre, 2005) 
 2000 8 20.2 10.4-35.1 (Wemaëre, 2005) 
 1997 10 26.0 6.0-41.0 (Irvine et al., 2001) 
 1996 7 16.0 5.0-28.0 (Irvine et al., 2001) 
      

Mullagh 2003 11 56.7 - (Toner et al., 2005) 
 2002 11 61.6 - (Toner et al., 2005) 
 2001 10 44.3 - (Toner et al., 2005) 
 2000 9 47.9 - (McGarrigle et al., 2002) 
 1996 4 53.0 40.0-80.0 (Free, 2002) 
 1997 6 56.3 29-69 (Free, 2002) 
      

Sillan 2003 12 71.2 - (Toner et al., 2005) 
 2002 12 63.7 - (Toner et al., 2005) 
 2001 14 78.6 - (Toner et al., 2005) 
 2000 10 72.0 - (McGarrigle et al., 2002) 
 1999 12 66.4 - (McGarrigle et al., 2002) 
 1998 12 85.3 - (McGarrigle et al., 2002) 
 1996/7 1 141.0 - (Irvine et al., 2001) 
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Strong temporal (both intra-annual and inter-annual) and spatial variability of nutrient 

levels in lake waters imply that it is almost impossible to determine the nutrient level in 

fixed values as pre-impact status for lake restoration. Therefore, a range of nutrient 

levels would be more viable and practical as a reference for setting lake restoration 

targets. The minimum of this TP range could be the estimated TP by the two diatom-

based models due to the skewed TP distribution of training set lakes towards the low 

end of the TP gradient. The upper limit of reference status could be the TP value 

predicted by the chydorid-based model as this model excludes the possible influence of 

selective predation on the plaktonic Cladocera and the TP distribution of the Cladocera 

training set lakes are more even along the TP gradient. In addition, this chydorid-based 

model may reflect the highest nutrient level due to the release of phosphorus from the 

sediments during the summer in shallow lakes. Therefore, 20-30 μg l-1 of TP is 

estimated as the reference range for Loughs Egish and Sillan, 20-40 μg l-1 for Loughs 

Atedaun, Inchiquin and Mullagh, and 20-70 μg l-1 for Loughs Ballybeg and Crans based 

on the diatom and Cladocera inference models (see Figure 7.6).  

 

The response of chydorids to nutrient level may not be clear in all cases. Chydorids in 

the littoral zone may not respond to changes associated with increasing productivity 

until the littoral habitats (e.g. macrophytes) have been affected (Hofmann, 1987a). 

Submerged macrophytes are a significant habitat for chydorids and play an important 

role in the trophic structure and nutrient dynamics of shallow lakes (Scheffer et al., 

1993). The relative abundance of chydorid remains in surface sediments of 38 

Australian billabongs showed a strong correlation with aquatic macrophyte cover 

(Thoms et al., 1999). In contrast a large-scale investigation of 51 freshwater Scottish 

lochs found little correlation between the littoral microcrustacea (dominated by 

chydorids) and aquatic macrophyte communities (Duigan & Kovach, 1994). Therefore, 

the response of chydorids to nutrient levels of lake waters can be complicated by the 

macrophyte-nutrient relationship. A systematic investigation of aquatic macrophytes 

was not undertaken in this study. Such a study would improve our knowledge of the 

chydorid-macrophyte relationship for the training-set lakes and potentially reduce the 

errors in the application of a chydorid-based TP inference model. Also in shallow lakes, 

the dominance of non-planktonic diatoms, particularly small Fragilaria, have been 

observed in several studies as they can tolerate a wide range of water quality (Anderson 

et al., 1993; Bennion et al., 1995; Sayer, 2001). Though this phenomenon is not 

observed in the seven test lakes for top-bottom analysis, care should be taken when 
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additional application of the diatom training set is taken. The distinct features associated 

with seasonal nutrient dynamics in shallow and deep lakes can affect the accuracy in TP 

reconstruction using Cladocera-based models. A division of diatom- or chydorid-based 

training sets into two lake groups, deep and shallow lakes, can help distinguish the 

differential responses of biological indicators to the nutrient level in these two distinct 

habitat environment and improve the model performances.  

 

7.4.2 Conclusions 

 

The general trends in nutrient status for seven lakes were indicated by TP inferred by 

diatom and Cladocera inference models as well as the biological assemblages. The 

diatom-based models with inverse and classical deshrinking displayed good consensus 

in the reconstructed TP. They generally produced lower inferred TP than the chydorid- 

and Cladocera-based models due to the large number of oligotrophic lakes included in 

the diatom training set, which subsequently lowered the WA-inferred TP optima for 

diatom taxa. A TP range is recommended as the reference status for each of the seven 

lakes in consideration of the strong inter- and intra-annual variability of nutrient levels 

of lake waters. Diatom- and chydorid-inferred TP are used as the lower and upper limits 

respectively for the TP reference range. A TP range of 20-30 μg l-1 is estimated for 

Loughs Egish and Sillan, 20-40 μg l-1 for Loughs Atedaun, Inchiquin and Mullagh, and 

20-70 μg l-1 for Loughs Ballybeg and Crans. 
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Chapter 8: Summary and Conclusions 
 

 

The primary aim of this study was to investigate the relationships between the measured 

environment variables and biological community (diatoms and Cladocera) in Irish lakes. 

Total Phosphorus (TP) was highlighted in this study and its relationships with diatom 

and Cladocera communities were the focus in this study. A range of palaeolimnological 

techniques and numerical methods have been employed to achieve this aim. This 

chapter presents the summary of research results and findings and then concludes with 

suggestions for future research. 

 

8.1 Summary of Results 

 

The main research work and results were introduced and discussed in the previous 

chapters: Chapter 4 examined the surface sediment diatoms and environmental variables 

from 72 lakes, Chapter 5 investigated the surface sediment Cladocera and 

environmental data from 33 lakes, Chapter 6 developed TP transfer functions based on 

diatoms and Cladocera and finally the inference models were applied in TP 

reconstructions of seven lakes in Chapter 7. The main parts of this study are 

summarised in sequence below.  

 

8.1.1 The Diatom Training Set 

 

This diatom training set is composed of 72 lakes from the Irish Ecoregion along a TP 

gradient of 0-142.3 μg l-1. The majority of lakes were located at low elevation and were 

relatively deep with variable lake areas. Peatland and pasture were the dominant land 

cover types. This training set includes a majority of the lake types recognised in the 

Irish EPA Lake Typology classification scheme. However, lakes with low TP were over-

represented as half of the 72 lakes were oligotrophic and only two were hypertrophic. 

Land use and lake and catchment morphology displayed strong influences on the 

hydrochemical nature of the lake waters. Ordination of environmental variables 

highlighted that pH, alkalinity and conductivity were strongly correlated and influenced 

by catchment peat and pasture cover. The highly correlated nutrient variables, TP and 

chlorophyll-a, displayed an inverse relationship with lake depth.  
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High diatom species diversity was found in this 72-lake training set with 233 diatom 

taxa occurring in at least three sites and with a maximum abundance of greater than 1%. 

Achnanthes minutissima, a species commonly found in a wide range of lake types, was 

the most common species with presence in 70 lakes. A long ecological gradient 

indicated strong species turnover and a high degree of heterogeneity in the diatom 

assemblage composition. Eleven species occurred with a maximum abundance of over 

30%, including Aulacoseira subarctica, Asterionella formosa and Cyclotella comensis. 

Diatom distribution along the TP gradient displayed a clear shift in assemblage structure, 

with species like Cyclotella kuetzingiana, C. comensis and Frustulia saxonica abundant 

at the low end of the TP gradient. A high abundance of taxa like Tabellaria flocculosa 

and A. subarctica occurred with an increase in TP while planktonic diatoms were 

dominant at the high end of the TP gradient, including Asterionella formosa and 

Stephnanodiscus parvus. The relatively even distribution of species along the first two 

axes of Correspondence Analysis (CA) indicated relatively continuous variation of 

species composition in the data set. This strong ecological response was also reflected in 

the good agreement between the diatom clusters and the physico-chemical lake 

typology classes. Alkalinity and to a lesser extent, lake area and size, were significant in 

controlling the diatom assemblages.  

 

A large portion of the total variance in the diatom community was accounted for by the 

environment variables included in the Constrained Correspondence Analysis (CCA). 

Acidity and nutrient gradients were most significant in influencing the diatom 

distribution. This is also implied in the configuration of diatom species in CA plot 

where the triangle-like geometry of species along the first two axes indicated two 

dominant underlying environmental gradients. This triangle shape of species in CCA 

similar to that in CA confirmed that the main pattern in the species data were captured 

by the acidity and nutrient gradients. The forward selection exercise also identified pH 

and TP as the most significant variables controlling the diatom community. The 

examination of species response curves for some common diatoms showed a range of 

unimodal, sigmoidal increasing and decreasing curves to TP using Gaussian Logit 

Regression (GLR). This implied that a long TP gradient was covered in the training set 

and most of the common taxa displayed strong responses along this TP gradient. In 

addition the relative high λ1/ λ2 ratio (0.673) in partial CCA indicated the importance of 
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TP in controlling the pattern of diatom assemblages. This implied that TP was 

appropriate for developing a robust transfer function for the diatom training set. 

 

8.1.2 The Cladocera Training Set 

 

Thirty-three lakes included in this Cladocera training set were mainly small and alkaline 

with various basin depths along a relatively long TP gradient (4-142.3 μg l-1) similar to 

the diatom training set. Most of the lakes were strongly influenced by extensive 

agriculture activities, e.g. pastureland. Eight lake types were included in this training set 

according to the Irish Lake Typology classes and Lake Types 2, 4, 6 and 8 (all large 

lakes) were not represented. PCA of the environmental data revealed similar data 

structure as in the diatom training set: nutrient variables displayed an inverse 

relationship with lake depth while the highly correlated acidity-conductivity gradient 

was significantly influenced by catchment peat and pasture cover.  

 

The comparison of Cladocera assemblages from surface sediments and contemporary 

water samples from six lakes was an attempt to check how well the sediment samples 

represented the live community. For littoral Cladocera (chydorids) higher species 

richness was often observed in sediments than in water samples with the main pattern of 

species composition captured in the sediments. The dominant planktonic Cladocera 

were also reflected in the sediments, however, clear dissimilarity occurred for the less 

common taxa. In addition low taxonomic resolution was achieved for the remains of 

some planktonic taxa. Cladocera assemblages in lake sediments are generally 

representative of original live community despite their differential disarticulation and 

preservation, but care needs be taken in interpreting the planktonic Cladocera remains. 

Thirty-nine Cladocera taxa and species groups were collected from surface sediments of 

33 lakes with relatively high species diversity. However, a relatively short gradient 

length within the Cladocera data indicated an insignificant species shift along 

underlying environment gradients, as evidenced by the occurrence of five species or 

species group in all of the 33 lakes. Planktonic Daphnina longispina group and Bosmina 

longirostris were the most dominant taxa in this training set and littoral Chydorus 

sphaericus and Alona guttata/rectangula group were also common. The classification of 

chydorid data revealed four chydorid clusters with little overlap. They corresponded 
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well with low, medium and high alkalinity lake types indicating a strong ecological 

response of littoral Cladocera to alkalinity.  

 

The first axis in a PCA of environment data was mainly correlated with catchment and 

physical variables but in the Redundancy Analysis (RDA) of Cladocera data the first 

axis was most strongly related to nutrient variables. This indicates that nutrient gradient 

is the most significant gradient in determining the Cladocera community while 

catchment and physical variables were less important. Alkalinity was strongly correlated 

with the second axes of both PCA and RDA. The species response curves also 

suggested strong ecological responses to the nutrients and alkalinity. In addition lake 

depth, altitude and catchment area were also identified as important variables 

influencing Cladocera distribution. Large portions of the total variance in the Cladocera 

data were explained by the strongly correlated nutrient variables, Chlorophyll-a (8.9%) 

and TP (8.1%), respectively in partial RDAs. A moderate λ1/ λ2 ratio of 0.519 implied 

that TP can be potentially used for developing Cladocera-based transfer functions.  

 

8.1.3 TP Inference Models and Their Application 

 

Three transfer function methods, Weighted Averaging (WA), Partial Least Square (PLS) 

and Weighted Averaging Partial Least Square (WA-PLS) were used in developing TP 

transfer functions for the diatom and Cladocera training sets. Data manipulation was 

explored and multiple models were developed in this study. Model performances and 

prediction errors were presented to highlight the selection process to derive the optimal 

models. Log-transformed TP was used in all models as they provided models 

outperforming those based on untransformed TP. Jack-knifing was used for cross-

validating each model as it outperformed bootstrapping. Both raw and square root 

transformed ecological data were included in the model development. The optimal 

diatom-TP transfer function was a WA model with tolerance downweighted and inverse 

deshrinking and it produced a jack-knifed r2 of 0.743 and RMSEP of 0.213 based on 

untransformed diatom data from 70 lakes. The optimal Cladocera-TP transfer function 

utilised the second component of WA-PLS and had a jack-knifed r2 of 0.729 and 

RMSEP of 0.206 based on square root transformed Cladocera data from 31 lakes.  
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The diatom- and Cladocera TP transfer functions produced were also evaluated and 

compared with published diatom and Cladocera TP models. Both models developed in 

this study covered relative long TP gradients and displayed strong performances in 

terms of cross-validated r2 and RMSEP. TP optima of common diatom and Cladocera 

taxa were also produced using the Weighted Averaging method. Common taxa of 

diatoms and Cladocera in the Irish Ecoregion displayed good comparability in TP 

optima with those from other European Ecoregions. However, the under-representation 

of lakes with high TP in this diatom training set generally provided lower TP optima 

than those training sets composed of more eutrophic lakes. As 29 lakes were common in 

the diatom and Cladocera training sets, a comparison between the diatom- and 

Cladocera-inferred TP provided information on the performances and agreement of both 

transfer functions. A good correlation (r = 0.685) was found between the log-

transformed TP inferred by both models for the 29 sites. Back-transformed TP (μg l-1) in 

contrast had a lower correlation (r = 0.476).  

 

Finally the diatom and Cladocera TP transfer functions including a littoral Cladocera TP 

model were applied to the top and bottom samples from seven lakes to evaluate the 

developed TP models and also help identify the pre-impact reference conditions. TP 

models cross-validated with bootstrapping were used as they provide sample-specific 

error information and the diatom WA models with both classical and inverse 

deshrinking were applied. An increase in the reconstructed TP was observed between 

the bottom and top samples for most of the seven lakes based on all the TP models and a 

similar trend was also revealed by the diatom and Cladocera assemblage changes. 

However, certain dissimilarities were also found between Cladocera- and diatom-

inferred TP and also between Cladocera- and littoral Cladocera-inferred TP. Strong 

divergence between the observed and predicted TP by the diatom and Cladocera models 

occurred in the two currently hypertrophic lakes (Loughs Egish and Sillan). Based on 

the TP predicted for the bottom samples, a range of reference TP conditions were 

identified as 20-30 μg l-1 for Loughs Egish and Sillan, 20-40 μg l-1 for Atedaun, 

Inchiquin and Mullagh, and 20-70 μg l-1 for Ballybeg and Crans. The adoption of a TP 

range for the reference conditions also reflected the nature of inter- and intra-annual 

variability of nutrient levels in lake waters.  
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8.2 Conclusions 

 

Surface sediment diatoms from 72 lakes displayed strong response to environment 

gradients. Acidity and nutrient gradients were the most important in controlling the 

diatom distribution. The reliability of the surface sediment Cladocera in representing the 

original live community was confirmed in this study but the planktonic species were 

less well represented and lower taxonomic resolution was a contributory factor. A suite 

of environmental variables demonstrated strong influence on the Cladocera assemblages 

from 33 lakes and the nutrient gradient was shown to be the most significant. Alkalinity, 

altitude, lake depth and catchment area were also important in explaining the variation 

in the Cladocera data. TP was identified as one of the most significant variables in 

influencing both the diatom and the Cladocera communities using a range of 

multivariate and ordination methods. The classification of both diatom and Cladocera 

assemblages generally showed good agreement with the physico-chemical lake 

typology classes. Alkalinity displayed the strongest ecological response and lake depth 

and lake area to a lesser extent.  

 

Both unimodal-based and linear methods were employed for modelling the quantitative 

relationship between TP and the biological assemblages. Data manipulation was found 

to be important in affecting the model performance. The good correlation between the 

diatom- and Cladocera-inferred TP for the same lakes also confirmed the performances 

of the constructed TP models. Similar TP trends were observed between the top and 

bottom samples of seven lakes using the diatom and Cladocera models including a 

littoral Cladocera-TP model. The over-representation of oligotrophic lakes in the diatom 

training set often produced lower TP in reconstruction than the Cladocera models. A TP 

range was proposed as the pre-impact reference condition for the seven degraded lakes 

taking account of the seasonal and inter-annual variation of TP in lake waters. 

Refinement of the TP transfer functions in the future can help improve the accuracy in 

TP reconstruction and defining lake restoration targets.  

 

8.3 Future Directions 

 

The performances of both inference models can potentially be improved by 

incorporating more lakes in the diatom and Cladocera training sets. Collecting more 
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samples and related environmental data can help to expand the training set and improve 

the accuracy of inference models. A higher frequency of water sampling and a more 

systematic method of measurement are required. In addition the collection of 

macrophyte and fish data would improve our knowledge on the Cladocera-environment 

relationships as both macrophyte cover and fish density were found to have strong 

influences on Cladocera assemblges (e.g. Jeppesen et al., 1996; Davidson, 2005). 

Alternatively the merging of regional datasets can be used to generate new transfer 

functions with wider applicability (Gasse et al., 1995). A combined diatom-inferred TP 

transfer function was constructed from 152 lakes after incorporating six regional 

training sets across Northwest Europe (Bennion et al., 1996). This combined training set 

improved the model performance with better accuracy and strength. The prediction 

errors did not increase with the expanded heterogeneity in the training set. Therefore an 

expanded TP gradient and a larger training set can improve the performance of 

inference models. This method could be employed to combine the two existing diatom-

based TP transfer functions created for the Irish Ecoregion. The current diatom training 

set is mainly composed of oligotrophic and mesotrophic lakes covering the majority of 

Irish lake types while a data set from Northern Ireland includes fewer lake types and is 

dominated by more eutrophic lakes (Anderson & Rippey, 1994). A combined training 

set with a more even distribution of TP, an expanded TP gradient and increased species 

diversity would improve the performance of the inference model for the Irish Ecoregion 

and this remains to be explored in the future.  

 

The influence of uneven distribution of sites along the TP gradient on model 

reconstruction can be reduced through several methods to refine the inference models. 

Removal of some oligotrophic lakes in the diatom training set could reduce the 

skewness of site distribution along the TP gradient and improve the accuracy of TP 

optima of diatom taxa. Also the trimming of some diatom taxa irrelevant to the 

environmental variables of interest has improved model performance significantly 

(Racca et al., 2004). The application of Modern Analogue Technique (MAT) can be 

performed for TP reconstruction to verify the performances of inference models and 

also to achieve consensus results in TP reconstructions. MAT assumes that current 

aquatic communities in reference lakes closely resemble those that formerly existed in 

the currently polluted lakes (Flower et al., 1997). Dissimilarity coefficients measure the 

difference between fossil and modern assemblages and this method has been applied 

successfully in several studies (e.g. Flower et al., 1997; Bennion et al., 2004a). 
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Another opportunity for the current study, as suggested by Jeppensen et al. (2001), will 

be the development of inference models that use Cladocera taxa (e.g. Daphnia, Bosmina) 

to explain the variation in diatom assemblages as both organisms are important 

components in the food webs of lakes with diatoms as the primary producers and 

planktonic Cladocera the predatory zooplankton (e.g. Reynolds, 1984; Lampert & 

Sommer, 1997). The construction of such models would enable exploration of the 

Cladocera-diatom relationship and help understand their biological interaction and their 

influence on community structure.  
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Appendix A: Summary of Study Sites 
 
Basic geographical information with site codes for 75 study lakes used in this thesis. NA 
means no related information are collected.  
 

Site Code Lake Name County LakeCodeV6 Grid Reference 

ANN Annaghmore Roscommon 26-0155a-1060-000 M 900 837 
ANS Anascaul Kerry 22-00200-0010-000 Q 585 052 
ARD Arderry Galway 31-000r4-1120-000 L 995 457 
ATE Atedaun Clare 27-00158-0980-000 R 295 885 
BAA Ballyallia Clare 28-00154-0110-000 R 342 809 
BAB Ballybeg Clare 27-00158-0030-000 R 330 739 
BAC Ballycar Clare 27-0155c-0110-000 R 414 690 
BAF Barfinnihy Kerry 21-00216-0020-000 V 850 768 
BAL Ballynakill (Gorumna) Galway 31-000r4-2040-000 L 856 225 
BAN Bane Westmeath 07-00159-0930-000 N 550 712  
BAR Barra Donegal 38-00048-0490-000 B 935 120 
BAT Ballyteige Clare 27-00158-0900-000 R 348 888 
BEA Beaghcauneen Galway 32-t4_32-0270-000 L 680 472 
BRL Bray Lower Wicklow 10-00169-0040-000 O 137 161 
BUN Bunny Clare 27-00158-1760-000 R 375 967 
CAA Carra Mayo 30-00143-1690-000 M 180 710 
CAR Caragh Kerry 22-00208-0020-000 V 725 905 
CAS Castle Clare 27-00158-1870-000 R 486 690 
CAU Caum Clare 23-00199-0030-000 R 182 810 
CLO Cloonaghlin Kerry 21-00213-0090-000 V 610 709 
CRA Crans Tyrone NA H 711 568 
CUL Cullaun Clare 27-00158-1190-000 R 315 905 
CUY Cullaunyheeda Clare NA R 464 747 
DAN Dan Wicklow 10-00171-0070-000 O 150 040 
DOC Doo (CE) Clare 28-00152-0050-000 R 120 721 
DOO Doo (DL) Donegal 39-00008-0010-000 C 359 394 
DRO Dromore Clare 27-00158-0560-000 R 346 859 
DRU Drumanure Clare NA R 215842 
DUN Dunglow Donegal 38-00016-0070-000 B 782 117 
EAS Easky Sligo 35-00114-0150-000 G 442 225 
EFF Effernan Clare 27-0155e-0080-000 R 222 558 
FAD Fad Inishowen East Donegal 40-0000c-0020-000 C 539 439 
FEE Fee Galway 32-00132-0020-000 L 790 613 
FEG Feeagh Mayo 32-00107-0070-000 F 965 000 
GAR Garvillaun Clare 28-00149-0240-000 R 248 829 
GOR Gortaganniv Clare 27-00158-0420-000 R 251 759 
HOH Moher Mayo 32-00126-0050-000 L 977 766 
INC Inchichronan Clare 27-00158-0610-000 R 391853 
INQ Inchiquin Clare 21-00220-0050-000 R 268 897 
KEE Keel (Rosses) Donegal 38-00022-0080-000 B 847 162 
KIL Kiltooris Donegal 38-000j6-0050-000 G 676 972 
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Site Code Lake Name County LakeCodeV6 Grid Reference 

KIN Kindrum Donegal 38-u6_38-0110-000 C 185 430 
KYL Kylemore Galway 32-00133-0050-000 L 770 552 
LEN Lene Westmeath 07-00159-1150-000 N 510 685 
LIC Lickeen Clare 28-00149-0080-000 R 176 909 
LIS Lisnahan Clare NA Q 900 617 
MAU Maumwee Galway 30-00143-1460-000 L 977 484 
MCN McNean Leitrim 36-00123-1070-000 H 040 400 
MOA Moanmore Clare NA Q 979 611 
MOO Mooghna Clare 28-00149-0040-000 R 137 842 
MOR Morgans Clare NA R 255 835 
MUC Muckanagh Clare 27-00158-1470-000 R 370 925 
MUL Mullagh Cavan 07-00159-0220-000 N 677 855 
MUN Muckno Monaghan 06-00094-0280-000 H 856 175 
NAB Nambrackkeagh Galway 32-00132-0040-000 L 821 603 
NAH Nahasleam Galway 31-000r4-0720-000 L 971 244 
NAM Naminn Donegal 40-00004-0020-000 C 396 419 
NAN Naminna Clare 28-00152-0060-000 R 176 710 
OFL O'Flynn Roscommon 26-00156-0570-000 M 585 795 
OOR Oorid Galway 31-00136-0670-000 L 930 460 
OUG Oughter Cavan 36-00123-3230-000 H 342 075 
OWE Owel Westmeath 26-00157-0260-000 N 400 581 
POL Pollaphuca Wicklow 09-00168-0230-000 N 985 086 
RAM Ramor Cavan 07-00159-0600-000 N 603 868 
REA Rea Galway 29-00145-0180-000 M 615 155 
ROS Rosconnell Clare NA R 222 793 
RUS Rushaun Clare NA R 253 791 
SHI Shindilla Galway 31-000r4-0950-000 L 960 460 
SIL Sillan Monaghan 36-00123-5720-000 H 700 070 
TAL Talt Sligo 34-00110-0630-000 G 398 150 
TAY Tay Wicklow 10-00171-0090-000 O 160 750  
TUL Tullabrack Clare 28-00154-0030-000 R 018 597 
UPE Upper Kerry 22-00207-0260-000 V 900 817 
VEA Veagh Donegal 38-00027-0210-000 C 022 215 
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Appendix B: Summary of Physical Data 
 

Data for six physical variables of 75 study lakes and NA means no related information 
are collected. 

 

Site 
Code 

Lake 
Name 

Altitude 
(m) 

Catchment 
Area 
(ha) 

Lake 
Area 
(ha) 

Catchment 
Area: Lake 
Area 

Max 
Depth 
(m) 

Mean 
Depth 
(m) 

ANN Annaghmore 46 395.8 53.1 7.5 16.0 5.8 
ANS Anascaul NA NA < 50 NA 24.0 15.6 
ARD Arderry 37 1442.1 81.1 17.8 11.7 5.7 
ATE Atedaun 22 28250.0 38.0 743.6 13.0 1.4 
BAA Ballyallia 10 2473.0 32.6 75.9 16.5 6.3 
BAB Ballybeg 10 414.0 19.7 21.0 5.7 2.7 
BAC Ballycar 30 367.0 3.0 122.3 NA 2.3 
BAF Barfinnihy 249 79.3 13.6 5.8 16.7 9.8 
BAL Ballynakill 13 140.9 23.9 5.9 19.0 6.7 
BAN Bane 112 470.1 75.4 6.2 16.5 10.9 
BAR Barra 90 1968.1 62.6 31.4 12.0 4.4 
BAT Ballyteige 20 29042.0 14.2 2045.2 7.9 4.1 
BEA Beaghcauneen NA NA 26.0 NA 16.0 8.0 
BRL Bray Lower 378 142.8 24.8 5.8 45.7 19.8 
BUN Bunny 20 7750.0 102.6 75.5 11.6 1.4 
CAA Carra 21 10400.0 1438.0 7.2 18.0 1.8 
CAR Caragh 15 16107.8 499.4 32.3 40.0 11.6 
CAS Castle 20 13235.0 23.1 572.9 NA 3.4 
CAU Caum 51 519.0 6.8 76.3 8.2 3.1 
CLO Cloonaghlin 109 1023.5 127.7 8.0 27.0 12.0 
CRA Crans 95 59.5 8.5 7.0 12.0 6.7 
CUL Cullaun 25 8132.0 49.7 163.6 25.0 13.4 
CUY Cullaunyheeda 30 2943.0 152.8 19.3 25.0 7.8 
DAN Dan 200 6313.3 102.9 61.4 33.5 13.5 
DOC Doo (CE) 91 2275.0 130.2 17.5 14.9 3.3 
DOO Doo (DL) 283 427.9 9.0 47.4 16.5 5.3 
DRO Dromore 20 167.0 49.1 3.4 19.0 6.0 
DRU Druminure 100 68.0 2.8 24.3 4.0 2.3 
DUN Dunglow 13 3767.2 61.2 61.5 8.0 5.5 
EAS Easky 180 1160.6 119.2 9.7 11.0 2.4 
EFF Effernan 60 276.0 10.3 26.8 8.3 4.5 
EGI Egish  162 784.3 121.7 6.4 12.0 5.0 
FAD Fad Inishowen  233 60.7 12.3 5.0 13.6 5.6 
FEE Fee 47 1575.9 173.7 9.1 32.0 15.5 
FEG Feeagh 11 10033.3 394.8 25.4 45.3 14.5 
GAR Garvillaun 100 70.0 2.3 30.4 4.2 3.0 
GOR Gortaganniv 80 203.0 3.2 63.4 4.5 3.0 
HOH Moher 75 934.4 40.4 23.1 13.4 2.9 
INC Inchichronan 30 3334.0 116.7 28.6 18.1 6.5 
INQ Inchiquin 35 14714.0 106.9 137.6 31.0 12.2 
KEE Keel 136 396.4 11.4 34.7 10.0 5.2 
KIL Kiltooris 7 554.5 43.5 12.8 13.5 <4 
KIN Kindrum 8 366.8 60.8 6.0 12.5 6.6 
KYL Kylemore 35 2090.5 132.2 15.8 30.0 11.7 
LEN Lene 93 1169.0 416.2 2.8 19.7 8.5 
LIC Lickeen 71 867.0 84.4 10.3 23.6 3.9 
LIS Lisnahan 54 77.0 5.9 13.1 2.3 1.4 
MAU Maumwee 46 425.2 27.6 15.4 8.3 2.0 
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Site 
Code 

Lake 
Name 

Altitude 
(m) 

Catchment 
Area 
(ha) 

Lake 
Area 
(ha) 

Catchment 
Area: Lake 
Area 

Max 
Depth 
(m) 

Mean 
Depth 
(m) 

MCN McNean 50 12036.9 977.8 12.3 14.5 6.7 
MOA Moanmore 10 335.0 12.1 27.7 1.1 0.9 
MOO Mooghna 91 127.0 3.3 38.5 9.7 4.8 
MOR Morgans 100 30.0 1.2 25.0 4.8 3.5 
MUC Muckanagh 20 3935.0 96.1 40.9 15.0 2.9 
MUL Mullagh 120 114.2 35.1 3.3 8.1 2.3 
MUN Muckno 90 16072.4 364.4 44.1 27.0 5.9 
NAB Nambrackkeagh 65 55.6 6.7 8.3 8.5 4.1 
NAH Nahasleam 33 2278.0 28.1 81.1 5.6 2.1 
NAM Naminn 150 110.2 15.0 7.3 7.8 3.9 
NAN Naminna 170 207.0 20.0 10.4 10.9 4.4 
OFL O'Flynn 77 1834.7 137.5 13.3 14.5 2.8 
OOR Oorid 45 739.5 60.5 12.2 14.0 5.5 
OUG Oughter 48.9 147874.0 1105.5 133.8 14.0 2.2 
OWE Owel 97.8 4694.3 1029.4 4.6 22.8 7.2 
POL Pollaphuca 180 30265.0 1973.9 15.3 NA 6.8 
RAM Ramor 83.4 25150.2 741.2 33.9 4.0 3.0 
REA Rea 81 1353.0 301.1 4.5 20.9 14.5 
ROS Rosconnell 50 129.0 9.0 14.3 9.2 5.9 
RUS Rushaun 71 123.0 3.4 36.2 7.2 4.2 
SHI Shindilla 38 965.7 70.2 13.8 22.0 8.1 
SIL Sillan 94 NA 140.0 NA 12.0 6.0 
TAL Talt 130 482.8 97.3 5.0 23.0 8.9 
TAY Tay 250 2002.9 50.0 40.1 32.8 17.1 
TUL Tullabrack 40 44.0 2.5 17.9 1.1 0.7 
UPE Upper 18 11307.6 169.9 66.6 36.1 14.5 
VEA Veagh 40 3687.7 260.9 14.1 28.0 >4 
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Appendix C: Summary of Land Cover Data  
 
Land cover data provided by the Irish EPA were collected from the CORINE 2000 
dataset for all 75 lakes except for four lakes (marked with *) from the CORINE 1990 
dataset. 
  

Site 
Code 

Lake 
Name 

Agriculture 
(%) 

Forest 
(%) 

Pasture 
(%) 

Peat 
(%) 

Urban 
(%) 

ANN Annaghmore 0.0 10.7 78.7 0.0 0.0 
ANS Anascaul 0.0 0.0 1.6 62.6 0.0 
ARD Arderry 0.0 12.0 0.0 78.2 0.0 
ATE Atedaun 11.3 0.8 38.4 3.1 0.3 
BAA Ballyallia 11.0 4.6 45.4 5.6 0.4 
BAB Ballybeg 4.0 22.6 53.7 0.0 10.9 
BAC* Ballycar 0.0 0.0 69.0 0.0 0.0 
BAF Barfinnihy 0.0 0.0 0.0 64.5 0.0 
BAL Ballynakill  84.7 0.0 9.5 5.8 0.0 
BAN Bane 3.6 0.0 96.0 0.0 0.0 
BAR Barra 0.0 0.0 0.0 72.3 0.0 
BAT Ballyteige 10.5 0.8 39.5 3.7 0.2 
BEA Beaghcauneen 0.0 0.0 0.0 100.0 0.0 
BRL Bray Lower 0.0 0.0 0.0 99.5 0.0 
BUN Bunny 4.4 0.0 32.1 1.6 0.0 
CAA Carra 24.5 4.2 53.0 10.2 0.0 
CAR* Caragh 6.2 4.3 5.2 64.4 0.0 
CAS* Castle 0.0 16.0 65.0 14.0 0.0 
CAU Caum 0.0 23.1 0.0 75.4 0.0 
CLO Cloonaghlin 0.0 0.0 0.0 70.0 0.0 
CRA Crans 0.0 15.0 85.0 0.0 0.0 
CUL Cullaun 6.5 0.0 42.8 0.5 0.0 
CUY Cullaunyheeda 8.1 5.7 68.4 7.7 6.4 
DAN Dan 0.2 13.1 1.4 80.3 0.0 
DOC Doo (CE) 6.1 5.5 24.7 63.8 0.0 
DOO Doo (DL) 0.0 0.0 0.0 100.0 0.0 
DRO Dromore 12.9 9.1 54.5 4.0 1.5 
DRU Druminure 0.0 0.0 20.4 0.0 0.0 
DUN Dunglow 5.7 0.0 0.0 86.3 0.0 
EAS Easky 0.0 0.0 0.0 98.0 0.0 
EFF Effernan 52.1 15.6 19.7 12.6 0.0 
EGI Egish  10.9 0.0 86.4 0.0 2.7 
FAD Fad Inishowen 0.0 0.0 0.0 100.0 0.0 
FEE Fee 0.0 7.6 0.0 72.9 0.0 
FEG Feeagh 2.9 22.8 0.0 62.0 0.0 
GAR Garvillaun 0.0 0.0 24.5 0.0 0.0 
GOR Gortaganniv 14.8 0.0 85.2 0.0 0.0 
HOH Moher 41.1 9.9 0.0 49.1 0.0 
INC Inchichronan 18.5 9.9 32.5 21.0 0.0 
INQ Inchiquin 8.0 6.0 32.0 2.0 0.0 
KEE Keel 0.0 0.0 0.0 100.0 0.0 
KIL Kiltooris 0.0 0.0 59.5 33.5 0.0 
KIN Kindrum 29.0 0.0 20.1 50.9 0.0 
KYL Kylemore 0.0 8.0 0.0 66.7 0.0 
LEN Lene 0.4 0.0 87.2 0.0 3.2 
LIC Lickeen 19.0 0.0 50.5 30.3 0.0 
LIS Lisnahan 36.9 0.0 62.9 0.0 0.0 
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Site 
Code 

Lake 
Name 

Agriculture 
(%) 

Forest 
(%) 

Pasture 
(%) 

Peat 
(%) 

Urban 
(%) 

MAU Maumwee 0.0 0.0 0.0 99.7 0.0 
MCN McNean 18.7 14.9 16.6 34.1 0.4 
MOA Moanmore 0.0 0.0 6.6 93.4 0.0 
MOO Mooghna 0.0 0.0 100.0 0.0 0.0 
MOR Morgans 43.2 0.0 56.8 0.0 0.0 
MUC Muckanagh 12.3 0.0 51.7 11.0 0.0 
MUL Mullagh 4.3 0.0 95.7 0.0 0.0 
MUN Muckno 5.3 0.3 89.1 1.5 2.3 
NAB Nambrackkeagh 0.0 31.7 0.0 57.8 0.0 
NAH Nahasleam 0.0 9.5 0.0 78.1 0.0 
NAM Naminn 0.0 0.0 0.0 100.0 0.0 
NAN Naminna 0.0 43.9 0.0 24.6 0.0 
OFL O'Flynn 7.6 2.9 41.0 45.1 1.8 
OOR Oorid 5.8 2.9 0.0 91.4 0.0 
OUG Oughter 3.2 1.1 87.3 3.5 0.8 
OWE Owel 14.0 1.1 80.6 0.0 0.0 
POL Pollaphuca 4.8 13.0 25.6 46.8 2.0 
RAM Ramor 12.1 2.0 81.7 0.6 0.8 
REA Rea 6.0 0.0 86.5 0.0 7.5 
ROS* Rosconnell 0.0 10.0 72.0 18.0 0.0 
RUS Rushaun 13.4 0.0 69.8 0.0 0.0 
SHI Shindilla 0.0 5.7 0.0 94.3 0.0 
SIL Sillan 18.0 0.0 79.8 0.0 1.3 
TAL Talt 0.0 1.6 26.9 70.9 0.0 
TAY Tay 0.0 6.6 0.0 88.0 0.0 
TUL Tullabrack 0.0 0.0 100.0 0.0 0.0 
UPE Upper 2.4 7.2 0.5 73.2 0.0 
VEA Veagh 0.0 39.6 0.0 58.0 0.0 
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Appendix D: Summary of Hydrochemical Data 
 

Seventy-five lakes were ordered in the alphabetic sequence of site codes and lake names 
for site codes are listed in Appendix A. Unpublished data of candidate reference lakes 
were provided by the Irish EPA in 2003 and were cited as EPA CRL 2003. NA means no 
information is available when this thesis is being written. 
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ANN NA NA NA 159.4 0.4 19.0 351.0 8.5 6.5 EPA CRL 2003 

ANS 1996/7 7 1 5.3 3.1 30.0 73.0 6.7 4.0 Irvine et al., 2001 

ARD NA NA NA 6.1 1.8 78.0 84.0 6.3 6.0 EPA CRL 2003 

ATE 2000 4,6,7 9 4 135.4 5.8 29.8 334.5 8.0 36.7 Wemaere, 2005 

BAA 2000 4,6,7 9 4 157.7 8.1 21.3 381.8 8.2 21.0 Wemaere, 2005 

BAB 2001 1,4,5,6,7,8,9,10 8 128.0 29.3 26.7 299.4 7.9 84.3 Wemaere, 2005 

BAC 2000 4,6,7 9 4 186.0 9.4 30.8 436.8 8.1 35.3 Wemaere, 2005 

BAF NA NA NA 4.2 3.2 3.0 56.0 6.8 4.1 EPA CRL 2003 

BAL NA NA NA 20.0 3.7 20.0 244.0 7.1 5.0 EPA CRL 2003 

BAN NA NA NA 132.5 1.4 1.0 297.0 8.4 4.6 EPA CRL 2003 

BAR NA NA NA 3.8 0.9 29.0 54.0 6.3 5.0 EPA CRL 2003 

BAT 2000/1 9; 8 2 116.3 9.1 36.0 324.5 7.9 39.5 Wemaere, 2005 

BEA 2003 1,2,3,4,6,9,11,12 9 15.0 5.3 NA NA 6.3 19.6 2003  

BRL 1996/7 4,6,7,9;1,4,6,7,9,12 10 -1.0 17.1 48.0 45.0 5.1 12.0 Irvine et al., 2001 

BUN NA NA NA 156.2 1.4 9.0 361.0 8.5 5.4 EPA CRL 2003 

CAA NA NA NA 138.0 2.6 12.8 320.1 8.4 11.6 Taylor et al., 2006 

CAR NA NA NA 3.3 2.4 19.0 74.0 6.7 5.5 EPA CRL 2003 

CAS 2001 4,5,6,7,8,9,10 7 121.1 15.9 39.4 267.9 8.0 27.0 Wemaere, 2005 

CAU 2000/1 8; 8 2 17.9 15.2 186.0 106.0 6.7 54.7 Wemaere, 2005 

CLO NA NA NA 2.0 3.6 15.0 62.0 6.8 5.3 EPA CRL 2003 

CRA NA NA NA 78.0 48.0 NA 316.0 8.5 89.0 Taylor et al., 2006 

CUL NA NA NA 172.0 0.8 16.0 393.0 8.4 5.6 EPA CRL 2003 

CUY 2001 1,5,6,7,8,9,10 7 173.3 3.1 36.3 375.0 8.3 25.6 Wemaere, 2005 

DAN NA NA NA -0.1 0.8 108.0 42.0 5.1 6.3 EPA CRL 2003 

DOC 1996/7 3,4,5,6,7,8,9,10;1,3,
4,5,6,7,8,9,10,12 

18 5.0 6.6 80.0 101.0 6.8 16.0 Irvine et al., 2001 

DOO NA NA NA 2.0 2.3 85.0 78.1 5.9 12.0 EPA CRL 2003 

DRO 2001 1,5,6,7,8,9,10 7 163.3 9.2 22.9 343.9 8.1 20.8 Wemaere, 2005 

DRU 2000/1 8; 8 2 20.1 21.4 96.5 119.0 7.4 51.8 Wemaere, 2005 

DUN NA NA NA 59.6 1.8 33.0 100.0 5.7 6.0 EPA CRL 2003 

EAS NA NA NA 4.0 2.9 32.0 48.0 6.5 7.0 EPA CRL 2003 

EFF 2000/1 8; 8 2 22.4 10.0 69.0 164.5 7.4 30.1 Wemaere, 2005 

EGI 1996/7 6,7,9;1,4,6,7,9,12 9 69.0 35.0 25.0 229.0 8.1 344.0 Irvine et al., 2001 

FAD NA NA NA 5.0 1.4 53.0 80.9 6.4 7.0 EPA CRL 2003 

FEE NA NA NA 3.1 0.9 27.0 62.0 6.6 9.0 EPA CRL 2003 

FEG NA NA NA 9.6 1.3 54.0 86.0 7.4 8.0 EPA CRL 2003 

GAR 2000/1 8; 8 2 67.4 13.3 50.0 197.0 7.6 76.4 Wemaere, 2005 

GOR 2000/1 8; 8 2 88.1 20.4 50.0 229.0 7.9 55.5 Wemaere, 2005 

HOH 1996/7 3,4,5,6,7,8,9,10;1,3,
4,5,6,7,8,9,10,12 

18 17.8 5.0 33.0 125.0 7.2 10.0 Irvine et al., 2001 

INC 2001 4, 6, 8, 9 4 131.7 8.4 36.3 294.0 8.0 21.9 Wemaere, 2005 

INQ 2001 1,4,5,6,7,8,9,10 8 161.8 5.1 23.0 334.0 8.2 19.3 Wemaere, 2005 

KEE NA NA NA 2.4 2.1 47.0 135.0 5.3 8.0 EPA CRL 2003 

KIL NA NA NA 27.4 1.4 33.0 205.0 7.2 14.0 EPA CRL 2003 
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KIN NA NA NA 69.5 5.5 26.0 318.0 8.3 11.0 EPA CRL 2003 

KYL NA NA NA 7.0 0.6 21.0 72.0 6.6 6.0 EPA CRL 2003 

LEN NA NA NA 104.9 3.4 4.0 250.0 8.5 6.1 EPA CRL 2003 

LIC 1996/7 3,4,5,6,7,8,9,10;1,3,
4,5,6,7,8,9,10,12 

18 21.0 13.1 57.0 157.0 7.5 16.0 Irvine et al., 2001 

LIS 2001 6,8,9,10 4 47.5 14.7 36.0 304.0 7.8 34.7 Wemaere, 2005 

MAU NA NA NA 6.3 1.3 18.0 72.0 6.1 5.0 EPA CRL 2003 

MCN NA NA NA 23.6 6.9 80.0 116.0 7.6 17.0 EPA CRL 2003 

MOA 2001 6,8,9,10 4 15.5 13.5 208.5 156.8 7.1 44.8 Wemaere, 2005 

MOO 2000/1 8; 8 2 46.8 13.1 87.0 176.5 7.4 48.7 Wemaere, 2005 

MOR 2000/1 8; 8 2 43.0 16.7 115.0 171.5 7.5 142.3 Wemaere, 2005 

MUC NA NA NA 208.6 0.8 26.0 462.0 8.5 4.8 EPA CRL 2003 

MUL 1996/7 4,6,7,9;1,4,6,7,9,12 10 52.0 32.5 22.0 171.0 7.8 55.0 Irvine et al., 2001 

MUN 1996/7 4,6,7,9;1,4,6,7,9,12 10 45.0 12.7 33.0 213.0 7.8 33.0 Irvine et al., 2001 

NAB NA NA NA 2.3 0.5 43.0 101.0 6.0 10.0 EPA CRL 2003 

NAH NA NA NA 9.6 1.3 37.0 100.8 6.5 7.0 EPA CRL 2003 

NAM NA NA NA 7.0 0.6 40.0 112.0 6.6 10.0 EPA CRL 2003 

NAN NA NA NA 0.7 3.8 50.0 77.0 6.0 7.6 EPA CRL 2003 

OFL NA NA NA 138.9 0.8 63.0 333.0 8.5 10.1 EPA CRL 2003 

OOR NA NA NA 8.1 1.4 23.0 65.0 6.4 7.0 EPA CRL 2003 

OUG 1996/7 3,4,6,7,9;1,4,6,7,9,1
2 

11 70.0 20.3 49.0 233.0 7.9 72.0 Irvine et al., 2001 

OWE 1996/7 3,4,5,6,7,8,9,10;1,3,
4,5,6,7,8,9,10,12 

18 96.0 6.3 6.0 254.0 8.3 10.0 Irvine et al., 2001 

POL 1996/7 4,6,7,9;1,4,6,7,9,12 10 21.0 5.2 73.0 86.0 7.5 8.0 Irvine et al., 2001 

RAM 1996/7 3,4,5,6,7,8,9,10;1,3,
4,5,6,7,8,9,10,12 

18 50.0 58.1 49.0 194.0 8.0 88.0 Irvine et al., 2001 

REA NA NA NA 128.5 2.4 3.0 308.0 8.5 6.1 EPA CRL 2003 

ROS 2001 8 1 25.8 62.7 111.0 107.0 7.9 75.2 Wemaere, 2005 

RUS 2000 8 1 69.7 18.5 76.0 206.0 7.9 31.3 Wemaere, 2005 

SHI NA NA NA 6.2 1.5 21.0 73.0 6.5 4.0 EPA CRL 2003 

SIL NA NA NA 140.0 4.5 36.0 354.0 8.3 141.0 Taylor et al., 2006 

TAL NA NA NA 85.1 1.9 15.0 190.0 8.0 8.0 EPA CRL 2003 

TAY NA NA NA -0.3 0.6 134.0 40.0 5.1 8.1 EPA CRL 2003 

TUL 2000 8 1 13.8 6.1 102.0 165.0 7.1 99.5 Wemaere, 2005 

UPE NA NA NA 2.8 1.8 22.0 58.0 6.4 4.7 EPA CRL 2003 

VEA NA NA NA 2.2 1.7 33.0 33.0 6.3 0.0 EPA CRL 2003 
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Appendix E: Diatom List 
 
The common 233 diatom taxa with maximum abundance at least 1% and occurrences of 
at least 3 sites were listed with authorities for the 72-lake diatom training set. 
 

Taxon Code Taxon Name and Authority 
AAEQ Amphora aequalis Krammer                                                   
AAMB Aulacoseira ambigua (Grun.) Simonsen                                       
AATG Achnanthidium alteragracillima (Lange-Bertalot)Round & Bukhtiyarova        
ACNP Achnanthidium pusillum (Grun.in Cl. & Grun) Czarnecki                      
ACON Achnanthes conspicua A.Mayer                                               
ACOP Amphora copulata  (Kutz) Schoeman & Archibald                              
ACUR Achnanthes curtissima Carter                                               
ADCA Achnanthidium caledonicum(Lange-Bertalot)Lange-Bertalot                    
ADMF Achnanthidium minutissima (Kütz.)Czarn.var. affinis(Grun.) Bukht.          
ADMI Achnanthidium minutissimum (Kütz.) Czarnecki                               
ADMS Adlafia minuscula (Grunow) Lange-Bertalot                                  
ADSA Achnanthidium saprophila (Kobayasi et Mayama) Round & Bukhtiyarova         
ADSU Achnanthidium subatomus (Hustedt) Lange-Bertalot                           
AFOR Asterionella formosa Hassall                                               
AINA Amphora inariensis Krammer                                                 
AIPX Achnanthes impexa Lange-Bertalot                                           
ALIO Achnanthes linearioides Lange-Bertalot                                     
ALIR Aulacoseira lirata (Ehr.) Ross in Hartley                                  
AMJA Achnanthes minutissima Kutzing var.jackii(Rabenhorst) Lange-Bertalot       
APED Amphora pediculus (Kutzing) Grunow                                         
APET Achnanthes petersenii Hustedt KLB91p67f37/24-40                            
ARAL Asterionella ralfsii W.Smith var. ralfsii                                  
ATHU Amphora thumensis (Mayer)A.Cleve-Euler                                     
AUAL Aulacoseira alpigena(Grunow) Krammer                                       
AUDI Aulacoseira distans (Ehr.)Simonsen                                         
AUGA Aulacoseira granulata (Ehr.) Simonsen var.angustissima (O.M.)Simonsen      
AUGR Aulacoseira granulata (Ehr.) Simonsen                                      
AUIS Aulacoseira islandica(O.Muller)Simonsen                                    
AUIT Aulacoseira italica (Ehr.)Simonsen                                         
AUSU Aulacoseira subarctica (O.Muller) Haworth                                  
BBRE Brachysira brebissonii Ross in Hartley ssp. brebissonii                    
BEXI Brachysira exilis Round & Mann                                             
BGAR Brachysira garrensis (Lange-Bertalot & Krammer) Lange-Bertalot             
BPRO Brachysira procera Lange-Bertalot & Moser                                  
BVIT Brachysira vitrea (Grunow) Ross in Hartley                                 
CAFF Cymbella affinis Kutzing var.affinis                                       
CAGR Cyclotella atomus var. gracilis Genkal & Kiss                              
CCMS Cyclotella comensis Grunow in Van Heurck                                   
CCOC Cavinula cocconeiformis (Gregory ex Greville) Mann & Stickle               
CCYM Cymbella cymbiformis Agardh                                                
CDEL Cymbella delicatula Kutzing                                                
CDTG Cyclotella distinguenda var.distinguenda Hustedt                           
CDUB Cyclostephanos dubius (Fricke) Round                                       
CGOR Cyclotella gordonensis Kling & Hakansson                                   
CHAL Craticula halophila (Grunow ex Van Heurck) Mann                            
CHEL Cymbella helvetica Kutzing                                                 
CHEV Chamaepinnularia evanida (Hustedt) Lange-Bertalot                          
CHME Chamaepinnularia mediocris (Krasske) Lange-Bertalot                        
CHSP Chamaepinnularia sp.                                                       
CINV Cyclostephanos invisitatus(Hohn & Hellerman)Theriot Stoermer & Hakansson   
CJAR Cavinula jaernefeltii (Hustedt) Mann & Stickle                             
CKRM Cyclotella krammeri HÅkansson                                              
CLAE Cymbella laevis Naegeli in Kutzing var.laevis                              
CMEN Cyclotella meneghiniana Kutzing                                            
CNDI Cocconeis neodiminuta Krammer                                              
CNTH Cocconeis neothumensis Krammer                                             
COCE Cyclotella ocellata Pantocsek                                              
CPED Cocconeis pediculus Ehrenberg                                              
CPLA Cocconeis placentula Ehrenberg var. placentula                             
CPOL Cyclotella polymorpha Meyer & Hakansson                                    
CPST Cyclotella pseudostelligera Hustedt                                        
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Taxon Code Taxon Name and Authority 
CSAE Cymbella subaequalis Grunow                                                
CSCM Cyclotella schumanni (Grunow) Håkansson                                    
CSTR Cyclotella striata(Kutzing)Grunow 1880 in Cleve & Grunow                   
CVMO Cavinula mollicula (Hust.) Lange-Bertalot                                  
CVSO Cavinula scutelloides (W.Smith) Lange-Bertalot                             
CYDE Cyclotella delicatula Hustedt                                              
CYMS Cymbella species                                                           
DELL Diploneis elliptica (Kutzing) Cleve                                        
DITE Diatoma tenuis Agardh                                                      
DOBL Diploneis oblongella (Naegeli) Cleve-Euler                                 
DOVA Diploneis ovalis (Hilse) Cleve                                             
DPET Diploneis peterseni Hustedt                                                
DTEN Denticula tenuis Kutzing                                                   
EARC Eunotia arcus Ehrenberg var. arcus                                         
EBIL Eunotia bilunaris (Ehr.) Mills var. bilunaris                              
ECES Encyonopsis cesatii (Rabenhorst) Krammer                                   
ECPM Encyonopsis minuta Krammer & Reichardt                                     
EELE Eunotia elegans Oestrup                                                    
EEXI Eunotia exigua (Brebisson ex Kützing) Rabenhorst                           
EFAB Eunotia faba Grunow                                                        
EGAE Encyonema gaeumanii (Meister) Krammer                                      
EGOE Epithemia goeppertiana Hilse                                               
EHEB Encyonema hebridicum Grunow ex Cleve                                       
EIMP Eunotia implicata Nörpel, Lange-Bertalot & Alles                           
EINC Eunotia incisa Gregory var.incisa                                          
EMBI Eunotia monodon Ehrenberg var.bidens (Gregory) Hustedt                     
EMIN Eunotia minor (Kutzing) Grunow in Van Heurck                               
ENCM Encyonopsis microcephala (Grunow) Krammer                                  
ENNG Encyonema neogracile Krammer                                               
ENPE Encyonema perpusillum (A. Cleve) D.G. Mann                                 
EOMI Eolimna minima(Grunow) Lange-Bertalot                                      
EPEC Eunotia pectinalis (Dyllwyn) Rabenhorst var.pectinalis                     
EPUN Eunotia pectinalis(Kutz.)Rabenhorst var.undulata (Ralfs) Rabenhorst        
ERHO Eunotia rhomboidea Hustedt                                                 
ERHY Eunotia rhynchocephala Hustedt var. rhynchocephala                         
ESLE Encyonema silesiacum (Bleisch in Rabh.) D.G. Mann                          
ESMI Epithemia smithii Carruthers 1864                                          
ESPP Encyonema subperpusillum Krammer                                           
ESUB Eunotia subarcuatoides Alles Nörpel & Lange-Bertalot                       
EUAL Eucocconeis alpestris(Brun) Lange-Bertalot                                 
EUPA Eunotia paludosa Grunow in Van Heurck var. paludosa                        
FCAP Fragilaria capucina Desmazieres var.capucina                               
FCME Fragilaria capucina Desmazieres var.mesolepta (Rabenhorst) Rabenhorst      
FCRO Fragilaria crotonensis Kitton                                              
FCRP Fragilaria capucina Desm. var. rumpens (Kütz.) Lange-Bert. ex Bukht.       
FCVA Fragilaria capucina Desmazieres var.vaucheriae(Kutzing)Lange-Bertalot      
FDEL Fragilaria delicatissima (W.Smith) Lange-Bertalot                          
FERI Frustulia erifuga Lange-Bertalot & Krammer                                 
FGRA Fragilaria gracilis Østrup                                                 
FLAP Fragilaria lapponica Grunow in van Heurck (Staurosirella)                  
FLEN Fallacia lenzi(Hustedt) Van de Vijver & al. nov. comb.                     
FNAN Fragilaria nanana Lange-Bertalot                                           
FOLD Fragilaria oldenburgiana Hustedt                                           
FPCO Fragilaria pseudoconstruens Marciniak                                      
FPLA Fragilaria pinnata Ehrenberg var.lancettula (Schumann) Hustedt             
FRHO Frustulia rhomboides(Ehr.)De Toni                                          
FROB Fragilaria robusta (Fusey) Manguin                                         
FSAX Frustulia saxonica Rabenhorst                                              
FSPP Fragilaria sp. 
FTEN Fragilaria tenera (W.Smith) Lange-Bertalot                                 
FUAC Fragilaria ulna(Nitzsch.)Lange-Bertalot var.acus(Kutz.)Lange-Bertalot      
FUAN Fragilaria ulna Sippen angustissima(Grun.)Lange-Bertalot                   
FVIR Fragilaria virescens Ralfs                                                 
GACU Gomphonema acuminatum Ehrenberg                                            
GANT Gomphonema angustum Agardh                                                 
GBAV Gomphonema bavaricum Reichardt & Lange-Bertalot                            
GEXL Gomphonema exilissimum(Grun.) Lange-Bertalot & Reichardt                   
GGRA Gomphonema gracile Ehrenberg                                               
GHEB Gomphonema hebridense Gregory                                              
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Taxon Code Taxon Name and Authority 
GLAT Gomphonema lateripunctatum Reichardt & Lange-Bertalot                      
GMCU Gomphonema minutum f.curtum (Hustedt) Lange-Bertalot & Reichardt           
GOLI Gomphonema olivaceum (Hornemann) Brébisson var. olivaceum                  
GOMS Gomphonema species                                                         
GPAR Gomphonema parvulum (Kützing) Kützing var. parvulum f. parvulum            
GPRC Gomphonema procerum Reichardt & Lange-Bertalot                             
GPUM Gomphonema pumilum (Grunow) Reichardt & Lange-Bertalot                     
GPVL Gomphonema parvulius Lange-Bertalot & Reichardt                            
GSUB Gomphonema subtile Ehr.                                                    
KCLE Karayevia clevei(Grun. in Cl. & Grun.) Round & Bukhtiyarova                
KLAT Karayevia laterostrata(Hust.) Kingston                                     
KOSU Kobayasiella subtilissima (Cleve) Lange-Bertalot                           
KSUC Kolbesia suchlandtii (Hustedt) Kingston                                    
MAAT Mayamaea atomus (Kutzing) Lange-Bertalot                                   
MAGR Mayamaea agrestis(Hustedt) Lange-Bertalot                                  
MCCO Meridion circulare (Greville) Agardh var.constrictum (Ralfs) Van Heurck    
MCIR Meridion circulare (Greville) C.A.Agardh var. circulare                    
MELL Mastogloia elliptica (C.A. Agardh) Cleve                                   
MLAC Mastogloia lacustris (Grunow) van Heurck                                   
MSMI Mastogloia smithii Thwaites                                                
NARV Navicula arvensis Hustedt                                                  
NBCL Nitzschia bacillum Hustedt                                                 
NCAR Navicula cari Ehrenberg                                                    
NCRY Navicula cryptocephala Kutzing                                             
NCTE Navicula cryptotenella Lange-Bertalot                                      
NCTO Navicula cryptotenelloides Lange-Bertalot                                  
NDEN Nitzschia denticula Grunow                                                 
NDPA Navicula parabryophila Lange-Bertalot                                      
NELO Naviculadicta elorantana Lange-Bertalot                                    
NESP Neidium species in Metzeltin & Lange Bertalot                              
NGRE Navicula gregaria Donkin                                                   
NHMD Navicula heimansioides Lange-Bertalot                                      
NIAR Nitzschia archibaldii Lange-Bertalot                                       
NIFR Nitzschia frustulum(Kutzing)Grunow var.frustulum                           
NIGR Nitzschia gracilis Hantzsch                                                
NILA Nitzschia lacuum Lange-Bertalot                                            
NIPM Nitzschia perminuta(Grunow) M.Peragallo                                    
NIVA Nitzschia valdestriata Aleem & Hustedt                                     
NLCN Navicula lucinensis Hustedt                                                
NLST Navicula leptostriata Jorgensen                                            
NPAE Nitzschia paleacea (Grunow) Grunow in van Heurck                           
NPAL Nitzschia palea (Kutzing) W.Smith                                          
NPHP Navicula phylleptosoma Lange-Bertalot                                      
NPSL Navicula pseudolanceolata Lange-Bertalot                                   
NRAD Navicula radiosa Kützing                                                   
NRCS Navicula recens (Lange-Bertalot) Lange-Bertalot                            
NREC Nitzschia recta Hantzsch in Rabenhorst                                     
NRFA Navicula radiosafallax Lange-Bertalot                                      
NRHY Navicula rhynchocephala Kutzing                                            
NSBR Navicula subrotundata Hustedt                                              
NSMU Navicula submuralis Hustedt                                                
NSPP Navicula seippiana Lange-Bertalot & Steindorf                              
NSUA Nitzschia subacicularis Hustedt in A.Schmidt et al.                        
NTPT Navicula tripunctata (O.F.Müller) Bory                                     
NVDS Navicula(dicta) seminulum (Grunow) Lange Bertalot                          
NVEN Navicula veneta Kutzing                                                    
NVIO Navicula vitiosa Schimanski                                                
PALT Psammothidium altaicum Bukhtiyarova                                        
PBBI Pseudostaurosira brevistriata Grun.v.binodis(Pant.)Andresen Stoermer&Kreis 
PCHL Psammothidium chlidanos (Hohn & Hellerman) Lange-Bertalot                  
PCLT Placoneis clementis (Grun.) Cox                                            
PFIB Peronia fibula (Breb.ex Kutz.)Ross                                         
PHEL Psammothidium helveticum (Hustedt) Bukhtiyarova et Round                   
PIRR Pinnularia irrorata (Grunow) Hustedt                                       
PLFR Planothidium frequentissimum(Lange-Bertalot)Lange-Bertalot                 
PLVD Psammothidium levanderi (Hustedt)Czarnecki in Czarn. et Edlund             
PMAJ Pinnularia maior (Kutzing) Rabenhorst                                      
POBG Psammothidium oblongellum(Oestrup) Van de Vijver                           
PPSW Psammothidium pseudoswazi (Carter) Bukht. et Round                         
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Taxon Code Taxon Name and Authority 
PRAD Puncticulata radiosa (Lemmermann) Håkansson                                
PSAC Psammothidium sacculum (Carter) Bukhtiyarova et Round                      
PSAT Psammothidium subatomoides (Hustedt) Bukht.et Round                        
PSBR Pseudostaurosira brevistriata (Grun.in Van Heurck) Williams & Round        
PSCA Pinnularia subcapitata Gregory var. subcapitata                            
PSIL Pinnularia silvatica Petersen                                              
PTDE Planothidium delicatulum(Kutz.) Round & Bukhtiyarova                       
PTHA Planothidium hauckianum (Grun.) Round & Bukhtiyarova                       
PTLA Planothidium lanceolatum(Brebisson ex Kützing) Lange-Bertalot              
PTOE Planothidium oestrupii(Cleve-Euler)Round & Bukhtiyarova                    
PUCO Puncticulata comta(Ehr.)Håkansson                                          
RABB Rhoicosphenia abbreviata (C.Agardh) Lange-Bertalot                         
SAGA Stephanodiscus agassizensis Hakansson & Kling                              
SALP Stephanodiscus alpinus Hustedt in Huber-Pestalozzi                         
SCON Staurosira construens Ehrenberg                                            
SCVE Staurosira construens Ehr. var venter (Ehr.) Hamilton                      
SDPA Synedrella parasitica (W.Sm.) Round & Maidana                              
SDSU Synedrella subconstricta (Grunow in Van Heurck) Round & Maidana            
SELI Staurosira elliptica (Schumann) Williams & Round                           
SEXG Stauroforma exiguiformis Flower Jones et Round                             
SHAN Stephanodiscus hantzschii Grunow in Cl. & Grun. 1880                       
SHTE Stephanodiscus hantzschii fo.tenuis(Hustedt)Hakansson et Stoermer          
SLEP Staurosirella leptostauron (Ehr.) Williams & Round                         
SMAT Staurosira martyi (Heribaud) Lange-Bertalot                                
SMED Stephanodiscus medius Håkansson                                            
SNEO Stephanodiscus neoastraea Hakansson et Hickel                              
SPAV Stephanodiscus parvus Stoermer et Hakansson                                
SPIN Staurosirella pinnata (Ehr.) Williams & Round                              
SPUP Sellaphora pupula (Kutzing) Mereschkowksy                                  
STMI Stephanodiscus minutulus (Kutzing) Cleve & Moller                          
STPI Staurosirella pinnata var. intercedens (Grunow in V.Heurck) Hamilton       
TFLO Tabellaria flocculosa(Roth)Kutzing                                         
TQUA Tabellaria quadriseptata Knudson                                           
UULN Ulnaria ulna (Nitzsch.) Compère                                            
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Appendix F: Cladocera List 
 
Species names with authorities are listed in the order of the taxon codes used in the 33-
lake Cladocera training set. 
 

Taxon Code Taxon Name Authority 
ACRHAR Acroperus harpae (Baird, 1834) 
ALOAFF Alona affinis (Leydig, 1860) 
ALOCOS Alona costata G.O. Sars, 1862 
ALOELO Alonopsis elongata (G.O. Sars, 1862) 
ALOEXC Alonella excisa (Fischer, 1854) 
ALOEXI Alonella exigua (Lilljeborg, 1853) 
ALOGR Alona guttata/rectangula G.O. Sars, 1862/ G.O. Sars, 1862 
ALOINT Alona intermedia G.O. Sars, 1862 
ALONAN Alonella nana (Baird, 1843) 
ALOQUA Alona quadrangularis (O.F. Müller, 1776) 
ALORUS Alona rustica Scott, 1895 
ANCEMA Anchistropus emarginatus G.O. Sars, 1862 
BOSCOR Bosmina coregoni (Baird, 1857) 
BOSLOR Bosmina longirostris (O.F. Müller, 1776) 
BOSLOS Bosmina longispina (Leydig, 1860) 
CAMREC Camptocercus rectirostris Schödler, 1862 
CHYPIG Chydorus piger G.O. Sars, 1862 
CHYSPH Chydorus Sphaericus (O.F. Müller, 1776) 
DAPLOG Daphnia longispina group  
DAPPUG Daphnia pulex group  
EURLAM Eurycercus lamellatus (O.F. Müller, 1776) 
GRATES Graptoleberis testudinaria (S. Fischer, 1848) 
HOLGIB Holopedium gibberum Zaddach, 1855 
ILYSIL Ilyocryptus silvaeducensis Romijn, 1919 
KURLAT Kurzia latissima (Kurz, 1875) 
LATSET Latona setifera (O.F. Müller , 1785) 
LEPKIN Leptodora kindti Focke, 1844 
LEYACA Leydigia acanthocercoides (S. Fischer, 1854) 
LEYLEY Leydigia leydigii (Schödler, 1862) 
MONDIS Monospilus dispar G.O. Sars, 1862 
OXYTEN Oxyurella tenuicaudis (G.O. Sars, 1862) 
PHRROS Phrixura rostrata (Koch, 1844) 
PLEADU Pleuroxus aduncus (Jurine, 1820) 
PLEDEN Pleuroxus denticulatus Birge, 1879 
PLELAE Pleuroxus laevis G.O. Sars, 1862 
PLESP Pleuroxus sp.  
PLETRI Pleuroxus trigonellus (O.F. Müller, 1785) 
PLETRU Pleuroxus truncatus (O.F. Müller, 1785) 
PLEUNC Pleuroxus uncinatus Baird, 1850 
POLPED Polyphemus pediculus (Linnaeus, 1758) 
RHYFAL Rhynchotalona falcata (G.O. Sars, 1862) 
SCAMUC Scapholeberis mucronata (O.F. Müller, 1776) 
SIDCRY Sida crystallina (O.F. Müller, 1776) 
TREAMB Tretocephala ambigua (Lilljeborg, 1900) 
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Appendix G: TP Optima of Diatom Taxa 
 
Weighted averaging TP optima and tolerance of the 233 diatom taxa (≥ 1% at 3 sites) in the 72-
lake training set are listed in the order of species name (number of occurrence (count), 
maximum abundance and Hill’s effective number of occurrence (N2) of each taxon are also 
shown; both TP optima and tolerance are back-transformed to μg l-1 units). 
 

Taxon Count Max 
(%) N2 TP 

(μg l-1) 
Tolerance 

(μg l-1) 
Achnanthes altaica 13 4.62 6.39 7.92 1.35 
Achnanthes biasolettiana var. atomus 5 1.29 4.12 8.72 1.48 
Achnanthes chlidanos 3 1.10 2.23 7.06 1.28 
Achnanthes clevei 11 5.21 4.76 21.60 1.88 
Achnanthes conspicua 9 2.95 5.11 15.17 2.28 
Achnanthes delicatula 8 1.53 4.88 14.21 2.29 
Achnanthes delicatula var. hauckiana 5 1.57 4.44 7.89 1.67 
Achnanthes flexella var. alpestris 4 1.59 2.16 7.13 1.32 
Achnanthes helvetica 13 34.30 2.16 12.32 2.01 
Achnanthes lanceolata 21 2.90 12.48 29.94 2.37 
Achnanthes lanceolata var. frequentissima 4 1.49 3.08 10.64 1.59 
Achnanthes laterostrata 12 12.50 2.24 8.96 1.45 
Achnanthes levanderii 11 2.30 5.97 9.52 1.83 
Achnanthes linearis 3 2.99 1.61 12.12 1.61 
Achnanthes minutissima var. affinis 17 4.42 8.49 7.16 1.49 
Achnanthes minutissima var. gracillima 5 3.28 3.94 6.56 1.38 
Achnanthes minutissima var. jackii 12 2.39 9.07 6.76 1.40 
Achnanthes minutissima var. minutissima 68 30.15 37.11 14.62 2.42 
Achnanthes minutissima var. saprophila 12 2.69 7.47 7.92 1.70 
Achnanthes oblongella 16 4.36 8.98 11.06 2.77 
Achnanthes oestrupii 4 3.62 1.67 14.28 1.59 
Achnanthes petersenii 8 4.50 3.56 7.72 1.63 
Achnanthes pseudoswazii 9 3.79 3.88 7.39 1.36 
Achnanthes pusilla 27 5.80 9.48 15.83 2.77 
Achnanthes scotica 20 6.18 9.65 6.59 1.56 
Achnanthes sp cf curtissima 3 1.23 2.67 5.75 1.35 
Achnanthes sp cf saccula 10 5.64 3.42 7.16 1.94 
Achnanthes subatomoides 19 6.78 7.80 12.88 2.21 
Achnanthes suchlandtii 10 2.60 5.01 18.02 2.73 
Amphora aequalis 3 1.49 2.65 7.93 1.31 
Amphora inaeriensis 17 6.44 9.29 8.95 1.98 
Amphora lybica 24 1.19 16.85 12.91 2.47 
Amphora pediculus 30 23.99 13.06 10.91 1.89 
Amphora thumensis 8 1.87 5.39 7.96 1.41 
Anomoeoneis garrensis 18 4.94 10.24 6.53 1.33 
Anomoeoneis neoexilis 26 6.16 16.76 6.74 1.30 
Anomoeoneis procera 13 2.09 9.70 6.01 1.34 
Anomoeoneis vitrea 10 15.30 2.24 6.64 2.23 
Asterionella formosa 40 37.70 16.97 36.02 2.61 
Asterionella ralfsii 11 64.72 3.07 7.74 1.24 
Aulacoseira alpigena 9 4.90 4.23 13.35 2.62 
Aulacoseira ambigua 20 21.98 7.99 22.66 3.19 
Aulacoseira distans 6 1.10 4.96 32.11 3.12 
Aulacoseira granulata 11 24.60 5.86 35.07 1.99 
Aulacoseira granulata var. angustissima 3 40.83 1.98 77.91 1.86 
Aulacoseira islandica var. islandica 12 18.40 5.37 33.11 2.16 
Aulacoseira italica 2 0.90 1.60 36.49 1.32 



 235

Taxon Count Max 
(%) N2 TP 

(μg l-1) 
Tolerance 

(μg l-1) 
Aulacoseira lirata 3 3.39 1.37 7.43 1.35 
Aulacoseira subarctica 30 67.00 14.99 29.10 2.29 
Brachysira brobissonii 21 3.45 10.36 7.19 1.51 
Cocconeis neodiminuta 3 1.58 2.23 13.31 1.38 
Cocconeis neothumensis 8 10.42 3.21 10.12 1.61 
Cocconeis pediculus 4 1.99 2.27 22.45 1.53 
Cocconeis placentula 43 26.00 11.61 27.30 2.11 
Cyclostephanos dubius 18 19.91 5.95 29.31 1.98 
Cyclostephanos invisitatus 11 9.30 4.59 72.18 1.74 
Cyclotella aff schumannii 2 1.08 1.99 7.00 1.91 
Cyclotella atomus var. gracilis 3 6.67 1.86 11.48 3.87 
Cyclotella comensis 27 35.74 13.60 7.91 1.45 
Cyclotella comta 12 16.80 3.04 5.63 2.23 
Cyclotella delicatula 5 2.19 2.81 5.03 1.25 
Cyclotella distinguenda 9 11.01 2.02 7.31 2.24 
Cyclotella gordonensis 6 28.38 2.13 6.24 1.36 
Cyclotella kuetzingiana 19 24.04 8.27 6.27 1.44 
Cyclotella kuetzingiana cf striata 3 7.26 2.12 7.07 1.18 
Cyclotella kuetzingiana cf polymorpha 4 2.44 2.33 6.73 1.83 
Cyclotella meneghiniana 18 10.70 4.95 35.22 1.86 
Cyclotella ocellata 6 7.01 2.05 8.46 1.77 
Cyclotella pseudostelligera 30 54.59 4.76 12.65 3.15 
Cyclotella radiosa 43 11.33 22.41 10.86 2.15 
Cymbella affinis 13 1.85 9.99 9.35 2.43 
Cymbella cesattii 14 2.23 10.32 7.38 1.72 
Cymbella cymbiformis 7 1.77 5.45 7.86 1.47 
Cymbella delicatula 7 2.52 4.55 6.57 1.29 
Cymbella gaeumannii 6 4.50 3.56 6.09 1.34 
Cymbella gracilis 32 9.57 14.86 7.89 1.77 
Cymbella hebridica 6 1.27 4.67 6.89 1.21 
Cymbella helvetica 6 8.59 1.84 6.92 1.41 
Cymbella laevis var. capitata 6 5.66 4.68 6.15 1.32 
Cymbella microcephala 27 7.32 16.80 7.44 1.57 
Cymbella minuta 32 2.36 20.18 14.67 2.84 
Cymbella perpusilla 13 4.03 7.66 7.48 1.31 
Cymbella silesiaca 25 3.60 15.66 13.12 2.59 
Cymbella spp 9 1.84 6.39 7.13 1.47 
Cymbella subaequalis 5 1.23 3.12 6.42 1.43 
Denticula tenuis 12 6.15 6.46 7.86 1.40 
Diatoma tenuis 13 4.00 5.86 43.72 2.35 
Diploneis elliptica 9 4.96 3.42 6.19 1.50 
Diploneis oblongella 15 4.26 5.35 12.09 3.03 
Diploneis ovalis 7 1.19 4.91 9.05 1.49 
Diploneis petersenii 7 3.07 2.34 5.31 1.40 
Epithemia muelleri 5 1.89 2.71 5.41 1.10 
Epithemia smithii 3 1.49 2.13 10.03 1.44 
Eunotia arcus 10 3.28 5.27 7.28 1.58 
Eunotia bilunaris 22 2.13 13.24 13.94 2.75 
Eunotia elegans 3 1.23 1.86 6.11 1.52 
Eunotia exigua 15 3.20 8.63 8.38 1.72 
Eunotia faba 11 4.43 5.16 10.36 2.99 
Eunotia implicata 29 2.69 18.56 8.32 1.91 
Eunotia incisa 35 11.53 14.27 8.24 1.79 
Eunotia minor 10 1.70 6.89 9.44 1.69 
Eunotia monodon var. bidens 3 2.87 1.38 6.93 1.29 
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Taxon Count Max 
(%) N2 TP 

(μg l-1) 
Tolerance 

(μg l-1) 
Eunotia paludosa 7 1.10 5.33 9.78 1.51 
Eunotia pectinalis 3 1.80 2.57 7.24 2.00 
Eunotia pectinalis var. undulata 16 7.77 8.13 7.33 1.60 
Eunotia rhomboidea 16 3.55 10.48 7.99 1.32 
Eunotia rhynchocephala var. rhynchocephala 5 1.30 3.37 6.50 1.53 
Eunotia sp cf subarcuatoides 6 2.46 2.54 5.64 1.27 
Eunotia sp. 12 4.20 4.69 12.92 2.64 
Fragilaria brevistriata 34 13.73 12.05 8.90 2.05 
Fragilaria brevistriata var. binodis 6 6.23 1.68 9.62 2.78 
Fragilaria capucina 21 8.85 9.78 21.25 2.64 
Fragilaria capucina var. gracilis 31 9.80 14.95 25.62 2.48 
Fragilaria capucina var. mesolepta 7 3.80 4.46 53.29 2.22 
Fragilaria capucina var. rumpens 10 6.20 4.90 25.27 2.87 
Fragilaria construens f. construens 15 2.90 8.61 29.28 2.11 
Fragilaria construens f. venter 40 60.90 8.01 24.91 2.70 
Fragilaria crotonensis 6 15.85 2.11 9.30 3.47 
Fragilaria delicatissima 4 6.80 1.24 10.73 3.08 
Fragilaria elliptica 13 6.78 4.66 16.62 4.32 
Fragilaria exigua 41 25.80 17.13 9.71 2.11 
Fragilaria lapponica 5 3.94 2.91 6.24 1.21 
Fragilaria leptostauron var. leptostauron 9 1.23 7.01 9.06 1.94 
Fragilaria leptostauron var. martyi 4 8.36 2.16 6.76 2.13 
Fragilaria nanana 15 9.60 4.14 26.07 3.64 
Fragilaria oldenburgiana 7 2.02 4.37 14.52 2.34 
Fragilaria parasitica 13 1.42 8.24 13.25 2.96 
Fragilaria parasitica f. subconstricta 3 6.00 1.20 97.80 1.14 
Fragilaria pinnata 34 14.20 13.31 23.11 2.40 
Fragilaria pinnata var. intercedens 3 1.23 2.64 6.72 1.66 
Fragilaria pinnata var. lancetttula 3 1.79 1.99 5.12 1.13 
Fragilaria robusta 5 1.80 3.04 40.41 3.90 
Fragilaria sp. 10 2.30 6.69 16.24 2.74 
Fragilaria tenera 6 3.70 1.96 22.50 2.18 
Fragilaria ulna var. acus 3 2.10 1.95 73.83 1.75 
Fragilaria ulna var. angustissima 5 22.70 2.31 64.26 2.01 
Fragilaria vaucheriae 28 4.40 16.68 26.62 2.56 
Fragilaria virescens 7 23.06 1.68 6.87 1.41 
Frustulia erifuga 5 1.62 3.72 7.61 1.13 
Frustulia rhomboides 28 8.30 12.01 7.19 1.48 
Frustulia saxonica 20 6.69 11.97 7.31 1.32 
Gomphonema acuminatum 17 1.59 9.96 16.73 2.90 
Gomphonema angustum 5 2.11 2.89 8.92 2.22 
Gomphonema bavaricum 3 1.82 2.31 10.17 1.53 
Gomphonema gracile 14 1.18 10.30 9.38 2.26 
Gomphonema hebridense 5 1.19 3.06 5.91 1.33 
Gomphonema lateripunctatum 16 10.61 9.35 7.21 1.34 
Gomphonema minutum 9 3.70 7.61 32.81 2.00 
Gomphonema olivaceum var. olivaceum 11 1.60 7.41 31.31 1.81 
Gomphonema parvulum var. exilissimum 16 7.09 7.24 7.46 1.36 
Gomphonema parvulum var. parvulius 9 1.45 6.93 7.79 1.35 
Gomphonema parvulum var. parvulum 32 5.10 18.73 34.90 2.61 
Gomphonema procerum 5 3.80 2.59 9.49 1.16 
Gomphonema pumilum 21 10.70 8.00 21.58 2.52 
Gomphonema spp 3 1.80 2.01 5.96 2.66 
Gomphonema subtile 3 1.26 2.32 8.49 1.97 
Mastogloia elliptica 3 9.82 1.19 6.74 1.35 
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Taxon Count Max 
(%) N2 TP 

(μg l-1) 
Tolerance 

(μg l-1) 
Mastogloia lacustris 8 13.33 5.05 5.82 1.13 
Mastogloia smithii 5 4.36 3.14 7.84 1.55 
Meridion circulare 5 8.30 1.28 34.82 2.67 
Meridion circulare var. constrictum 3 1.18 1.94 8.60 1.37 
Navicula agretis 5 1.30 3.68 23.00 2.09 
Navicula arvensis var arvensis 4 1.35 3.10 9.68 1.86 
Navicula atomus 10 3.00 5.31 14.13 2.47 
Navicula cari 6 4.60 1.74 26.01 1.93 
Navicula cf Chamaepinnularia 6 1.18 4.65 10.91 3.18 
Navicula clementis 6 1.00 4.63 36.74 1.39 
Navicula cocconeiformis 14 2.16 6.91 8.65 1.53 
Navicula cryptocephala 16 4.90 7.14 35.45 1.83 
Navicula cryptotenella 19 3.78 7.54 24.92 3.17 
Navicula cryptotenelloides 7 1.79 4.54 10.90 1.72 
Navicula elorantana 3 2.16 2.28 5.01 1.10 
Navicula evanida 3 1.20 1.68 90.08 1.39 
Navicula gregaria 7 4.50 1.82 32.77 2.52 
Navicula halophila 7 1.10 3.98 24.93 2.23 
Navicula heimansioides 12 1.85 9.06 7.98 1.53 
Navicula impexa 10 4.80 4.28 24.51 2.53 
Navicula jaernefeldtii 3 1.19 2.47 11.81 1.22 
Navicula lenzii 3 1.18 2.58 6.50 1.55 
Navicula leptostriata 5 6.60 2.07 7.22 2.10 
Navicula lucinensis 3 3.07 2.12 5.09 1.17 
Navicula mediocris 13 3.20 6.42 7.16 1.40 
Navicula minima 21 3.20 12.53 13.52 2.62 
Navicula minuscula 8 3.20 3.44 41.37 1.72 
Navicula mollicula 8 1.59 5.43 7.61 1.43 
Navicula parabryophila 3 1.85 2.45 7.73 1.30 
Navicula phylleptosoma 5 1.60 2.12 39.12 1.58 
Navicula pseudoconstruens 15 5.06 8.24 10.47 2.21 
Navicula pseudolanceolata 5 1.18 4.16 9.45 2.81 
Navicula pupula 25 3.00 11.13 29.82 3.34 
Navicula radiosa 32 9.20 8.31 23.43 3.42 
Navicula radiosafallax 6 1.00 4.22 44.12 2.07 
Navicula rhyncocephala 15 4.60 4.23 42.71 1.83 
Navicula scutelloides 7 2.38 3.46 14.87 2.16 
Navicula seminulum 7 1.70 5.42 17.56 2.92 
Navicula sp cf recens 6 1.20 4.42 14.79 2.62 
Navicula spp 16 2.80 6.97 15.03 3.14 
Navicula submuralis 12 2.47 7.79 13.46 2.83 
Navicula subrotundata 4 1.65 2.86 7.21 2.78 
Navicula subtilissima 9 2.60 5.57 6.64 1.53 
Navicula tripunctata 9 1.10 6.29 34.56 1.59 
Navicula veneta 13 2.00 8.18 42.97 1.73 
Navicula vitiosa 10 2.30 6.33 11.12 2.35 
Neidium sp. 4 1.70 1.75 11.25 6.07 
Nitzschia archibaldii 3 1.25 2.42 17.44 4.06 
Nitzschia bacillum 6 1.80 3.94 10.64 2.23 
Nitzschia denticula 8 3.77 5.88 7.06 1.38 
Nitzschia frustulum var frustulum 7 1.00 5.17 36.07 2.24 
Nitzschia gracilis 4 4.00 1.78 31.60 2.50 
Nitzschia lacuum 20 1.42 15.42 11.10 2.07 
Nitzschia palea 26 2.40 18.58 33.86 2.15 
Nitzschia paleacea 17 2.50 10.41 48.04 1.59 
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Taxon Count Max 
(%) N2 TP 

(μg l-1) 
Tolerance 

(μg l-1) 
Nitzschia perminuta 17 5.40 7.00 13.36 2.48 
Nitzschia recta 11 1.50 8.08 17.43 2.39 
Nitzschia subacicularis 3 1.40 1.85 60.77 3.09 
Nitzschia valdestriata 3 1.19 1.89 16.37 3.71 
Peronia fibula 11 6.40 4.00 5.70 1.25 
Pinnularia irrorata 13 4.34 7.07 8.28 1.33 
Pinnularia maior 3 1.27 1.87 7.54 1.48 
Pinnularia silvatica 3 1.18 2.02 6.98 1.34 
Pinnularia subcapitata 9 11.20 3.15 9.26 1.67 
Rhoicosphenia abbreviata 10 1.99 5.99 34.57 2.62 
Stephanodiscus agassizensis 2 1.30 1.76 37.63 2.02 
Stephanodiscus alpinus 13 1.77 9.99 16.37 2.35 
Stephanodiscus hantzschii 18 7.06 7.25 43.06 2.24 
Stephanodiscus medius 7 3.10 4.76 25.57 2.27 
Stephanodiscus minutulus 13 20.80 3.10 58.32 1.77 
Stephanodiscus neoastreae 13 13.12 4.84 19.73 2.83 
Stephanodiscus parvus 34 33.27 11.95 46.68 2.83 
Stephanodiscus tenuis 3 13.98 1.26 83.56 2.23 
Synedra ulna 22 3.10 11.57 23.10 2.64 
Tabellaria flocculosa 47 25.40 20.90 13.34 2.19 
Tabellaria quadriseptata 5 11.27 1.58 10.39 1.53 
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