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B. Kreu�lerFB Mathematik, Universit�at KaiserslauternD{67 653 Kaiserslautern, Germany28 August 1995AbstractWe study simply connected compact twistor spaces Z of positive type. Assum-ing that the fundamental linear system j � 12Kj is at least a pencil, we provethe following theorem: the existence of an irreducible curve C � Z which isinvariant under the real structure of Z and has the property C:(� 12K) < 0 im-plies that the twistor space is Moishezon but does not contain e�ective divisorsof degree one. Furthermore, we prove the existence of such twistor spaces witharbitrary Picard number �(Z) � 5. These are the �rst examples of Moishezontwistor spaces without divisors of degree one.1 IntroductionAfter the appearence of the result of Hitchin [H2] and Friedrich, Kurke [FK] statingthat precisely two compact twistor spaces are K�ahlerian, the study of Moishezontwistor spaces was started. A deep result of Campana [C2] shows that such spacesare simply connected. This can be used to deduce that the self{dual Riemanniane{mail: kreusler@mathematik.uni-kl.de 1



Moishezon twistor spaces without e�ective divisors of degree one 2manifold M associated to the twistor space Z is homeomorphic to the connectedsum nC P2 of complex projective planes. In [Po2], Poon has shown in the Moishezoncase that M has to be of positive type, that means the scalar curvature of M ispositive. On the other hand, Poon's computation of the algebraic dimension [Po2]together with the Riemann{Roch formula and Hitchin's vanishing theorem showsthat every twistor space of positive type over M = nC P2 with n � 3 is Moishezon.The structure of these manifolds is nowadays fairly well known (see [H2], [FK],[Po1], [KK] and [Po3]). The case n � 4 (which is equivalent to c1(Z)3 � 0) is muchmore interesting. In this case Donaldson and Friedman [DonF] have �rstly shownthe existence of self{dual metrics. They also proved that the generic twistor spacehas algebraic dimension zero (if n � 5) respectively one (if n = 4). The �rst explicitexamples for any n � 3 were discovered by LeBrun [LeB1] and studied by Kurke[Ku]. We call these spaces Kurke{LeBrun twistor spaces (see section 3). They areMoishezon spaces.The goal of this paper is a question stated by Pedersen and Poon in [PP2]:Question: If Z is a Moishezon twistor space, does it contain an e�ective divisorof degree one?We shall answer this question with NO!This is achieved by the following two theorems, which form the main results of thispaper:Theorem 2.1. Assume h0(K� 12 ) � 2 and the existence of an irreducible real curveC0 � Z with C0:(�12K) < 0. Then the following holds:(i) C0 is a smooth rational curve and C0:(�12K) = (�12K)3 � 2 = 2(3 � n), inparticular n � 4.(ii) a(Z) = 3, that is Z is Moishezon.(iii) The linear system j � 12Kj is two{dimensional and its base locus is precisely



Moishezon twistor spaces without e�ective divisors of degree one 3C0.(iv) Z does not contain e�ective divisors of degree one.Theorem 4.2. For any n � 4 there exists a twistor space Z with c1(Z)3 = 16(n�4) and containing a smooth rational curve C0 � Z with C0:(�12K) = 2(3 � n).Furthermore, dim j � 12Kj = 2 and Z ful�lls all conditions of Proposition 2.1.It is remarkable that we can compute with Theorem 2.1 the algebraic dimensionof a twistor space Z from the numerical properties of a single curve in Z. In thework of Poon [Po3] the algebraic dimension was computed from the structure of adivisor on Z. Moreover, his computation of algebraic dimension depends havily onthe existence of a divisor of degree one. As we are dealing with twistor spaces notcontaining a divisor of degree one, we cannot use his results.It would be interesting to study the question wether in Theorem 2.1 the assumptionon the dimension of the linear system j � 12Kj is really necessary. Our resultscontradict some statements in the paper [PP2]. This will be commented in section5.We start now to collect some necessary but well known facts and to introduceterminology. For details, the reader is referred to [AHS], [B], [ES], [H2], [K1], [Ku]and [Po1].We consider twistor spaces merely from the viewpoint of complex geometry. In thispaper, by a twistor space we mean a compact complex three{manifold together withthe following additional data:� a proper di�erentiable submersion � : Z !M onto a real di�erentiable four{manifoldM . The �bres of � are holomorphic curves in Z being isomorphic toC P1 and having normal bundle in Z isomorphic to O(1)�O(1);� an anti{holomorphic �xed point free involution � : Z ! Z with �� = �.



Moishezon twistor spaces without e�ective divisors of degree one 4The �bres of � are called \real twistor lines" and the involution � is called the\real structure". A geometric object will be called \real" if it is �{invariant. Forexample, a line bundle L on Z is real if �� �L �= L, and a complex subvariety D � Zis real if �(D) = D. Instead of �(D) we shall often write �D. In particular, by a\real curve" C � Z we mean a compact complex subspace which is �{invariant,that means C = �C.The twistor{space structure on Z de�nes a conformal class of self{dual Riemannianmetrics on M . By a result of Schoen [Sch] such a conformal class contains a metricwith constant scalar curvature. The sign of this constant will be called the type ofZ. The relations between the type and the algebraic dimension of Z are clari�edin [Po2] and [Pon]. Technically important will be the assumption of positive type,because of the following vanishing theorem.Theorem 1.1 (Hitchin [H1]). If Z is of positive type then we have for any L 2Pic (Z) deg(L) � �2 ) H1(Z;L) = 0:The degree deg(L) of a line bundle L 2 Pic (Z) is by de�nition the degree of therestriction L
OF to a twistor �bre F � Z.This vanishing theorem is what we really need, not the assumption of positive type.Therefore, we introduce the following de�nition.De�nition: A twistor space will be called Hitchin twistor space if and only ifit is compact and the statement of theorem 1.1 holds, that is: deg(L) � �2 )H1(Z;L) = 0.We can restate Hitchins vanishing theorem by saying: a compact twistor space ofpositive type is a Hitchin twistor space.For simply connected twistor spaces of positive type it is well known (see [Po1])that the associated Riemannian manifold is homeomorphic to the connected sumnC P2 . This remains true if we replace \positive type" by \Hitchin".



Moishezon twistor spaces without e�ective divisors of degree one 5Proposition 1.2. If Z is a simply connected Hitchin twistor space and Z !M thecorresponding twistor �bration, then M is homeomorphic to nC P2 for some n � 0.Proof: It is well known (see e.g. [ES]) thatH1(M ; C ) �= H1(Z;OZ) andH2�(M ; C ) �=H2(Z;OZ) holds. As �1(Z) �= �1(M) = f1g by assumption, we obtain h1(OZ) = 0.Hitchins vanishing theorem and deg(OZ) = 0 imply h2(OZ) = 0, hence H2�(M ; C ) =0. Therefore, M is a simply connected manifold with positively de�nite intersectionform. From [Don] and [F] the result now follows.If Z is a simply connected Hitchin twistor space, then hi(OZ) = 0 for i 6= 0. Usingthe exp{sequence this implies that the �rst Chern class de�nes an isomorphism offree abelian groups c1 : Pic (Z) ��! H2(Z;Z). It is well known, that the degree{morphism deg : Pic (Z)! Z is a surjective homomorphism. The Chern numbers ofZ are the following: c31 = 16(4�n); c1c2 = 24; c3 = 2(n+2), where n+1 = �(Z) :=rank Pic (Z) is the Picard number of Z. This follows from a detailed description ofthe cohomology ring of Z which is obtained via Proposition 1.2 and the Laray{Hirschtheorem applied to the twistor �bration Z ! M . On Z there exists a unique linebundle, denoted by K� 12 , whose square is the anticanonical bundle K�1Z . FollowingPoon, we call this the fundamental line bundle. The divisors in j � 12Kj are calledfundamental divisors. The adjunction formula implies deg(K� 12 ) = 2. As the realtwistor �bres cover Z, an e�ective divisor must have positive degree. This givesthe following vanishing result: deg(L) � �1 ) H0(Z;L) = 0. By Serre{dualitywe obtain for any compact twistor space: deg(L) � �3 ) H3(Z;L) = 0 and forHitchin twistor spaces: deg(L) � �2) H2(Z;L) = 0.A typical example of an application of these vanishing results will be the following.Let S 2 j� 12Kj be a smooth fundamental divisor. By adjunction we obtain K�1S =K� 12 
OS . There exist exact sequences 0! K 12 ! OZ ! OS ! 0 and 0! OZ !K� 12 ! K�1S ! 0. As deg(K 12 ) = �2 we obtain hi(K 12 ) = 0 for all i. The �rstsequence gives, therefore, hi(OS) = hi(OZ), which is zero for i � 1. Using h1(OZ) =



Moishezon twistor spaces without e�ective divisors of degree one 60 and h0(OZ) = 1 we deduce from the second sequence h0(K� 12 ) = 1 + h0(K�1S ).By a(Z) we denote the algebraic dimension of Z. This is by de�nition the transcen-dence degree of the �eld of meromorphic functions of Z over C . If dimZ = a(Z),then Z is called Moishezon. We need here only the following facts on the alge-braic dimension: dimZ � a(Z) and if f : Z ! PN is a meromorphic map, thena(Z) � dim f(Z). The reader may �nd this and many other things on algebraicdimension in [U].2 Algebraic DimensionIn this section we shall generalize a result of [K2] to the case of arbitray n � 4.Let Z denote a simply connected Hitchin twistor space with c1(Z)3 � 0. Weknow c1(Z)3 = 16(4 � n) and the Riemannian manifold M corresponding to Zis homeomorphic to the connected sum nC P2 .Theorem 2.1. Assume h0(K� 12 ) � 2 and the existence of an irreducible real curveC0 � Z with C0:(�12K) < 0. Then the following holds:(i) C0 is a smooth rational curve and C0:(�12K) = (�12K)3 � 2 = 2(3 � n), inparticular n � 4.(ii) a(Z) = 3, that is Z is Moishezon.(iii) The linear system j � 12Kj is two{dimensional and its base locus is preciselyC0.(iv) Z does not contain e�ective divisors of degree one.Proof: First we show the followingClaim: If C0 � Z is an irreducible real curve with C0:(�12K) < 0, then Z doesnot contain e�ective divisors of degree one.



Moishezon twistor spaces without e�ective divisors of degree one 7Assume Z contains an e�ective divisor D � Z of degree one. Then D+ �D 2 j� 12Kj,hence, by assumption, C0:D < 0 or C0: �D < 0. This implies C0 � D or C0 � �D.But C0 is assumed to be real, hence C0 � D \ �D. The intersection of a conjugatepair of divisors of degree one is always a real twistor �bre F = D \ �D. Hence,C0 = F . But F:(�12K) = 2 contradicts the assumption C0:(�12K) < 0. This provesthe claim.The claim immediately yields statement (iv). In particular, as each e�ective divi-sor has positive degree, all fundametal divisors are irreducible. As by assumptionh0(K� 12 ) � 1, we obtain the existence of an irreducible real fundamental divisorS 2 j � 12Kj. The structure of such divisors is well understood (see e.g. [PP2] or[K2]). In [K2] Lemma 3.3 and Lemma 3.4 the following was shown: S is a smooth ra-tional surface and contains real twistor �bres F � S, which form the real members ofa pencil jF j of curves in S. If we equip P1�P1 with the real structure given by the an-tipodal map on the �rst factor and the usual real structure on the second factor, thenthere exists a sequence of n blow{ups S = S(n) ! S(n�1) ! : : : ! S(0) = P1 � P1,where at each step a conjugate pair of points is blown up. Each S(j) can beequipped with a unique real structure without real points and being compatiblewith the morphisms S(j+1) ! S(j). As we do not blow up a real point, the im-age C 00 of C0 in S(0) = P1 � P1 is a curve. By assumption, C0 is irreducible andC0:S < 0, hence C0 � S. By adjunction formula we have K� 12 
OS �= K�1S . Hence,C0:(�KS) = C0:(�12K) < 0. Therefore, any member of j �KS j must contain C0.As h0(K�1S ) = h0(K� 12 )� 1 � 1 by assumption, we have j �KS j 6= ;. As we haveseen above, any member of j �KS j has C0 as a real component. We can now apply[K2] Prop. 3.6 to obtain the existence of a real member of j �KS j having the formC0+F with a real twistor �bre F � S. If the blow{down � : S ! P1�P1 is chosenappropriately, the image C 00 = �(C0) is a smooth rational curve being a member ofjO(2; 1)j.



Moishezon twistor spaces without e�ective divisors of degree one 8From [K2] Lemma 3.3 we know that none of the blown{up points lie on a realmember of jO(0; 1)j. On the other hand, K�1S = ��O(2; 2) 
 OS(�E), where E isthe exceptional divisor (more precisely, the sum of the pull backs of the exceptionaldivisors of each step of blow{up S(j+1) ! S(j)). Hence, all the blown{up points lieon C 00 and no two of them are in�nitesimally near each other. In particular, C20 =(C 00)2�2n = 4�2n and C0 � S is the strict transform of the smooth rational curveC 00. By adjunction formula we obtain C0:(�12K) = C0:(�KS) = C20 + 2 = 6 � 2n.In particular, n � 4. This proves the assertion (ii).Furthermore, we see j�KSj = C0+jF j. This implies dim j� 12Kj = dim j�KSj+1 =dim jF j + 1 = 2. As h1(OZ) = 0 the restriction map H0(K� 12 ) ! H0(K�1S ) issurjective. Hence, the linear systems j � 12Kj and j �KS j have the same base locus.As jF j does not have base{points, the base locus of j� 12Kj is C0. Thus, we obtained(iii).To compute the algebraic dimension of Z we study the rational map de�ned by thetwo{dimensional linear system j � 12Kj. This can be done precisely as in the casen = 4 (see [K2] Prop. 5.1). For convenience of the reader, we repeat the argumenthere. Let � : ~Z ! Z be the blow{up of the smooth rational curve C0. By E � ~Z wedenote the exceptional divisor. Then we obtain a morphism � : ~Z ! P2 de�ned bythe linear system j� 12Kj such that ��O(1) �= ��K� 12 
O ~Z(�E). As the restrictionmap j� 12Kj ! j�KS j is surjective, the restriction �jS is given by the linear systemj � KS j = C0 + jF j. This means � exibits S as the blow{up of a ruled surfaceand �(S) is a line in P2. As �( ~Z) is not contained in a linear subspace, � must besurjective. If we equip P2 with the usual real structure, � becomes compatible withreal structures since the linear system j � 12Kj and the blown{up curve C0 are real.As we have seen above, any real fundamental divisor S is irreducible and smooth.By ~S � ~Z we denote the strict transform of S 2 j � 12Kj. As C0 is a smooth curvein a smooth surface, � : ~S ! S is an isomorphism. Furthermore, E \ ~S will be



Moishezon twistor spaces without e�ective divisors of degree one 9mapped isomorphically onto C0 � S. As F:C0 = 2 and the restriction of � onto ~Sis the map de�ned by the linear system jF j, the restriction of � exibits E \ ~S as adouble covering over �(S) �= P1. As real lines cover P2, the morphism � : E ! P2does not contract curves and is of degree two.As generic �bres of � are smooth rational curves, the line bundle O ~Z(E) restricts toOP1(2) on such �bres. Hence, after replacing (if necessary) P2 by the open dense setU of points having smooth �bre, the adjunction morphism ����O ~Z(E) ! O ~Z(E)is surjective. This de�nes a U{morphism � : ~Z ! P(��O ~Z(E)). ��O ~Z(E) is alocally free sheaf of rank three. The restriction of � to smooth �bres coincideswith the Veronese embedding P1 ,! P2 of degree two. Therefore, the image of� is a three{dimensional subvariety of the P2{bundle P(��O ~Z(E)) ! U . Hence,~Z is bimeromorphically equivalent to a quasiprojective variety and has, therefore,algebraic dimension three.3 Kurke{LeBrun twistor spacesTo prove our existence theorem, we need some knowledge about the Moishezontwistor spaces discovered by LeBrun [LeB1] and studied by Kurke [Ku]. In thesequel we call these twistor spaces, which are bimeromorphic to some conic{bundlesover P1 � P1, Kurke{LeBrun twistor spaces. In this section we merely collect wellknown properties of such twistor spaces from [LeB1] and [Ku].The construction starts with a set of n hyperplane sections of P1 � P1 embeddedas a smooth quadric into P3. This quadric is equipped with the real structurede�ned by (x; y) 7! (�y; �x), where conjugation denotes the usual real structure onP1. Let '1; : : : ; 'n be sections of the line bundle O(1; 1) on P1�P1, such that theircorresponding divisors �i are smooth rational real curves without real points. Forour purposes it is enough to assume that these curves �i are in general position,that is the curve � = Pni=1�i de�ned by the product ' = '1 � : : : � 'n has only



Moishezon twistor spaces without e�ective divisors of degree one 10ordinary nodes as singularities.On P1�P1 we consider the locally free sheaf E := O�O(1�n;�1)�O(�1; 1�n) withconstant non{zero sections z0 2 H0(E); z1 2 H0(E(n � 1; 1)); z2 2 H0(E(1; n � 1)).Let p : P(E) ! P1 � P1 be the corresponding P2{bundle (we use Grothendieck'snotation, see e.g. [H] II x7). Then there exists a natural isomorphism H0(P1 �P1; S2(E) 
 O(n; n)) �= H0(P(E);OP(E)(2) 
 p�O(n; n)). Hence, the section F :=z1z2 + ' � z20 2 H0(P1 � P1; S2(E) 
 O(n; n)) de�nes a divisor X � P(E), whose�bres are conics. The discriminant of the conic bundle p : X ! P1 � P1, which isthe locus of critical values, is the curve � � P1 � P1. The singularities of X areordinary nodes and are mapped under p bijectively onto the set of singularities of�.This conic bundle has two sections, namely the divisors E = fz0 = z1 = 0g and�E = fz0 = z2 = 0g. These divisors do not contain singular points of X. By choosingcertain small resolutions of the singularities of X and appropriate contractions ofE and �E to smooth rational curves B and �B, one obtains a twistor space Z0.Let H0 � P1�P1 be a real irreducible hyperplane section containing real points, butmissing the singular points of �. Then, the inverse image of H0 in X is a blow{upof a smooth ruled surface. The projection to H0 has 2n reducible �bres. Thesereducible �bres are precisely the �bres over H0 \ � and each of them consists oftwo rational curves. This surface does not meet the set of singularities of X but itintersects E and �E along sections. The contraction of E and �E performed to getZ0 maps this surface isomorphically onto a real fundamental divisor S0 containingthe disjoint curves B and �B. The real �bres of the morphism S0 ! H0 are preciselythe real twistor �bres contained in S0. The self{intersection number of B and �Bin S0 is equal to �n. If we contract conjugate pairs of irreducible components ofreducible �bres of S0 ! H0, we obtain a morphism � : S0 ! P1 �H0 which is theblow{up on n pairs of conjugate points on P1�H0. The two curves B0 = �(B) and



Moishezon twistor spaces without e�ective divisors of degree one 11�B0 = �( �B) are �bres of the projection P1 �H0 ! P1. On B0 lie n distinct pointswhich are blown{up under �. The conjugate set of blown{up points lie, of course,on �B0. As H0 does not meet the singularities of �, the set of 2n blown{up pointson P1 �H0 is projected onto the 2n distinct points H0 \�.4 ExistenceIn this section we prove the main theorem of our paper, stating for each n � 4 theexistence of a twistor space with the properties of Theorem 2.1. An important toolto achieve this result will be the following theorem on the deformation theory oftwistor spaces. This theory was �rst developed by Donaldson and Friedman [DonF]and later by Campana and LeBrun.Theorem 4.1 ( [C1], [C3], [DonF], [PP2]). Let Z be a Kurke{LeBrun twistorspace, n � 4 and S 2 j � 12Kj a smooth real divisor. Then:Any real member of a small deformation of Z is again a twistor space. Furthermore,any small deformation of S with real structure is induced by a deformation of Z inthe sense that the deformed surfaces are members of the fundamental system of thedeformed twistor spaces.Theorem 4.2. For any n � 4 there exists a simply connected twistor space Zof positive type with c1(Z)3 = 16(n � 4) and containing a smooth rational curveC0 � Z with C0:(�12K) = 2(3�n). Furthermore, dim j � 12Kj = 2 and Z ful�lls allconditions of Proposition 2.1.Proof: Let Z0 be a (generic) Kurke{LeBrun twistor space and S0 � Z0 a realfundamental divisor as described in section 3. Then we can choose a real blow{down map � : S0 ! P1 � P1 such that the 2n blown{up points lie on a conjugatepair of lines B0, �B0 2 jO(1; 0)j. We can take Z0, S0 and � in such a way that ndistinct points on B0 and their conjugates on �B0 are blown{up and no member of



Moishezon twistor spaces without e�ective divisors of degree one 12jO(0; 1)j contains more than one of these 2n points. The real members of jO(0; 1)jdo not contain blown{up points. The idea of the proof is to move the 2n points onP1 � P1 such that they lie on a smooth real member of jO(2; 1)j and to apply thenTheorem 4.1.To make this more precise, let F 0 2 jO(0; 1)j be a real �bre. De�ne C0 := B0 +F 0+ �B0 2 jO(2; 1)j. Let T := jO(2; 1)j �= P5 be the parameter space of the universalfamily C = f(C; x) j x 2 Cg � jO(2; 1)j � (P1 � P1) of curves of type (2; 1). ThenC ! T is a 
at family being a deformation of C0. By 0 2 T we denote the point,corresponding to C0. If t 2 T is a point, we shall denote the �bre of C ! T over tby Ct.Let us equip P1 � P1 with the real structure given by the antipodal map on the�rst factor and the usual real structure on the second factor. As this real structurepreserves the type of a divisor, we obtain a real structure on T . This induces a realstructure on C, such that C ,! T � (P1 � P1) and C ! T are real morphisms. Ifwe set T0 := T , we can recursively de�ne the spaces Tk := Tk�1 �T C ! T for anyk � 1. We obtain a 
at family Tk+1 ! Tk, whose �bres are curves of type (2; 1) onP1�P1. This family has k natural sections P (i)k : Tk ! Tk+1 (i = 1; : : : ; k) given bythe k projections Tk ! C which we obtain recursively.As we want to blow up 2n distinct points on a curve of type (2; 1), we introducethe open subset T �k � Tk de�ned as follows. Let T �0 := T0 and T �k � T �k�1 �T Cbe the complement of the union Pk�1 := Sk�1i=1 P (i)k�1(T �k�1) of the images of thek � 1 natural sections of Tk ! Tk�1 restricted to T �k�1. The closed subvarietyPk+1 � Tk+1 is by de�nition �etale of degree k over T �k . Using the closed embeddingC � T � P1 � P1 we obtain, recursively, closed embeddings Tk+1 � Tk � (P1 � P1)and Pk+1 � T �k � (P1 � P1).As Pk+1 ! T �k is 
at, the blow{up Sk ! T �k � (P1 � P1) along Pk+1 de�nes a 
atfamily Sk ! T �k whose �bres are surfaces, isomorphic to a blow{up of P1 � P1 at k



Moishezon twistor spaces without e�ective divisors of degree one 13distinct points, lying on a curve of type (2; 1). A point x 2 T �k corresponds to anordered set of k distinct points (x1; : : : ; xk) on P1 � P1, which lie on the curve Ct,where t is the image of x under T �k ! T0 = T .The given set of 2n blown{up points on the given curve C0 2 jO(2; 1)j de�nes apoint 0 2 T �2n, such that the �bre of S2n ! T �2n over 0 is isomorphic to the surfaceS0 we started with. Assume we ordered the points x1; : : : ; x2n in such a way thatxi = xn+i (i = 1; : : : ; n). We then introduce on T2n the real structure given by(y1; : : : ; y2n) 7! (yn+1; : : : ; y2n; y1; : : : ; yn). With this real structure, T �2n � T2n isreal and 0 2 T �2n(R) is a real point. If we equip T2n � (P1 � P1) with the realstructure given by the real structures on both factors, the subvariety P2n+1 is real.Hence, we obtain on S2n a real structure, such that S2n ! T �2n is a real morphism.By assumption, the originally blown{up points x1; : : : ; x2n do not lie on F 0, thatmeans they are smooth points of C0. Hence, T �2n is smooth at 0. This implies, thesubset of real points T �2n(R) is near 0 a real manifold whose real dimension is equalto the (complex) dimension of T �2n.We can apply Theorem 4.1 to obtain an open analytic neighbourhood of 0 2 T �2n �T �2n such that for any real t 2 T �2n(R) there exists a twistor space Zt containing afundamental divisor isomorphic to St (the �bre of S2n ! T �2n over t).By construction, the morphism T2n ! T is 
at, hence, open. The image of T �2n inT is, therefore, open. As the subset of points on T corresponding to non{smoothcurves Ct � P1 � P1 is a Zariski{closed subset and T �= P5 is irreducible, thereexists a Zariski{open dense subset of T �2n whose image in T corresponds to pointsparametrizing smooth curves Ct. As T �2n(R) is Zariski{dense in T �2n (at least ina neighbourhood of 0), there exist points t 2 T �2n(R) whose image in T (R), alsodenoted by t, corresponds to a smooth real divisor Ct 2 jO(2; 1)j.This proves the existence of twistor spaces Zt with a fundamental divisor St and ablow{up St ! P1 � P1, such that the 2n distinct blown{up points in P1 � P1 lie on



Moishezon twistor spaces without e�ective divisors of degree one 14a smooth real curve Ct 2 jO(2; 1)j. The strict transform ~Ct � Zt of Ct is a smoothreal curve contained in St which has there the self{intersection number 4�2n and isisomorphic to P1. Furthermore, (�KSt)2 = 8�2n. By adjunction formula we obtain~Ct:(�12K) = ~Ct:(�KSt) = ~Ct2 + 2 = 2(3 � n) and (�12K)3 = (�KSt)2 = 2(4� n).As the Zt are small deformations of Z0 they are also simply connected. The twistorspace Z0 is Moishezon, thus of positive type (see [Po2]). A small deformation ofa twistor space of positive type is again of positive type. So, we obtain, Zt is ofpositive type. As we have by construction jKSt j 6= ; we obtain h0(Zt;K� 12 ) =1 + h0(�KSt) � 2. Hence, we can apply Theorem 2.1 to get the result.5 Comment to a paper of Pedersen and PoonAs the twistor spaces we constructed in the previous section are small deformationsof Kurke{LeBrun twistor spaces, our result contradicts obviously Theorem 4.7 in[PP2] which claims that any Moishezon twistor space being a small deformation ofa Kurke{LeBrun twistor space contains an e�ective divisor of degree one. So, thereare some comments in order.The solution for this contradiction is, that the proof of Lemma 4.1 in [PP2] hasa gap, which appears on page 697. They did not consider in their case (ii) thepossibility that a real curve of type (2; 2) on P1 � P1 can split as the sum of tworeal curves C0 + F with C0 2 jO(2; 1)j and F 2 jO(0; 1)j a real twistor �bre. (Acomplete treatment of this situation can be found in [K2].)As a consequence of this gap, the proofs of Corollary 4.3, Theorems 4.7 and 4.8in [PP2] are not correct. Our existence theorem shows that these results are evenfalse.
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