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ALGEBRAIC DIMENSION OF TWISTOR SPACES WHOSE

FUNDAMENTAL SYSTEM IS A PENCIL

NOBUHIRO HONDA AND BERND KREUSSLER

Abstract. We show that the algebraic dimension of a twistor space over nCP2 cannot be
two if n > 4 and the fundamental system (i.e. the linear system associated to the half-anti-
canonical bundle, which is available on any twistor space) is a pencil. This means that if
the algebraic dimension of a twistor space on nCP2, n > 4, is two, then the fundamental
system either is empty or consists of a single member. The existence problem for a twistor
space on nCP2 with algebraic dimension two is open for n > 4.

1. Introduction

If Z is a compact complex manifold, the algebraic dimension of Z, usually denoted by
a(Z), is defined to be the complex dimension of a projective algebraic variety, the rational
function field of which is isomorphic to that of Z. We always have a(Z) ≤ dimC Z, and in
case of equality, Z is called Moishezon. Any projective algebraic manifold is Moishezon. In
the other extreme case, a(Z) = 0, Z has no non-constant rational function.

Not so many compact differential manifolds admit complex structures whose algebraic
dimension ranges from zero to half of its real dimension. Complex tori of dimension d ≥ 2
are examples of such manifolds. In complex dimension two, only complex tori and K3
surfaces are examples for which all three possible values of the algebraic dimension actually
occur. In dimension three, twistor spaces associated to self-dual metrics on 4-manifolds [1]
are good candidates of such manifolds.

By a result of Campana [3], if Z is a Moishezon twistor space, then the base 4-manifold
is homeomorphic to nCP2, the connected sum of n ≥ 0 copies of complex projective planes;
by convention 0CP2 = S4. If n < 4, any twistor space on nCP2 is Moishezon as long as the
corresponding self-dual metric has positive scalar curvature [15, 22]. No example seems to
be known of a self-dual metric of non-positive scalar curvature on these manifolds. Thus if
n < 4, all known twistor spaces are Moishezon.

The situation is very different for n ≥ 4. First, if n = 4, for any a ∈ {1, 2, 3}, there
actually exists a twistor space Z over 4CP2 which satisfies a(Z) = a, see [22, 6, 12, 13].
Also, it is known that a(Z) 6= 0 as long as the self-dual metric on 4CP2 is of positive scalar
curvature [22]. Moreover, no example seems to be known of a self-dual metric on 4CP2 of
non-positive scalar curvature. Thus our understanding of possible values of the algebraic
dimension is quite satisfactory in case n = 4, too.

The main focus of this article is on the case n > 4. For any n > 4 and a ∈ {0, 1, 3} it
is known that there exists a twistor space Z on nCP2 which satisfies a(Z) = a, [7, 22, 18].
Moreover, in [8, Main Theorem], it is stated that there exists a twistor space Z on nCP2

with a(Z) = 2 for any n > 4. These spaces satisfy dim |K−1/2| = 1, where K−1/2 is the
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natural square root of the anti-canonical line bundle on Z, which is available on any twistor
space [10]. This is in contrast to the following theorem, which is main result of this article.

Theorem 1.1. If n > 4 and Z is a twistor space on nCP2 such that dim |K−1/2| = 1, then
a(Z) 6= 2.

At the end of this article we give a detailed explanation of the contradiction between this
result and the result of [8].

By a result of [17], if a twistor space Z over nCP2, n > 4, satisfies dim |K−1/2| > 1, then
Z is Moishezon. Therefore from Theorem 1.1, we obtain

Proposition 1.2. If a twistor space Z over nCP2, n > 4, satisfies a(Z) = 2, then the

system |K−1/2| consists of a single member, or is empty.

To the best of the authors’ knowledge, existence of this kind of twistor spaces is not
known. Thus the existence of a twistor space on nCP2 with algebraic dimension two seems
to be not known.

Here is an outline of our proof of Theorem 1.1. Let Z be a twistor space over nCP2 which
satisfies dim |K−1/2| = 1 and assume that the base locus of the pencil |K−1/2| constitutes a
cycle of smooth rational curves. This assumption is always satisfied if n > 4 and a(Z) = 2
(Proposition 3.7). By blowing up this base curve and then taking a simultaneous small
resolution of all ordinary double points that appear by the blow-up, we get the diagram

Z1

µ1
−−−−→ Z

f1

y

CP1 .

(1.1)

Here, µ1 is the composition of the blow-up and the small resolution, and f1 is a surjective
morphism induced by the pencil |µ∗

1K
−1/2 − E|, where E is the exceptional divisor of the

birational morphism µ1. Smooth fibres of f1 are naturally identified with members of the
pencil |K−1/2|, and they are rational surfaces.

From this fibration, if S denotes a generic member of the pencil, we have the equality
a(Z) = 1 + κ−1(S), where κ−1(S) is the anti-Kodaira dimension [17, Corollary 4.3]. Hence
if a(Z) = 2, generic members of the pencil satisfy κ−1(S) = 1. Moreover, for any smooth

member S of |K−1/2|, we have a(Z) ≤ 1 + κ−1(S). Hence if a(Z) = 2, we have κ−1(S) ≥ 1
for any smooth member S of the pencil. In Proposition 3.4 we show that if some member of
the pencil satisfies κ−1(S) = 2, then a(Z) = 3. Hence if a(Z) = 2, any smooth member S of
the pencil must satisfy κ−1(S) = 1. We shall show by contradiction that this situation can
never happen. This implies that even if some member S of the pencil satisfies κ−1(S) = 1,
generic members of the pencil necessarily satisfy κ−1 = 0, which then implies that a(Z) = 1.
The main tool of our analysis is the Zariski decomposition for a divisor on a surface [25].

Finally, a remark about notation. If |L| is a complete linear system on some compact
complex manifold and if we write

|L| = |L′|+D

for some effective divisor D, then D is a fixed component of |L|. But this does not imply
that the system |L′| is without fixed component.

We would like to express our sincere gratitude to Professor Fujiki for his generous and
helpful comments about the anti-Kodaira dimension of general members of the pencil
|K−1/2| on the twistor space. These are reflected not only in the explanation in Section
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4 but throughout this article. We would also like to thank the referee for forcing us to
improve the clarity of this article.

2. Zariski decomposition of an anti-canonical divisor on a rational surface

In this section we fist recall basic properties of the Zariski decomposition of a divisor
on a projective surface, and then investigate the Zariski decomposition of an anti-canonical
divisor on a non-singular rational surface of anti-Kodaira dimension zero or one.

Let S be a non-singular projective surface, and C an effective divisor on S. Then the
Zariski decomposition of C is the decomposition

C = P +N,

where P and N are effective Q-divisors (i.e. divisors with positive rational coefficients) or
the zero divisor, which satisfy

(i) P is nef, that is PD ≥ 0 for any curve D on S,
(ii) if N 6= 0, N is negative definite in the following sense: if N =

∑
αiEi with distinct,

irreducible Ei and αi 6= 0, the total intersection matrix (EiEj) is negative definite,
(iii) if N 6= 0, PEi = 0 for all i.

Any effective divisor C admits a unique Zariski decomposition, see [25, 24]. P is called the
nef part of C. Note that if C = P + N is the Zariski decomposition of C, then for any
integer m > 0, mC = mP + mN is the Zariski decomposition of mC. One of the most
important properties of the Zariski decomposition is that it disposes of sub-divisors of mC

which do not contribute to the dimension h0(OS(mC)) in the following sense:

Proposition 2.1. ([24, Lemma 2.4]) Let S,C and C = P +N be as above, and m > 0 an
integer. Then we have

|mC| =
∣∣⌊mP ⌋

∣∣+ ⌈mN⌉,

where for an effective Q-divisor D, ⌊D⌋ and ⌈D⌉ denote the (integral) round down and the
round up of D respectively. In particular, the divisor ⌈mN⌉ is a fixed component of |mC|.

Next let S be a non-singular rational surface. For an integer m > 0, the linear system
|mK−1| on S is called the m-th anti-canonical system. If this is non-empty, the associated
rational map φm : S → CPr, r = h0(mK−1) − 1, is called the m-th anti-canonical map.
The anti-Kodaira dimension, κ−1(S), of a rational surface S is defined as

κ−1(S) := max
m>0

dimφm(S) ∈ {2, 1, 0,−∞}.

Here, κ−1(S) = −∞ occurs when |mK−1| = ∅ for all m > 0, but we will not encounter this
case in the following. Typical examples of rational surfaces with κ−1 = 2 are Del Pezzo
surfaces, while simple examples with κ−1 = 1 are obtained from CP2 by blowing up the 9
intersection points of two anti-canonical (i.e. cubic) curves.

The anti-Kodaira dimension of rational surfaces was investigated in more detail by F.
Sakai [24]. His main tool was the Zariski decomposition of the anti-canonical divisor. Even
if κ−1(S) ≥ 0, the anti-canonical divisor might not be effective. However, Sakai [24, Lemma
3.1] has shown that the divisor K−1

S is pseudo effective iff κ−1(S) ≥ 0. A divisor C on a
surface S is called pseudo-effective if CH ≥ 0 for any ample divisor H. Fujita [9] has shown
that any pseudo effective divisor C has a unique Zariski decomposition C = P + N with
the same properties as above except that P is no longer required to be effective. Therefore,
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if κ−1(S) ≥ 0 and K−1
S = P +N is the Zariski decomposition of an anti-canonical divisor,

one can define the degree of a surface S to be the self-intersection number

d(S) := P 2,(2.1)

which is clearly a non-negative rational number. Rational surfaces with κ−1 = 2 may be
characterised in terms of the degree as follows.

Proposition 2.2. (Sakai [23, Proposition 1]) Let S be a non-singular rational surface with
κ−1(S) ≥ 0, and let d(S) be the degree of S as above. Then κ−1(S) = 2 if and only if
d(S) > 0.

In particular we have d(S) = 0 if (and only if) κ−1(S) ∈ {0, 1}. In the rest of this section
we focus on rational surfaces with d(S) = 0 which admit a special type of anti-canonical
divisor. For this purpose, by a cycle of rational curves, we mean either a rational curve
with one node, or a connected, reduced, normal crossing divisor

C = C1 + · · ·+ Ck(2.2)

on S, with all Ci being non-singular rational curves, such that the dual graph of C is a circle.
For simplicity, in the expression (2.2), we allow k to be one, in which case C = C1 means a
rational curve with one node. We always assume that if k ≥ 2 in (2.2) the components Ci

and Ci+1 intersect and Ck+1 = C1. By an anti-canonical cycle we mean a cycle of rational
curves which belongs to the anti-canonical class.

The following well-known lemma will be used frequently.

Lemma 2.3. ([2, p. 28, Lemma]) Let S be a smooth surface, C1, . . . , Ck irreducible curves

on S for which
∑

Ci is a connected curve, pi > 0 rational numbers so that P =
∑k

i=1 piCi

satisfies PCj = 0 for j = 1, . . . , k.
Then, the intersection matrix (CiCj)1≤i,j≤k is negative semi-definite with one-dimensional

kernel generated by P . More precisely, this means that, for D =
∑k

i=1 riCi with ri ∈ Q we
always have D2 ≤ 0 and D2 = 0 occurs iff D = rP for some r ∈ Q.

For the rest of this section, let S be a non-singular rational surface and suppose that S
has an anti-canonical cycle C as in (2.2) and let C = P +N be its Zariski decomposition.
Let m0 > 0 be the smallest positive integer for which m0P is integral, and write

(2.3) m0P = l1C1 + · · ·+ lkCk, (li ∈ Z≥0).

Lemma 2.4. (i) If P = 0 then κ−1(S) = 0.
(ii) P 2 = 0 if and only if PCi = 0 for 1 ≤ i ≤ k.

Proof. (i) If P = 0, the nef part of the Zariski decomposition for mC is 0 for any m > 0.
By Proposition 2.1 this means that h0(mK−1) = 1 for all m > 0, hence κ−1(S) = 0.

(ii) From (2.3) it is clear that PCi = 0 for 1 ≤ i ≤ k implies P 2 = 0.
For the converse, if an index i satisfies li < m0 in (2.3), then N includes Ci, and so

PCi = 0 from the property (iii) of the Zariski decomposition. Therefore we have

(m0P )2 = m0P
( ∑

1≤i≤k

liCi

)
= m0

( ∑

1≤i≤k

liPCi

)
= m2

0

∑

li=m0

PCi.(2.4)

Further, as P is nef, we have PCi ≥ 0 for any i. Because we assume P 2 = 0, (2.4) implies
that PCi = 0 even when li = m0. �
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By Pic0(C) we denote the group of line bundles on the anti-canonical cycle C that are
trivial on each component Ci. Thus, part (ii) of Lemma 2.4 says that P 2 = 0 is equivalent
to m0P |C ∈ Pic0(C).

Lemma 2.5. Let π : S → S be the blow-down of a (−1)-curve on S, and let C := π(C)
be the image of the anti-canonical cycle C, and x ∈ S the image of the (−1)-curve. Define
m = multxC. Then,

(i) C is an anti-canonical cycle on S and m ∈ {1, 2};
(ii) if C = N + P is the Zariski decomposition of C and m = 2, then P = 0 iff P = 0.

Proof. (i) Let E ⊂ S be the exceptional curve of the blow-up π. As EC = EK−1 = 1,
either E is a component of C or it intersects C transversally at one point. Let C ′ be the
strict transform of C = π(C), then C ′ = C if E is not a component of C, or C ′ = C − E

if E is a component of C. In both cases, C clearly is a cycle of rational curves. Because
m = C ′E and EC = 1, we obtain m = 1 if E is not a component of C, and m = 2 if E is a
component of C. In particular, C = C ′+(m− 1)E in both cases. Because π∗C = C ′+mE

and K−1 = π∗K−1

S
− E, we now obtain C ∈ |K−1

S
|.

(ii) As m = 2, the exceptional curve E is a component of C. We fix notation so that
Ck = E and C = C1 + · · · + Ck−1, where Ci = π(Ci). Consider the intersection matrix
M =

(
CiCj

)
1≤i,j≤k−1

. The intersection matrix M = (CiCj)1≤i,j≤k is obtained from M by

adding an extra row and a column with C1Ck = Ck−1Ck = 1 and C2
k = −1 being their

only non-zero entries. In addition, four entries in M have to be changed to get M , namely

C2
1 = C

2

1 − 1, C2
k−1

= C
2

k−1 − 1 and C1Ck−1 = 0, whereas C1Ck−1 = 1.
By adding the k-th column of M to columns 1 and k− 1, the values of the entries of the

part of M that corresponds to M are restored to the original values they had in M . It now
follows easily from Sylvester’s criterion that the matrix M is negative definite if and only
if M is so. Because P = 0 is equivalent to M being negative definite and P = 0 if and only
if M is negative definite, the claim now follows. �

We will frequently need the following more detailed properties of the Zariski decomposi-
tion C = P +N of the anti-canonical cycle C on the surface S.

Proposition 2.6. Suppose that P 6= 0 and P 2 = 0.

(i) We have li > 0 for all i.

(ii) If π : S̃ → S is the blow-up of a point x ∈ C and m = multxC, then

κ−1(S̃) = κ−1(S) if m = 2

κ−1(S̃) = 0 if m = 1.

(iii) We have li = 1 for some index i.
(iv) If K2 < 0, then m0 > 1, k ≥ 2, and we have li 6= lj for some indices i and j.

Proof. For (i), if li = 0 for some i, we have m0PCi = li−1 + li+1 since C is a cycle. But as
P 2 = 0, Lemma 2.4 (ii) shows that PCi = 0 for all i, hence li−1 = li+1 = 0. Repeating this
argument, we obtain li = 0 for any i, but this contradicts P 6= 0.

To prove (ii) we recall from [17, Lemma 5.1] that κ−1(S̃) ≤ κ−1(S) = 1 with equality if
m ≥ 2. Because C is a cycle of rational curves, the points on C have multiplicity 1 or 2.

We assume now m = 1 and show κ−1(S̃) = 0. From (i), Lemma 2.4 (ii) and Lemma 2.3, for

any divisor D =
∑k

i=1 niCi, we have D2 ≤ 0 with equality only if D = rP for some r ∈ Q.
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Let C̃i be the strict transform of Ci and C̃ =
∑k

i=1 C̃i. Because we assumed m = 1, C̃ is

an anti-canonical cycle on S̃. We now show that the intersection matrix of the components

of C̃ is negative definite. To fix notation, we assume x ∈ C1, so that C̃2
1 = C2

1 −1. Consider

D̃ =
∑k

i=1 niC̃i and let D =
∑k

i=1 niCi, then D̃2 = D2 − n2
1 ≤ D2 ≤ 0. If D̃2 = 0

we then have D2 = 0 and n1 = 0, hence D = rP =
∑k

i=1 rliCi for some r ∈ Q and so

rl1 = n1 = 0. As l1 6= 0 this implies r = 0, hence D = 0, which gives D̃ = 0. This shows

that the intersection matrix (C̃iC̃j)1≤i,j≤k is negative definite. This implies that P̃ = 0 in

the Zariski decomposition C̃ = P̃ + Ñof the anti-canonical divisor C̃, hence κ−1(S̃) = 0 by
Lemma 2.4 (i).

To prove (iii), we recall from [24, Theorem 3.4] that there is a birational morphism
ϕ : S → S0 with S0 being non-singular, such that κ−1(S0) = κ−1(S) and any anti-canonical
divisor C0 ∈ |K−1

S0
| is nef, that is N0 = 0 in the Zariski decomposition C0 = P0 +N0 of C0.

Because P 2 = 0 and κ−1(S0) = κ−1(S), Proposition 2.2 implies that K2
S0

= P 2
0 = 0 as well.

The morphism ϕ is a composition of blow-ups. By Lemma 2.5 (i) the image of C in
each of these partial blow-ups is an anti-canonical cycle containing the blown-up point.
Moreover, as we have seen in the proof of (ii) above, if the blown-up point had multiplicity
one on the anti-canonical cycle, the nef part of the Zariski decomposition would vanish after
the blow-up. Because of Lemma 2.5 (ii), this would lead to P = 0 on S, in contradiction to
our assumption. Therefore, it follows that at each step a double point of the anti-canonical
cycle is blown-up and the nef part of the Zariski decomposition does not vanish.

Because the anti-Kodaira dimension does not increase under blow-up, [17, Lemma 5.1],
and κ−1(S0) = κ−1(S), all partial blow-ups in this process have κ−1 = κ−1(S), in particular
the self-intersection number of the nef part of the Zariski decomposition is equal to zero.

From the above we infer that C0 := ϕ(C) is an anti-canonical cycle on S0 which coincides
with the nef part, P0, of its Zariski decomposition. Thus, m0 = 1 and all li = 1 on S0, and
so the assertion (iii) holds for the pair (S0, C0). To finish the proof of (iii) by induction, it
remains to show that, if (S,C) is a pair consisting of a rational surface and an anti-canonical
cycle on it that satisfies the assumptions of the current proposition and has li = 1 for one

index i, and if π : S̃ → S is the blow-up at a double point of C, then the nef part of the

new anti-canonical cycle C̃ on S̃ also satisfies (iii).
To show this, we continue to use the notation introduced above, like (2.2), for S,C and

P . To fix notation, we suppose that the point Ck ∩ C1 is blown up by π. Let C̃k+1 be

the exceptional divisor of π and write C̃i for the strict transform of the component Ci

(1 ≤ i ≤ k). We recall that li > 0 (1 ≤ i ≤ k), define lk+1 = l1 + lk and consider the divisor

D̃ on S̃

D̃ =

k+1∑

i=1

liC̃i .(2.5)

It is easy to see that D̃C̃i = 0 for i = 1, . . . , k+1, and therefore D̃ is nef and D̃2 = 0. Hence,

again by Lemma 2.3, the intersection matrix (C̃iC̃j)1≤i≤k+1 is negative semi-definite, and

if P̃ is the nef part of C̃ =
∑

C̃i and m̃0 is the smallest positive integer for which m̃0P̃ is

integral, we have m̃0P̃ = rD̃ for some r ∈ Q>0. Since li = 1 for some index i (i ≤ k) by the
inductive assumption, it follows that r ∈ Z>0.

If r 6= 1, all the coefficients of m̃0P̃ would be divisible by r. If all C̃i appeared in the

negative part, Ñ , of the Zariski decomposition of C̃, condition (ii) in the definition of the
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Zariski decomposition would imply P̃ 2 < 0. Thus, P̃ 2 = 0 implies that at least one of the

C̃i is missing in Ñ . Hence, at least one of the coefficients of m̃0P̃ is equal to m̃0. But then

r would divide m̃0 and all coefficients of m̃0P̃ , which contradicts the choice of m̃0. This

shows that r = 1, and we obtain m̃0P̃ = D̃. Thus from the expression (2.5) we now see

that the cycle C̃ satisfies the property (iii).
The final item (iv) follows now easily, because K2 < 0 implies that the morphism ϕ in

the proof of (iii) is not an isomorphism and so there was at least one blow-up carried out.
The expression (2.5) for m0P shows then that at least one of the li is greater than 1. Also,
note that m0 is equal to the largest coefficient in m0P . �

Lemma 2.7. Suppose P 6= 0, P 2 = 0 and that there exists an integer ν > 0 for which
h0(νm0P ) > 1, then m0P |C ∈ Pic0(C) has finite order. Moreover, if r is the smallest
positive integer for which h0(rm0P ) > 1, then rm0P |C ≃ OC .

Proof. Let r be the smallest positive integer for which h0(rm0P ) > 1 and let s ∈ H0(rm0P )
be a non-zero element that satisfies (s) 6= rm0P . Put D := (s) ∈ |rm0P | and write

D = D′ +
∑

1≤i≤k

aiCi,

where D′ (which may be 0 at this moment) does not include Ci for any i. As D 6= rm0P =∑
rliCi, we have ai 6= rli for at least one i. Since D ∈ |rm0P |, we have a linear equivalence

D′ +
∑

1≤i≤k

aiCi ∼
∑

1≤i≤k

rliCi.

Collecting all indices that satisfy ai > rli (if any) on the left-hand side, we obtain

D′ +
∑

ai>rli

(ai − rli)Ci ∼
∑

aj≤rlj

(rlj − aj)Cj .(2.6)

If RHS is the zero-divisor, then so has to be LHS, which contradicts ai 6= rli for some i.
So both sides of (2.6) are effective divisors. Because LHS and RHS do not have a common
irreducible component, we obtain that the self-intersection number of RHS is non-negative.
Since P 2 = 0, by Lemma 2.4 (ii) we have PCi = 0 for any i, 1 ≤ i ≤ k. Because of
Proposition 2.6 (i) we can apply Lemma 2.3 to obtain that the total intersection matrix(
CiCj

)
1≤i,j≤k

is negative semi-definite. Hence the self-intersection number of RHS has to

be zero. By Lemma 2.3, this can happen only when
∑

aj≤rlj

(rlj − aj)Cj = r′m0P,

for some r′ ∈ Q>0. Because li > 0 for all i by Proposition 2.6 (i), we can conclude that
rli − ai > 0 for all i. Therefore from (2.6) we obtain a linear equivalence

D′ ∼ r′m0P, r′ ∈ Q>0 .(2.7)

On the other hand, we have li = 1 for some index i by Proposition 2.6 (iii). Because D′ is
integral, (2.7) implies now that r′ ∈ Z. Hence by the minimality of r, and as D′ ≤ D, we
have r′ = r.

Because we have chosen D′ not to have any Ci as a component and because D′Ci =
r′m0PCi = 0, the divisor D′ does not intersect any Ci. As D′ ∼ rm0P , this means that
rm0P |C ≃ OC . Hence m0P |C is of finite order in Pic0(C). �



8 NOBUHIRO HONDA AND BERND KREUSSLER

We will use this result to show the following property regarding pluri-anti-canonical
systems on S, which will be used in the next section.

Proposition 2.8. If P 6= 0, P 2 = 0 and m0P |C ∈ Pic0(C) is of finite order τ , then

(i) |τm0K
−1| = |τm0P |+ τm0N , Bs |τm0P | = ∅, dim |τm0P | = 1, and the associated

morphism S → CP1 is an elliptic fibration;
(ii) κ−1(S) = 1;
(iii) for any ν > 0, the system |ντm0P | is composed with the pencil |τm0P |, i.e. each

element of |ντm0P | is a sum of elements of |τm0P |;
(iv) for any integer ν > 0, we have

∣∣ντm0P − C
∣∣ =

∣∣(ν − 1)τm0P
∣∣+

(
τm0P − C

)
.

Proof. Because C is an anti-canonical divisor with Zariski decomposition C = P + N , we
obtain |τm0K

−1| = |τm0P |+ τm0N . By Lemma 2.7 we have

h0(νm0P ) = 1, if 0 < ν < τ.(2.8)

Note that τm0P −C is an effective divisor by Proposition 2.6 (i). Using Serre-duality this
implies H2(τm0P − C) = 0. Using P 2 = 0, the definition of the Zariski decomposition
implies that

K2 = C2 = P 2 + 2PN +N2 = N2 ≤ 0

with equality iff N = 0. If (τm0P −C)2 = C2 = K2 < 0, the non-empty system |τm0P −C|
has a (non-zero) fixed component. Indeed, if L is a line bundle on a smooth surface so that
|L| is not empty and L2 < 0, then |L| must have a fixed component, as can be seen as
follows. Let Y =

∑
diYi ∈ |L| with di > 0 and prime divisors Yi. Then there exists k such

that LYk < 0, because otherwise we would have L2 = L
∑

diYi =
∑

diLYi ≥ 0. If now Y ′

is any element of |L|, then Y ′Yk = LYk < 0, hence Yk is a component of Y ′, i.e. a fixed
component of |L|.

If K2 < 0 we let D be the (maximal) fixed component of |τm0P − C|. By Lemma 2.4
(ii), Proposition 2.6 (i) and Lemma 2.3, the intersection matrix formed by the components
of the cycle C is negative semi-definite, hence (τm0P − C − D)2 ≤ 0. But if this was
negative, |τm0P − C − D| would still have a fixed component, in contradiction to the
choice of D. Hence (τm0P − C − D)2 = 0. If K2 = 0, we simply take D = 0 to obtain
(τm0P − C −D)2 = 0. Therefore, by Lemma 2.3 again, we have

τm0P − C −D = sm0P, s ∈ Q>0.(2.9)

Moreover, s is an integer since m0P has a component of multiplicity one, by Proposition
2.6 (iii), and the left-hand side is an integral divisor. From (2.9) we have s < τ , and so
h0(sm0P ) = 1 by (2.8). Therefore,

h0(τm0P − C) = h0(τm0P − C −D) = h0(sm0P ) = 1 .

By Riemann-Roch we readily obtain χ(τm0P − C) = 1. Because H2(τm0P − C) = 0 and
h0(τm0P − C) = 1, we must have H1(τm0P − C) = 0. Since h0(τm0P |C) = h0(OC) = 1,
the standard exact sequence

0 −→ τm0P − C −→ τm0P −→ τm0P |C −→ 0

implies now that h0(τm0P ) = 2. In addition, this sequence provides us with a surjection
H0(τm0P ) → H0(τm0P |C) ≃ H0(OC), from which we obtain Bs |τm0P | = ∅.
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The general fibre of the morphism φ : S → CP1 associated to the pencil |τm0P | is non-
singular, because S is smooth. The smooth (and hence all) fibres of φ are connected. To
see this, let F be a smooth fibre of φ, then h0(F ) = h0(τm0P ) = 2 and OS(F ) ∼= φ∗O(1),
hence OF (F ) ∼= φ∗O(1)|F ∼= OF . Because h1(OS) = 0, the exact sequence

0 −→ OS −→ F −→ OF (F ) −→ 0

implies 2 = h0(F ) = h0(OS) + h0(OF ) = 1 + h0(OF ). Therefore, h0(OF ) = 1, i.e. F is
connected. Then, since P 2 = PK−1 = 0, the genus formula implies that the general fibre
of φ is an elliptic curve. This completes the proof of (i).

To prove (ii) we just have to observe that (i) immediately implies κ−1(S) ≥ 1. The
assumption P 2 = 0, on the other hand, gives κ−1(S) < 2, and so κ−1(S) = 1.

To prove assertion (iii), first observe that |ντm0P | = |φ∗O(ν)|. As φ has connected
fibres, we have φ∗OS

∼= OP1 and the projection formula implies φ∗φ
∗O(ν) ∼= O(ν). Hence,

H0(ντm0P ) ∼= H0(φ∗O(ν)) ∼= H0(O(ν)), which shows that each element of |ντm0P | is a
sum of fibres, i.e. a sum of elements of |τm0P |.

Finally, for (iv), let φ : S → CP1 be as above and let t1 ∈ CP1 be the point for which
τm0P = φ−1(t1). Let D ∈ |ντm0P − C| be any member. Then since D + C ∈ |ντm0P |
and each member of this linear system is a sum of members of |τm0P |, i.e. fibres of φ, and
because C ⊂ φ−1(t1) there exist points t2, t3, . . . , tν such that

D +C =
∑

1≤i≤ν

φ−1(ti) and so D =
∑

2≤i≤ν

φ−1(ti) +
(
φ−1(t1)− C

)
.

This implies assertion (iv), because h0(τm0P − C) = 1, as we have shown above. �

Corollary 2.9. Suppose that P 6= 0 and P 2 = 0. Then

κ−1(S) = 1 ⇐⇒ m0P |C has finite order in Pic0(C) .

Proof. If κ−1(S) = 1 there exists an integer ν > 0 for which h0(νm0P ) = h0(νm0K
−1) > 1,

hence m0P |C has finite order by Lemma 2.7. The converse is Proposition 2.8 (ii). �

3. Twistor spaces whose fundamental system is a pencil

Let Z be a twistor space on nCP2, and F be the natural square root of the anti-canonical
bundle over Z, which is known to exist on any twistor space [10]. Following Poon [22], we
call F the fundamental line bundle, and the associated linear system |F | the fundamental
system. Basic properties of the fundamental line bundle are

FL = 2, and σ∗F ≃ F ,

where L is a fibre of the twistor projection Z → nCP2 which is called a real twistor line,
and σ : Z → Z is a natural anti-holomorphic involution called the real structure.

By the works of Poon [20, 22], Kreussler and Kurke [15], when n ≤ 3, for any twistor space
Z over nCP2 whose self-dual metric is of positive scalar curvature, we have dim |F | ≥ 3, and
the structure of these twistor spaces is well understood through the rational map associated
to the fundamental system |F |. In particular, all of these twistor spaces are Moishezon.

Let now Z be a twistor space on nCP2, n ≥ 4, and assume that dim |F | ≥ 2. In this
situation |F | needs to contain an irreducible divisor, because otherwise there would exist
two pencils, |D| and |D|, of divisors of degree one that define a surjective rational map to
CP1 ×CP1 and for which D+D is a fundamental divisor. But then the image of |F | would
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be at least two-dimensional and Bertini’s Theorem implies that not all elements in |F | could
be reducible. This allows us to apply the results of [17].

First, by [17, Theorem 3.6], if dim |F | ≥ 3, we always have the equality dim |F | = 3,
and Z has to be a so-called LeBrun twistor space [18], the structure of which is also well-
understood. In particular, such twistor spaces are Moishezon. Second, by [17, Theorem
3.7], if dim |F | = 2 and n ≥ 5, then Z has to be one of the twistor spaces investigated in
[5], and they are again Moishezon. Third, if dim |F | = 2 and n = 4, then Z is either one of
the Moishezon twistor spaces studied in [5], or a twistor space that satisfies a(Z) = 2. The
former happens exactly when Bs|F | 6= ∅ ([13, Proposition 2.4]), and if the latter is the case,
the morphism Z → CP2 associated to the net |F | is an elliptic fibration which is an algebraic
reduction of Z. Thus the basic structure of Z is also well-understood if dim |F | = 2.

For the rest of this paper we let Z be a twistor space over nCP2 (n ≥ 4) and suppose
dim |F | = 1. Then general members of the fundamental system |F | are irreducible, since
otherwise we readily have dim |F | ≥ 3. This implies that the self-dual metric on nCP2 has
positive scalar curvature, see [17, Proposition 2.4].

Let S ∈ |F | be a smooth fundamental divisor and recall that H1(OZ) = 0 because Z is
simply connected. As we assume h0(F ) = 2, the standard exact sequence

0 −→ OZ −→ F −→ K−1
S −→ 0,(3.1)

implies h0(K−1
S ) = 1. This means that the anti-canonical system |K−1

S | consists of a single
member, say C. In particular, we have κ−1(S) ≥ 0. From the surjectivity of the restriction
map H0(F ) → H0(K−1

S ) we have

Bs |F | = C.(3.2)

By a theorem of Pedersen and Poon [19], any real irreducible member S ∈ |F | is non-
singular and obtained from CP1 × CP1 by blowing up 2n points. On such a surface, the
anti-canonical curve C is real (i.e. σ(C) = C) since S and so K−1

S are real. Moreover we
have the following result on the structure of the base curve C.

Proposition 3.1. Let Z → nCP2, n ≥ 4, be a twistor space satisfying dim |F | = 1, and
let the curve C be the base locus of the pencil |F |, as above. If C is non-singular, it is an
elliptic curve. If C is singular, it is a cycle of rational curves which is of the form

C = C1 + · · · + Ck + C1 + · · · + Ck(3.3)

for some k ≥ 1, where Ci means σ(Ci), and in the presentation (3.3) two components
intersect iff they are adjacent, or they are C1 and Ck.

Proof. Recall that C ⊂ S for each smooth real S ∈ |F |. If C is non-singular, the adjunction
formula immediately implies that C is an elliptic curve. If C is singular it is a cycle of
rational curves, by [16, Proposition 3.6]. If C arises from item (I) or (III) in [16, Proposition
3.6], it consists of conjugate pairs of rational curves, as required in (3.3). If C arose from
item (II) in [16, Proposition 3.6] it would have exactly two irreducible components, one
of them a real twistor line. Because a real twistor line in S generates a pencil, we would
readily have h0(K−1

S ) = 2, in contradiction to our observations just after the exact sequence
(3.1). Therefore C is a cycle of rational curves as described in (3.3). �

In the sequel, for simplicity of notation, we often write Ck+1 for C1 and Ck+1 for C1 for
components of the cycle (3.3). This cycle will be significant throughout our proof of the
main result.
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Another important property of twistor spaces satisfying dim |F | = 1, which we next
explain, concerns reducible members of the pencil |F |. The cycle (3.3) can be split into
connected halves in exactly k ways. For example, if k = 3, the possibilities are:

(C1 + C2 + C3) + (C1 + C2 + C3),

(C2 + C3 + C1) + (C2 + C3 + C1),

(C3 + C1 + C2) + (C3 + C1 + C2).

The following proposition, which was proved in [16], implies that if the base curve is singular,
these subdivisions are nicely realised by reducible members of the pencil |F |.

Proposition 3.2. ([16, Proposition 3.7]) If the base curve of the pencil |F | is a cycle of
rational curves as in (3.3), then |F | has exactly k reducible members. Moreover each of
them is real and of the form S+

i + S−
i (1 ≤ i ≤ k), where S+

i and S−
i are non-singular

irreducible divisors satisfying S
+

i = S−
i . Furthermore, the divisor S+

i + S−
i splits the cycle

C into halves in the following manner:

• if Li denotes the real twistor line joining the two points Ci ∩ Ci+1 and Ci ∩ Ci+1,
then S+

i ∩ S−
i = Li,

• the intersections S+
i ∩ C and S−

i ∩ C are connected.

Note that all the reducible fundamental divisors S+
i + S−

i are singular along the twistor

line Li = S+
i ∩S−

i . Therefore, all smooth fundamental divisors are automatically irreducible.
We will also need the following property of the Zariski decomposition of the cycle C.

Proposition 3.3. In the situation of Proposition 3.1, let S be a smooth member of the
pencil |F |. Then, the degree of S (see (2.1)) and the Zariski decomposition of the cycle
C ⊂ S are independent of the choice of S.

Proof. Let S ∈ |F | be any smooth member, which is irreducible as we have seen above,
and let C ⊂ S the base locus of the pencil |F |. For the self-intersection numbers in S of
components of the cycle C we have

C2
i = −2 +K−1

S Ci = −2 + FCi ,

hence these self-intersection numbers in S are independent of the choice of the smooth
member S. Obviously the intersection numbers between different components of C are
independent of the choice of S as well.

Let C = P + N be the Zariski decomposition of the cycle C regarded as a curve in S.
Then P is nef as a divisor in S. In particular PCi ≥ 0 for any index i. As the intersection
number PCi is determined by the coefficients of P and the intersection numbers CjCk, it is
independent of the choice of S and it follows that P is nef also in any other smooth member
of |F |. Similarly, N is negative definite not only in S but also in any other smooth member
of |F |. By the same reason, we have PCi = 0 for each Ci which is included in N , not only in
S but also in any other smooth member of |F |. Thus all the properties (i), (ii) and (ii) that
characterise the Zariski decomposition are satisfied for P +N in all smooth members of the
pencil |F |. Therefore, the Zariski decomposition of the cycle C is independent of the choice
of a smooth member S ∈ |F |. This implies that the self-intersection number P 2 = d(S) is
also independent of the choice of S. Hence we obtain the proposition. �

Note that, even though the Zariski decomposition C = P + N is independent of S, it
is possible that the divisor m0P |C in Pic(C) does depend on S. The reason is that the
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restriction m0P |C actually is OS(m0P )⊗OC and like OS(C)⊗OC , the normal bundle of
C in S, this may depend on S. The independence of the Zariski decomposition just means
that the rational coefficients of P and N do not depend on S.

Since the works of Poon [21] and Campana [4], it has long been well realised that the
algebraic dimension a(Z) of a twistor space Z on nCP2 is closely related to the anti-Kodaira
dimension of a smooth member of the system |F |. Actually, if S is a smooth member of
|F |, the standard exact sequence

0 −→ (m− 1)F −→ mF −→ mK−1
S −→ 0, m > 0(3.4)

and the equality a(Z) = κ(Z,F ) imply the inequality

a(Z) ≤ 1 + κ−1(S).(3.5)

Does equality hold in (3.5) when Z satisfies dim |F | = 1? For instance, if at least one smooth
member S of the pencil |F | satisfies κ−1(S) = 0, we clearly have the equality a(Z) = 1.
The following proposition shows that the same is true if some S ∈ |F | satisfies κ−1(S) = 2.

Proposition 3.4. If at least one smooth member S of the pencil |F | satisfies κ−1(S) = 2,
then equality holds in (3.5), and the twistor space Z is Moishezon.

Proof. Let S ∈ |F | be smooth with κ−1(S) = 2. If the base curve C of the pencil |F | is
non-singular, we readily obtain κ−1(S) ≤ 1 from C2 = K2

S = F 3 = 8 − 2n ≤ 0. Hence C

is singular, and by Proposition 3.1, C is a cycle of rational curves on S as in (3.3). Let
C = P + N be the Zariski decomposition of C on S. For the degree of S we then have
d(S) > 0 by Proposition 2.2. Since the degree is independent of the choice of a smooth
member S of |F | by Proposition 3.3, we obtain that d(S′) > 0 for any smooth member
S′ ∈ |F |. By Proposition 2.2, this implies κ−1(S′) = 2 for any smooth S′ ∈ |F |.

Once this is obtained, the equality a(Z) = 3 follows from a general estimate of the
algebraic dimension from below in the case of a fibre space. We refer to [8, Proposition 4.1]
and [17, Corollary 4.3] for details. �

In order to determine the algebraic dimension of Z if dim |F | = 1, we are left with the
case where the pencil |F | contains a smooth member S satisfying κ−1(S) = 1. This is well
understood for the case n = 4, which we next explain in order to clarify the difference to
the case n > 4.

Let Z be a twistor space on 4CP2 satisfying dim |F | = 1 and let C be the base locus
of |F |. Suppose that Z has a smooth fundamental divisor of anti-Kodaira dimension one.
Using (3.5), this implies a(Z) ≤ 2. As we assume n = 4, we can apply [16, Theorem 6.2] to
conclude that F is nef. Therefore, K−1

S ≃ F |S is nef for each smooth S ∈ |F |, i.e. N = 0 in
the Zariski decomposition of C on S. As K2

S = 0, Corollary 2.9 shows now that κ−1(S) = 1

if and only if the line bundle K−1
S |C is of finite order in Pic0(C). Because

K−1
S

∣∣
C
≃ (F |S)

∣∣
C
≃ F |C ,(3.6)

this order does not depend on S. Hence the anti-Kodaira dimension of smooth members of
|F | is constant. From this, exactly like at the end of the proof of Proposition 3.4, we obtain
the following result.

Proposition 3.5. Let Z be a twistor space over 4CP2 satisfying dim |F | = 1. Suppose that
there exists a smooth member S of the pencil |F | satisfying κ−1(S) = 1. Then a(Z) = 2.
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We should mention that a much more concrete result was obtained in [6, Theorem 3.4]
without using the general estimate on the algebraic dimension of a fibred space. Namely, if
τ denotes the order of the line bundleK−1

S |C in Pic0(C), then dim |τF | = τ+1, Bs |τF | = ∅,
and the associated morphism Z → CPτ+1 provides an algebraic reduction of Z which is
an elliptic fibration. Strictly speaking, the paper [6] assumes that the base curve C is
smooth, but the proof equally works even if it is a cycle of rational curves because K−1

S |C is
trivial on each component of C in the situation considered here. Although we are assuming
dim |F | = 1 here, the case τ = 1 actually happens, and then dim |F | = 2, see [11, 12].

Now we are ready to state the main result of this article. It says that, in contrast to the
case n = 4, when n > 4 and κ−1(S) = 1 for some S ∈ |F |, equality in (3.5) never holds.

Theorem 3.6. Let n > 4 and Z be a twistor space on nCP2 satisfying dim |F | = 1. Suppose
there exists a smooth member S of the pencil |F | such that κ−1(S) = 1, then a(Z) = 1.

If such a member S ∈ |F | exists, inequality (3.5) implies a(Z) ≤ 2. On the other hand
we have a(Z) ≥ 1 from the presence of the pencil. Thus for the proof of Theorem 3.6 it is
enough to show a(Z) 6= 2. We emphasize here that in Theorem 3.6 we are not assuming
that the member S is generic in the pencil |F |. Indeed, by [17, Corollary 4.3], under the
assumption of Theorem 3.6, if S is generic in the pencil |F |, equality in (3.5) holds, which
means

a(Z) = 1 + κ−1(S) = 2.(3.7)

Hence Theorem 3.6 implies that the member S ∈ |F | in the theorem cannot be generic in
the pencil |F |. In other words, even if a twistor space Z on nCP2, n > 4, with dim |F | = 1
possesses a smooth member S ∈ |F | which satisfies κ−1(S) = 1, a generic member S′ of the
pencil has to satisfy κ−1(S′) = 0.

We note that, by investigating small deformations of twistor spaces of Joyce metrics [14],
the existence of twistor spaces that fulfil the properties of Theorem 3.6 was shown in [8].
Our result shows that they have algebraic dimension 1.

The proof of Theorem 3.6 will be completed at the end of this section. In preparation
for this proof, we first note that under the assumptions of Theorem 3.6 the base curve C of
|F | cannot be smooth and moreover k ≥ 2 holds in (3.3).

Proposition 3.7. Let Z and S be as in Theorem 3.6, and C be the unique anti-canonical
curve on S. Then C is a cycle of rational curves as in (3.3) with k ≥ 2.

Proof. By Proposition 3.1, the base curve C is either a smooth elliptic curve or a cycle
of rational curves as in (3.3). If C is smooth, from K2 = 8 − 2n < 0 we easily obtain
h0(mK−1

S ) = 1 for any m > 0, but then κ−1(S) = 0. Therefore C cannot be smooth.

If C is as in (3.3) with k = 1, then C = C1+C1, and C1C1 = 2 as C is a cycle. Together

with K2 = 8−2n, this means C2
1 = C

2

1 = 2−n. Hence the intersection matrix for the cycle
C becomes (

2− n 2
2 2− n

)
.

If n > 4, this is negative definite. Hence P = 0 in the Zariski decomposition C = P +N of
C, which implies κ−1(S) = 0, see Lemma 2.4 (i). Therefore k ≥ 2. �

Let Z,S and C be as in Theorem 3.6 and Proposition 3.7 and let µ : Ẑ → Z be the
blow-up with centre C. The space Ẑ has singularities, but we discuss this later. Let Ei and
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Ei (1 ≤ i ≤ k) be the exceptional divisors over the curves Ci and Ci, respectively. Write

E := (E1 + · · · +Ek) + (E1 + · · ·+ Ek)

for the sum of all exceptional divisors. Any two distinct smooth members S′ and S′′ of
the pencil |F | intersect transversally along the cycle C in the sense that S′′|S′ = C as a

divisor on S′. Therefore, the blow-up µ : Ẑ → Z composed with the rational map Z → CP1

associated to the pencil |F | is a morphism

f̂ : Ẑ → CP1,

the fibres of which are the strict transforms of the members of the pencil |F |. This is nothing
but an elimination of the indeterminacy locus of the rational map Z → CP1. We will use
the same letters to denote divisors in Z and their strict transforms in Ẑ.

Recall from Proposition 3.2 that the pencil |F | has exactly k reducible members S+
i +S−

i ,

and that k ≥ 2 by Proposition 3.7. Let λi ∈ CP1, 1 ≤ i ≤ k, be the point over which the
reducible fibre S+

i ∪ S−
i is lying. Evidently we have the basic relation

f̂∗O(1) ≃ µ∗F − E.(3.8)

For any index i, the exceptional divisor Ei comes with two fibrations f̂ |Ei
: Ei → CP1 and

µ|Ei
: Ei → Ci ≃ CP1. Both are clearly CP1-bundles, and fibres of different fibrations

intersect transversally at one point. Hence we obtain an isomorphism Ei ≃ CP1 × CP1 for
any i. The same is true for the real conjugate divisor Ei from reality.

Since the centre C of the blow-up µ is singular, being a cycle of rational curves, the space
Ẑ has ordinary double points over the singularities of the cycle C. Concretely, these are
exactly the points where the four divisors

S+
i , S

−
i , Ei and Ei+1 (1 ≤ i ≤ k)(3.9)

meet and the real conjugate points of these, see Figure 1 where these points for i = 1 are
indicated by black circles. Thus Ẑ has precisely 2k ordinary double points in total. Since
each ordinary double point admits two small resolutions, the number of simultaneous small
resolutions of all the double points, which are compatible with the real structure, is 2k in
total. Let Z1 → Ẑ be any one of these small resolutions. We denote by µ1 : Z1 → Z the
composition Z1 → Ẑ → Z of the small resolution and the blow-up. We continue to use
the same letters Ei and Ei to denote the strict transforms of the exceptional divisors in
Z1. Also, E denotes the total sum (E1 + · · · + Ek) + (E1 + · · · + Ek) in Z1. We write

f1 : Z1 → CP1 for the composition Z1 → Ẑ → CP1. From (3.8) we obtain the relation

f∗
1O(1) ≃ µ∗

1F − E,(3.10)

and f1 has reducible fibre S+
i ∪ S−

i over the point λi, 1 ≤ i ≤ k.
If we regard the cycle C as a curve on a real smooth member of the pencil |F |, it has a

Zariski decomposition with P and N both real

C = P +N.(3.11)

By Proposition 3.3, this Zariski decomposition is independent of the choice of the smooth
member. As in Section 2, let m0 be the smallest integer for which m0P is integral, and
write

m0P = l1C1 + · · · + lkCk + l1C1 + · · ·+ lkCk.
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For later use, we use these coefficients li and define a Q-divisor P on Z1 by the equation

m0P = l1E1 + · · ·+ lkEk + l1E1 + · · ·+ lkEk.(3.12)

Similarly we define a Q-divisor N on Z1 by the equation

P +N = E.(3.13)

Thus P and N may be regarded as enlargements of the nef part and the negative part,
respectively, of the Zariski decomposition (3.11) to divisors in Z1. The key feature of these
divisors is that if we restrict (3.13) to a smooth fibre of the projection µ1 : Z1 → CP1, we
obtain the Zariski decomposition (3.11).

Because we assume κ−1(S) = 1 for a given S ∈ |F |, we obtain from Proposition 2.2 and
Lemma 2.4 (i) that P 2 = 0 and P 6= 0 in S. Because of Proposition 3.3 the same is true for
all smooth fundamental divisors. In particular, we can apply Proposition 2.6 to get li > 0
for all i and li = 1 for at least one i. Moreover, by Proposition 2.6 (iv), as n > 4, the k

integers li cannot all be equal to each other. Continuing to write lk+1 := l1, it follows that
there is an index i for which li > li+1 holds. After a cyclic permutation of the indices we
may assume that l1 > l2.

For arbitrary integers r, ρ we define a line bundle M(r, ρ) on Z1 by

M(r, ρ) := f∗
1O(r) + ρm0P .(3.14)

Proposition 3.8. Let S′ be any smooth fibre of the fibration f1 : Z1 → CP1, and identify
the pair (S′, S′ ∩ E) in Z1 with (S′, C) in Z by the map µ1 : Z1 → Z. Then for any r ∈ Z

and ρ ∈ Z, we have

M(r, ρ)
∣∣
S′∩E

∈ Pic0(C).(3.15)

Proof. Recall that Pic0(C) denotes the group of those line bundles on C that are of degree
zero on each component of C. By the identifications Ei ∩S′ ≃ Ci and Ei ∩S′ ≃ Ci induced
by the birational morphism µ1, we obtain that the restriction of M(r, ρ) to S′ is isomorphic
to ρm0P. Here we have disposed of f∗

1O(r) since S′ is a fibre of f1. Because P 2 = 0 on S′,
Lemma 2.4 (ii) implies that m0P |S′∩E ∈ Pic0(C), hence so is ρm0P |S′∩E . �

We now take a closer look at the ordinary double point S+
1 ∩S−

1 ∩E1∩E2 in Ẑ. Without
loss of generality, we may suppose that S+

1 and S−
1 are distinguished by the property that

the intersection S+
1 ∩ E1 is (not a curve but) a point, see Figure 1.

The small resolution Z1 → Ẑ blows up one of the pairs {S−
1 , E2} or {S+

1 , E1}. Because
there is no essential difference between these two, we may suppose that the pair {S−

1 , E2}
is blown up. We denote the exceptional curve over the point S+

1 ∩ E1 by ∆1.
Since µ blows up the cycle C, we cannot speak about strict transforms of the components

Ci of C into Z1. But, if we specify a fibre of f1 : Z1 → CP1, we can. In particular, we
denote the strict transforms of Ci and Ci in the fibre f−1

1 (λ1) by

C1,i and C1,i, 1 ≤ i ≤ k.(3.16)

These are identified with Ci and Ci, respectively, by the birational morphism µ1 : Z1 → Z.
The first index, 1, indicates that the curves are included in the fibre f−1

1 (λ1) = S+
1 ∪ S−

1 ,

and the second index reflects that they correspond to Ci and Ci respectively. Unlike in
the original space Z, the union of all the curves (3.16) is not a cycle because the excep-
tional curves ∆1 and ∆1 are inserted between C1,1 and C1,2, and between C1,1 and C1,2,
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−→

small

resolutions

E1
E1

E2 E2

E3

E3

E1
E1

E2

E2

E3

E3

S
+

1
S

+

1

S
−

1
S
−

1

∆1

∆1

C1,1

C1,2

C1,3

C1,1

C1,2

C1,3

Ẑ Z1

Figure 1. The small resolution of the ordinary double points on the fibre
f̂−1(λ1) depicted for k = 3. The bold lines in the right figure mark the cycle
C that is defined below.

respectively, see Figure 1. Hence the union of all the curves (3.16) consists of two connected
chains

C1,2 ∪ C1,3 ∪ · · · ∪ C1,k ∪ C1,1 and C1,2 ∪ C1,3 ∪ · · · ∪ C1,k ∪ C1,1,(3.17)

and by adding ∆1 and ∆1 we get a cycle of rational curves, which we denote by C. We
clearly have

C = f−1
1 (λ1) ∩E

in the sense that C is the restriction of the divisor E to the fibre f−1
1 (λ1) or, equivalently,

C is an element of the linear system |(f1|E)
∗O(1)| on the surface E.

The intersection numbers of the line bundle M(r, ρ) with the components of the cycle C
will play an essential role in the subsequent proofs.

Lemma 3.9. We have

M(r, ρ) · C1,i =

{
0 i 6= 2

−ρ(l1 − l2) i = 2.
(3.18)

and

M(r, ρ) ·∆1 = ρ(l1 − l2).(3.19)

Proof. Let S′ be any smooth fibre of f1 : Z1 → CP1. If i 6= 2, the curve C1,i is homologous
in Ei to Ci = S′ ∩Ei. Therefore, using Proposition 3.8, we have

M(r, ρ) · C1,i = 0 for all i 6= 2.(3.20)

The case i = 2 requires more attention. Dropping components that are disjoint from C1,2,
see Figure 1, we first obtain

M(r, ρ) · C1,2 = ρ(l2E2 + l3E3)C1,2.(3.21)

Further, as C1,2 ∩ E3 is one point and the intersection is transverse, we have E3C1,2 = 1.

Next, E2C1,2 = (C1,2)
2

S+

1

since E2 ∩S+
1 = C1,2 and the intersection is transverse. Moreover,

since the pairs (S+
1 , C1,2) in Z1 and (S+

1 , C1) in the original twistor space Z are isomorphic,
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the self-intersection number C2
1,2 in S+

1 ⊂ Z1 is equal to C2
2 calculated in S+

1 ⊂ Z. We let

a2 := −C2
2 , calculated in S ⊂ Z. By the adjunction formula and because S+

1 + S−
1 = F on

Z, we have

(C2)
2

S+

1

= −2 +K−1

S+

1

C2 = −2 + (K−1
Z − S+

1 )C2 = −2 + (F + S−
1 )C2

= −2 + FC2 + S−
1 C2 = −2 +K−1

S C2 + 1 = (C2)
2
S + 1 = −a2 + 1.

By Lemma 2.4 (ii) we have m0PC2 = 0 on the original surface S ⊂ Z of which we assumed
κ−1(S) = 1. Thus, we have the relation

l1 − a2l2 + l3 = 0,(3.22)

with which we obtain

(l2E2 + l3E3)C1,2 = l2(−a2 + 1) + l3 = l2 − l1.

Therefore, from (3.21), we get

M(r, ρ) · C1,2 = −ρ(l1 − l2).(3.23)

For the remaining intersection number (3.19) we notice that the curve ∆1∪C1,2, regarded
as a curve in the surface E2, is homologous to the fibre S∩E2 ≃ C2 of the projection f1|E2

:
E2 → CP1. Because M(r, ρ)|S = m0P and M(r, ρ)·(S ·E2) = (M(r, ρ)·S)·E2 = (m0PC2)S
is zero, we obtain

M(r, ρ) ·
(
∆1 + C1,2

)
= 0,

and (3.19) follows from (3.23). �

Let ρ > 0 be an integer and recall that we have chosen notation so that l1 > l2. From
(3.18) for i = 2 we then obtain M(r, ρ) · C1,2 < 0. Using (3.18) for i 6= 2 and reality it
follows now that the two chains

C1,2 ∪ C1,3 ∪ · · · ∪ C1,k ∪ C1,1 and C1,2 ∪C1,3 ∪ · · · ∪C1,k ∪C1,1(3.24)

are contained in the base locus of the linear system |M(r, ρ)|. This will be a stepping stone
for the following stronger statement, which will play a key role in the proof of the main
theorem.

Proposition 3.10. For any r ∈ Z and ρ > 0, we have

H0
(
E,M(r, ρ)|E

)
= 0.

In particular, if ρ > 0 the divisor E is a fixed component of the linear system |M(r, ρ)| on
Z1.

Proof. Recall that the cycle of rational curves C belongs to the linear system |(f1|E)
∗O(1)|

on E and that M(r, ρ) = M(r − 1, ρ) ⊗ f∗
1O(1). Therefore, multiplication by a section of

f∗
1O(1)|E with zero locus C provides an exact sequence

0 −→ M(r − 1, ρ)|E −→ M(r, ρ)|E −→ M(r, ρ)|C −→ 0.

To first show that φ = 0 in the induced exact sequence

(3.25) 0 −→ H0 (M(r − 1, ρ)|E) −→ H0 (M(r, ρ)|E)
φ

−→ H0 (M(r, ρ)|C ) ,

we let
s ∈ H0

(
E,M(r, ρ)|E

)

be a non-zero section and note that φ(s) = s|C .
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Suppose that s identically vanishes on a component of E. Then since, for each i the degree
of the line bundle M(r, ρ) on a general fibre of f1|Ei

: Ei → CP1 is zero by Proposition
3.8, we obtain that s vanishes identically on E. Hence s cannot vanish identically on any
component of E. Therefore we can consider the effective Cartier divisor (s) on E, and the
restriction (s|Ei

) is a curve on Ei for any i.
From the intersection numbers (3.18) we have seen above that the divisor (s) includes

the two connected chains (3.24) for ρ > 0 and all r ∈ Z. Hence the curve (s|E2
) passes

through the point C1,1 ∩∆1, see Figure 1. This point is not on C1,2, because C1,1 and C1,2

are disjoint curves in f−1
1 (λ1) ⊂ Z1. If the divisor (s|E2

) had a component other than ∆1,
containing this point, then we would have s|E2

= 0 by Proposition 3.8, since the fibre of
f1|E2

through this point is ∆1 + C1,2 and so (s|E2
) would have to intersect any fibre of the

projection f1 : E2 → CP1. Therefore such a component does not exist. Hence the divisor
(s|E2

), and so (s), includes ∆1. The same argument shows that (s) ⊃ ∆1. We have seen
before that (s) includes all the other components C1,i and C1,i of C = f−1

1 (λ1) ∩ E and so
we obtain C ⊂ (s), which implies φ(s) = s|C = 0. This shows that φ = 0.

From the exact sequence (3.25) we obtain now for all ρ > 0 and all r ∈ Z that

(3.26) H0
(
E,M(r − 1, ρ)|E

)
∼= H0

(
E,M(r, ρ)|E

)
.

On the other hand, using (3.14) and the projection formula for f1 : E → CP1, we obtain

f1∗M(r, ρ)|E ∼= f1∗
(
f∗
1OCP1(r)⊗OE(ρm0P )

)

∼= OCP1(r)⊗ f1∗OE(ρm0P ) .

For any coherent sheaf F on CP1 and for sufficiently large j, H0 (OCP1(−j)⊗F) = 0.
Taking j so that this holds for F = f1∗OE(ρm0P ), we obtain from (3.26) that

H0
(
E,M(r, ρ)|E

)
∼= H0

(
E,M(−j, ρ)|E

)

∼= H0
(
CP1, f1∗M(−j, ρ)|E

)

∼= H0(CP1,OCP1(−j)⊗F) = 0

for all r ∈ Z and all ρ > 0. �

By Propositions 3.8 the restriction of m0P to f−1(λ) ∩ E ≃ C gives an element Pλ ∈
Pic0(C) for each value of λ for which the fibre f−1

1 (λ) is smooth.

Proposition 3.11. Assume that Pλ has the same finite order τ for all smooth fibres f−1
1 (λ).

Then, for any r ∈ Z and ν > 0, we have
∣∣M(r, ντ)

∣∣ =
∣∣f∗

1O(r)
∣∣+ ντm0P .

Proof. Recall that

M(r, ντ) = f∗
1O(r) + ντm0P .

By Proposition 3.10 the divisor E is a fixed component of
∣∣M(r, ντ)

∣∣ and so
∣∣M(r, ντ)

∣∣ =
∣∣f∗

1O(r) + ντm0P − E
∣∣+ E.(3.27)

Let S′ be a general fibre of f1 : Z1 → CP1, and identify the pair (S′, S′ ∩ E) with the pair
(S′, C) included in the original space Z by the birational morphism µ1 : Z1 → Z. Because
we assumed Pλ to have finite order, we can use Proposition 2.8 (iv) to obtain

∣∣ντm0P − C
∣∣ =

∣∣(ν − 1)τm0P
∣∣+ (τm0P − C)(3.28)
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on S′. As this is valid for any smooth fibre of f1, we obtain that the divisor τm0P − E

on Z1 is a fixed component of the system |f∗
1O(r) + ντm0P − E|. Hence, from (3.27) and

using definition (3.14), we obtain
∣∣M(r, ντ)

∣∣ =
∣∣f∗

1O(r) + (ν − 1)τm0P

∣∣+ τm0P

=
∣∣M(r, (ν − 1)τ)

∣∣ + τm0P .

Using induction on ν > 0 we finally obtain
∣∣M(r, ντ)

∣∣ =
∣∣M(r, 0)

∣∣ + ντm0P =
∣∣f∗

1O(r)
∣∣+ ντm0P ,

as required. �

We are now ready to prove our main result.

Proof of Theorem 3.6. We first show that if the order of the restriction Pλ of m0P to
C ≃ f−1(λ) ∩ E is not the same for all smooth fibres f−1

1 (λ) then we have a(Z) = 1. To
see this, we note that the set of points of finite order in Pic0(C), which is isomorphic to
C∗, has the property that any continuous path that connects two distinct points of finite
order necessarily contains points of infinite order. Moreover we have a continuous function
λ 7→ Pλ ∈ Pic0(C) which is defined on the open set of CP1 over which f1 has smooth fibres.
Therefore, if the order of Pλ is not constant, the image of the continuous function mentioned
above contains an element of infinite order. If S′ ∈ |F | is the member corresponding to such
an element of infinite order, Corollary 2.9 shows that κ−1(S′) 6= 1. As d(S′) = d(S) = 0,
Proposition 2.2 implies κ−1(S′) 6= 2, and we conclude κ−1(S′) = 0. As we have seen from
(3.5), this implies a(Z) = 1.

Thus it remains to consider the situation in which the order of Pλ is the same for all
smooth fibres f−1

1 (λ). We will show by contradiction that this situation never happens.

So suppose that the restriction Pλ has the same finite order τ for all λ for which f−1
1 (λ)

is smooth. Then, by Corollary 2.9, we have κ−1(S) = 1 for each smooth S ∈ |F |. Hence
κ−1 = 1 for generic members of the pencil |F | and, using [17, Corollary 4.3], we obtain that
a(Z) = 2.

On the other hand, with the aid of Proposition 3.11, we are able to show a(Z) = 1 as
follows. For each integer ν > 0, (3.11) gives a Zariski decomposition in S

ντm0C = ντm0P + ντm0N,

and since the Zariski decomposition of the cycle C is independent of the smooth member S
by Proposition 3.3, this is the Zariski decomposition of the divisor ντm0C on any smooth
member of the pencil |F |. Therefore, by Proposition 2.1, for any non-singular fundamental
divisor S′ ∈ |F |, the divisor ντm0N is a fixed component of the system |ντm0K

−1| on S′.
Hence the pull-back µ∗

1(ντm0F ) to Z1 has the divisor ντm0N as a fixed component; the
divisor N was defined in (3.13). We define a line bundle L on Z1 by

(3.29) L := µ∗
1(τm0F )− τm0N ≃ f∗

1O(τm0) + τm0P = M(τm0, τ) ,

where we have used the relation (3.10) to get the isomorphism. The line bundleL is equipped
with a natural real structure coming from that on F on Z. The morphism µ1 : Z1 −→ Z

provides a bijection between the members of the two linear systems |ντm0F | on Z and
|L⊗ν | on Z1. Moreover, the composition of µ1 with the rational map defined by |ντm0F | is
the rational map which is given by |L⊗ν |. Because

|L⊗ν | = |M(ντm0, ντ)| = |f∗
1O(ντm0)|+ ντm0P ,
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by Proposition 3.11, we see that the rational map associated to |L⊗ν | has one-dimensional
image, equal to the image of a Veronese embedding of CP1. Hence, for all ν > 0, the
rational map defined by |ντm0F | has one-dimensional image as well, and this implies that
a(Z) = κ(Z,F ) = 1. This contradicts our previous conclusion a(Z) = 2. Hence it is
impossible that Pλ has finite order not depending on λ. �

It might be interesting to observe that in the argument that leads to the contradiction
in the second part of the above proof, the constancy of the order of Pλ is only needed to
apply Proposition 3.11.

4. Comment on a result in the paper [8]

In [8], the existence of a twistor space on nCP2 with algebraic dimension two is claimed
for any n > 4. The proof of this assertion consists essentially of the following two parts.

1. For a non-singular surface S which admits an anti-canonical cycle, it is shown in
[8, Lemma 3.2] that the finiteness of the order of a certain line bundle La on a
cycle of rational curves implies κ−1(S) = 1. With the aid of formula (2.5) it can be
shown that the pull-back of the line bundle La to S is isomorphic to the line bundle
O(m0P )|C studied in Section 2.

2. If a twistor space Z on nCP2, n > 4, admits a divisor in |F | which is biholomorphic
to the surface S in the above part 1 satisfying κ−1(S) = 1, then we always have
dim |F | = 1. It is claimed in the proof of [8, Lemma 4.3] that the isomorphism class
of the line bundle La from part 1 is the same for generic members of the pencil |F |.

It follows that a generic fundamental divisor S in a twistor space Z as in part 2 above
satisfies κ−1(S) = 1. Using [8, Proposition 4.1] it is then concluded that a(Z) = 2. This
conclusion is in conflict with our Theorem 1.1.

To resolve this contradiction, we first recall some notation of [8] and then focus on a key
step in the proof that the order of the line bundle La does not depend on S.

Each non-singular fundamental divisor St (t ∈ CP1) is given as an iteration of blow-ups

St
wt−→ T ′ u

−→ T
α

−→ CP1 ×CP1.(4.1)

Here, α is the blow-up of 4 points, all of which are nodes of an anti-canonical cycle on
CP1 × CP1 consisting of 4 components. The morphism u is a composition of blow-ups of
which each centre is a node of the anti-canonical cycle. Both T ′ and T are toric and their
isomorphism classes are independent of t ∈ CP1. On the other hand, wt blows up 4 points,
where each centre belongs to the strict transforms of the 4 exceptional curves of α which
are disjoint to each other. Thus the variation of the complex structure on St is entirely
encoded in the variation of the 4 points blown up under wt. It is important to keep in mind
that the sequence (4.1) is constructed for each non-singular St individually, and there is no
natural way to identify the surface T ′ (and T and CP1 × CP1 also) for different choices of
t ∈ CP1.

Let C be the anti-canonical cycle on St, which is the base curve of the pencil |F |, and
B′ = wt(C). The argument that the order of the line bundle La does not depend on the
surface S in the fundamental pencil is built in an essential way on the assertion that the
pull-back (wt|C)

∗(K−1

T ′ |B′) does not depend on t. This independence is based on the claim
that the morphism wt|C : C → B′ does not depend on t.
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We now derive a contradiction from the assumption that wt|C : C → B′ is the same for
two nearby values of t for which St is a real smooth member of the fundamental pencil.
This confirms that there is a gap in the proof of [8, Lemma 4.3] on line 10, page 1105.

Let S and S′ be two real irreducible fundamental divisors on a twistor space Z over nCP2

such that both are obtained be a sequence of blow-ups from CP1 × CP1 as in (4.1). The
linear system of twistor lines on each of these smooth surfaces gives, see [19], a morphism
with target CP1 and we can choose the morphisms in (4.1) so that their composition with
the first projection p1 : CP1 × CP1 → CP1 is the morphism given by the pencil of twistor
lines. We now identify the surfaces T ′, T and CP1 × CP1 obtained by blowing down some
curves on S with those obtained by blowing down some curves on S′. As mentioned above,
there is no natural way to do so.

From Proposition 3.2 we can deduce that the two component of the cycle C that are met
by real twistor lines in a real fundamental divisor St do not change as long as t varies within
one connected component of the set of real irreducible fundamental divisors, which is the
complement of a finite set of points on a circle. We assume that S and S′ belong to such a
connected component and denote the morphisms wt for these two surfaces by w : S → T ′

and w′ : S′ → T ′, respectively. We let π be the composition

π : S
w

−→ T ′ u
−→ T

α
−→ CP1 × CP1 p1

−→ CP1

and define π′ : S′ −→ CP1 similarly. Both restrictions w|C and w′|C have the same image
B′ ⊂ T ′. Because p1αu : T ′ −→ CP1 is the same for both surfaces S and S′, the assumption
that w|C = w′|C implies that the two compositions

π|C : C
w|C
−→ B′ ⊂ T ′ u

−→ T
α

−→ CP1 × CP1 p1
−→ CP1

and

π′|C : C
w′|C
−→ B′ ⊂ T ′ u

−→ T
α

−→ CP1 × CP1 p1
−→ CP1

coincide. Let now L ⊂ S be a real twistor fibre, then L∩C = {p, p} is a set of two conjugate
points. Consider the fibre L′ ⊂ S′ of π′ over the point π(p) = π(p). As π′ has only finitely
many reducible fibres and the real twistor lines in S and S′ meet the same components of
C, we can choose L so that L′ is irreducible. Because, by assumption, π|C = π′|C , we have
L′ ∩C = {p, p} as well. However, as there do not exist two real twistor fibres in Z through
the point p and S ∩ S′ does not contain a real twistor fibre, L′ cannot be a real member
of the pencil |L′| in S′. Hence, L′ and its conjugate are two different members of the same
pencil on S′ and they intersects at least at the two points p and p. But this is absurd as
the irreducible curve L′ has self-intersection number 0 on S′. This contradiction shows that
wt|C : C → B′ cannot be the same for any two values of t for which St is real.

A detailed analysis of the argument in [8, p. 1105] reveals that the core problem is whether
for s 6= t the automorphism (ws|C) ◦ (wt|C)

−1 : B′ → B′ extends to an automorphism
T ′ → T ′, or more precisely, to an isomorphism between neighbourhoods of B′. This seems
to have been overlooked in [8]. A priori there is no reason for this to hold, and our Theorem
1.1 shows that for generic s ∈ CP1, such an extension cannot exist and even if some member
in the pencil |F | satisfies κ−1 = 1, the general member of the pencil needs to satisfy κ−1 = 0.

References

[1] M. Atiyah, N. Hitchin, I. Singer, Self-duality in four-dimensional Riemannian geometry, Proc.
Roy. Soc. London, Ser. A 362 (1978) 425–461.



22 NOBUHIRO HONDA AND BERND KREUSSLER

[2] Bombieri and Mumford, Enriques’ Classification of Surfaces in Char. p, II, Complex Anal. Algebr.
Geom., Collect. Pap. dedic. K. Kodaira (1977) 23–42.

[3] F. Campana, On twistor spaces of the class C , J. Differential Geom. 33 (1991) 541–549.
[4] F. Campana, The class C is not stable by small deformations, Math. Ann. 229 (1991) 19–30.
[5] F. Campana, B. Kreußler, A conic bundle description of Moishezon twistor spaces without effective

divisor of degree one, Math. Z. 229 (1998) 137–162.
[6] F. Campana, B. Kreußler, Existence of twistor spaces of algebraic dimension two over the connected

sum of four complex projective planes, Proc. Amer. Math. Soc. 127 (1999) 2633–2642.
[7] S. K. Donaldson, R. Friedman, Connected sums of self-dual manifolds and deformations of singular

spaces Non-linearlity 2 (1989) 197–239.
[8] A. Fujiki, Twistor spaces of algebraic dimension two associated to a connected sum of complex

projective planes, Compo.Math. 140 (2004) 1097–1111.
[9] T. Fujita, On Zariski Problem, Proc. Japan Acad. 55 Ser. A (1979) 106–110.

[10] N. Hitchin, Kählerian twistor spaces, Proc. London Math. Soc. (3) 43 (1981) 133-150.
[11] N. Honda and M. Itoh, A Kummer type construction of self-dual metrics on the connected sum of

four complex projective planes, J. Math. Soc. Japan 52 (2000) 139-160.
[12] N. Honda, On some twistor spaces over 4CP2, Compositio Math. 122 (2000) no.3, 323-336.
[13] N. Honda, Non-Moishezon twistor spaces of 4CP2 with non-trivial automorphism group, Trans.

Amer. Math. Soc. 358 (2006) 1897-1920.
[14] D. Joyce, Explicit construction of self-dual 4-manifolds, Duke Math. J. 77 (1995) 519-552.
[15] B. Kreußler and H. Kurke, Twistor spaces over the connected sum of 3 projective planes. Com-

positio Math. 82:25–55, 1992.
[16] B. Kreußler, On the algebraic dimension of twistor spaces over the connected sum of four complex

projective planes, Geom. Dedicata 71 (1998) 263-285.
[17] B. Kreußler, Twistor spaces with a pencil of fundamental divisors, Doc.Math. J. 4 (1999) 127-166.
[18] C. LeBrun, Explicit self-dual metrics on CP

2# · · ·#CP
2, J. Differential Geom. 34 (1991) 223–253.

[19] H. Pedersen, Y. S. Poon, Self-duality and differentiable structures on the connected sum of complex

projective planes, Proc. Amer. Math. Soc. 121 (1994) 859-864.
[20] Y. S. Poon, Compact self-dual manifolds of positive scalar curvature, J. Differential Geom. 24

(1986) 97–132.
[21] Y. S. Poon, Algebraic dimension of twistor spaces, Math. Ann. 282 (1988) 621-627.
[22] Y. S. Poon, On the algebraic structure of twistor spaces, J. Differential Geom. 36 (1992), 451–491.
[23] F. Sakai, D-dimensions of algebraic surfaces and numerically effective divisors, Compositio Math-

ematica, 48 (1983) 103–118.
[24] F. Sakai, Anticanonical models of rational surfaces, Math. Ann. 269 (1984), 389–410.
[25] O. Zariski, The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic

surface, Ann. Math. 76 (1962), 560–615.

Nobuhiro Honda
Mathematical Institute, Tohoku University, and
Department of Mathematics, Tokyo Institute of Technology, Tokyo, JAPAN (current affiliation)
honda@math.titech.ac.jp

Bernd Kreußler

Department of Mathematics and Computer Studies, Mary Immaculate College, Limerick, IRELAND

bernd.kreussler@mic.ul.ie


	1. Introduction
	2. Zariski decomposition of an anti-canonical divisor on a rational surface 
	3. Twistor spaces whose fundamental system is a pencil
	4. Comment on a result in the paper Fu04
	References

