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Mitigating collinearity in linear regression models 
using ridge, surrogate and raised estimators
Diarmuid O’Driscoll1 and Donald E. Ramirez2*

Abstract: Collinearity in the design matrix is a frequent problem in linear regression 
models, for example, with economic or medical data. Previous standard procedures 
to mitigate the effects of collinearity included ridge regression and surrogate regres-
sion. Ridge regression perturbs the moment matrix ��

� → �
�
� + k�p, while surrogate 

regression perturbs the design matrix � → �S. More recently, the raise estimators 
have been introduced, which allow the user to track geometrically the perturba-
tion in the data with � → �̃ . The raise estimators are used to reduce collinearity in 
linear regression models by raising a column in the experimental data matrix, which 
may be nearly linear with the other columns, while keeping the basic OLS regression 
model. We give a brief overview of these three ridge-type estimators and discuss 
practical ways of choosing the required perturbation parameters for each procedure.
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1. Introduction
The standard linear regression model can be written as � = �� + � with uncorrelated, zero-mean 
and homoscedastic errors �. Here � is a full rank n × p matrix containing the explanatory variables 
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and the response vector � is n × 1 consisting of the observed data. The Ordinary Least Squared OLS 
estimators �̂L are solutions of

given by

The solutions �̂L are unbiased with variance matrix V(�̂L) = �
2(��

�)−1. For convenience, we take 
�
2 = 1. The OLS solutions require that (��

�)−1 be accurately computed.

2. Ridge and surrogate estimators
With economic or medical data, the predictor variables in the columns of � may have a high level of 
collinearity; that is, there may be a nearly linear relationship among the predictor variables. In this 
case, �′

� in Equation (1) is nearly singular and thus (��
�)−1 will be numerically difficult to evaluate. 

It was observed by Riley (1955) that the perturbed matrix ��
� + k�p with k > 0 is better conditioned 

than the matrix �′
� and he suggested using the perturbed matrix in Equation (1). With k > 0 large 

enough, (��
� + k�

�
)−1 can be accurately computed with standard numerical procedures. Using 

�
�
� → �

�
� + k�p, Hoerl (1964) dubbed this procedure ridge regression  with ridge estimators 

Near dependency among the columns of � causes ill-conditioning in �′
� which results in OLS solu-

tions with inflated squared lengths ||�̂L||2, with �̂L of questionable signs (±) and with �̂L being “very 
sensitive to small changes in �” (Belsley, 1986). With ill-conditioning in �′

�, the OLS solutions at 
k = 0 in Equation (3) are known to be unstable with a slight movement away from k = 0 giving com-
pletely different estimates of the coefficients �.

In The International Encyclopedia of Statistical Science, Hadi (2011) discusses two standard rem-
edies for addressing collinearity in linear regression; namely (1) the ridge system 
{(��

� + k�p)� = �
�
�; k ≥ 0} (Hoerl & Kennard, 1970) with solutions {�̂R(k); k ≥ 0} and (2) the sur-

rogate system {(��
� + k�p)� = (��

k�k)� = �
�

k�; k ≥ 0} (Jensen & Ramirez, 2008) with solutions 
{�̂S(k);k ≥ 0}. The ridge estimators come from modifying �′

� →�
�
� + k�p on the left side of 

Equation (1) while the Jensen and Ramirez surrogate estimators modify the design matrix � → �k 
on both sides of Equation (1). In matrix notation, ridge regression comes from perturbing the eigen-
values of �′

� as �i → �i + k, while surrogate regression comes from perturbing the singular values 

of � as �i →
√

�
2

i + k. From the singular value decomposition � = PD(�i)�
�, the surrogate design is 

�k = �D(

√
�
2

i + k)�
�, with � a diagonal matrix of dimension n × p, the columns of � the left-singu-

lar vectors and the columns of � the right singular vectors. The surrogate transformation � → �k 
preserves the ridge moments, with ��

k�k = �
�
� + k�p allowing for comparison between the two 

methods. Ridge regression has a long history of use in the statistical literature. The earliest detailed 
expositions of ridge estimators are found in Marquardt (1963) and Hoerl and Kennard (1970), with 
Marquardt (1963) acknowledging that Levenberg (1944) had observed that a perturbation of the 
diagonal improved convergence in steepest descent algorithms. The history of the early use of ma-
trix diagonal increments in statistical problems is given in the article by Piegorsch and Casella (1989).

To alleviate the problems inherent with a singular value, say �p, which is indicating collinearity in 
�, the surrogate transformation converts �p →

√
�
2

p + k moving the singular value away from zero. 
Principal Component Regression (PCR) does the opposite and replaces �p with 0 and regresses 
� = �D(�

1
,… , �p−1, 0)� + � with � = Q�. Hadi and Ling (1998) have noted “that it is possible for 

the PCR to fail miserably.” Their example is constructed with the response variable � being highly 
correlated with the deleted eigenvector associated with the deleted singular value. This deletion 

(1)�
�
��̂ = �

�
�

(2)�̂
L
= (��

�)−1��
�.

(3)�̂R(k) = (��
� + k�p)

−1
�

�
�.
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results in the remaining explanatory variables being unable to provide a good fit for the response 
variable.

Since ridge regression is based on a numerical analysis technique, the ridge estimators may lack 
desirable statistical properties. Three such desirable statistical properties follow.

(1) � The condition number for a square p × p matrix � is a measure of the ill-conditioning in � and 
is defined as the ratio of the largest to smallest eigenvalues, denoted �(�) = �

1
∕�p. Since 

perturbation procedures are designed to improve the regression model, one would expect that 
as k→ ∞ that �(V(�̂R(k)) → 1. However, as shown in Jensen and Ramirez (2010a), 
�(V(�̂R(k)) → �(V(�̂R(0)). Initially, as k increases, the ill-conditioning in the variance matrix 
starts to get better but then returns to the original (bad) value. However, the surrogate system 
does have the desirable monotone property that �(V(�̂S(k)) → 1 as k→ ∞. This allows the 
user of surrogate estimators to be assured that, regardless of the chosen value for k, the vari-
ance matrix for the surrogate estimators will be more “orthogonal” than the original OLS  
variance matrix.

(2) � Denote V(�̂L) = �
2(��

�)−1 = �
2
� so vjj is the actual variance for �̂L j and denote ��

� = �. 
An “ideal” predictor variable in column j would be orthogonal to the other predictor variables 
in �, with � being zero for all off-diagonal values in the jth row and jth column. In this “ideal” 
case, the “ideal” variance for ̂�L j would be �2(�)−1[j, j] =�2w−1

jj . The Variance Inflation Factors 
(VIFs) of ̂�L = [�̂L1,… , �̂Lp]

� are given by {VIF(�̂L j) = vjj∕w
−1

jj ; 1≤ j ≤p}; i.e. the ratios of actual 
variances to “ideal” variances had the columns of � been orthogonal, with VIF(�̂L j) = 1 for 
the ideal orthogonal case. Marquardt and Snee (1975) have identified VIF as “the best single 
measure of the conditioning of the data.” Again since perturbation procedures are designed to 
improve the regression model, one would expect that as k→ ∞ that VIF(V(�̂R j(k)) → 1. 
Jensen and Ramirez (2010a) also showed that VIF(V(�̂R j(k)) → VIF(V(�̂R j(0)) for the ridge 
estimators but that VIF(V(�̂S j(k)) → 1 as k→ ∞ for the surrogate estimators, resulting in less 
collinearity between the surrogate estimators than exists between the OLS estimators.

(3) � Hoerl and Kennard (1970) established that the ridge estimators satisfy the MSE Admissibility 
Condition assuring an improvement in Mean Squared Error MSE(�̂R(k)) for some k ∈ (0,∞). 
With �̂R(k), the predicted values for ridge regression, the statistic 
MSE(��R(k)) =

∑
j(yj − ŷR i(k))

2 = ��� − ��R(k)��2 measures how close the predicted values in 
the ridge regression model are to the observed values. However, Jensen and Ramirez (2010b) 
have shown the existence of cross-over values k

0
 for which, if k > k

0
 then 

MSE(��R(k)) > MSE(
��L(k)), indicating that the ridge model should not be used. The Hoerl and 

Kennard (1970) result assures that for some positive value of k, the ridge model is an improved 
model. Jensen and Ramirez (2010a) have shown that for any k ∈ (0,∞) the corresponding 
result holds for surrogate estimators. A further improvement with surrogate estimators is 
given by MSE(�̂S(k)) ≤ MSE(�̂R(k)); that is, for any value of k, the surrogate estimators have 
predicted values closer to the original data than the ridge estimators. As the ridge and surro-
gate estimators are not equivariant under scaling, the common convention is to scale �′

� to  
correlation form with the explanatory variables centered and scaled to unit length.

Remark 1  Scaling �′
� to correlation form can lead to some anomalies. as noted in Jensen and 

Ramirez (2008). For example, the map k→ ||�̂R(k)||2 is known to be monotonically decreasing with � 
centered but unscaled. Using Proc Reg in SAS with the Ridge option, this monotone property can be 
lost as the original �′

� moment matrix is (1) scaled into correlation form and (2) the ridge estima-
tors are computed using the correlation form for �′

� and (3) the ridge solutions are mapped back 
into the original scale. This scaling-rescaling can cause k→ ||�̂R(k)||2 to lose its monotonicity as in the 
example in Jensen and Ramirez (2008).
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Remark 2  Let � be mean-centered. Let �2 be the diagonal matrix with entries 1∕��
�j,j, 1 ≤ j ≤ p, 

then the scaling � → �� has (��)�(��) in correlation form., that is with diagonal entries all having 
value one. This is the scaling we have used. Sardy (2008) has suggested a covariance-based scaling 
using the diagonal matrix �2

Σ
 with entries (��

� )−1j,j , 1 ≤ j ≤ p. We note that in this case (��
Σ
)�(��

�
) 

has diagonal entries which are the variance inflation factors VIF(�̂j) . The variance inflation factors 
are the ratios of the variances of �̂j to the “ideal” variances of �̂j assuming the explanatory variables 
are orthogonal; that is, VIF(�̂j) = (��

�)−1j,j ∕(1∕�
�
�j,j) = (��

�)−1j,j �
�
�j,j = (��

�)
−1∕2

j,j
�

�
�j,j(�

�
�)

−1∕2

j,j
. In our 

Case Study, p = 2 so VIF(�̂
1
) = VIF(�̂

2
) and c(��)�(��) = (��

Σ
)�(��

�
) with c the common value of the 

variance inflation factors.

Remark 3  When the regression model retains the parameter �
0
 for the constant term with the de-

sign matrix � containing a unit constant column, the user needs to be careful with defining VIF(�̂j) 
when the data have not been mean-centered. In short, VIF(�̂j) is based on comparing the (j, j) entry 
of the variance matrix to the corresponding entry of an “ideal” covariance matrix. The inverse of the 
“ideal” covariance matrix is denoted as the “ideal” moment matrix. The “ideal” �̂j is uncorrelated 
with the other explanatory variables �̂i, 0 < i ≠ j. Thus, the constraints on the “ideal” covariance ma-
trix are that (1) the off-diagonal (i, j) and (j, i) entries for cov(�̂i , �̂j) are zero where 0 < i ≠ j. Note that 
the “ideal” covariance matrix is not a diagonal matrix as the entries relating to �̂

0
 in the first row and 

column are retained as the data have not been centered. Additionally, the constraints on the “ideal” 
moment matrix are that (2) the entries in first row and first column are the first order moments de-
termined from the data and (3) the entries down the diagonal (j, j) with j ≥ 0 are the second order 
moments determined from the data. Jensen and Ramirez (2013) have given an easy to compute 
algorithm for computing the “ideal” covariance matrix that satisfies constraints (1), (2) and (3).

The variance inflation factors, which are the standard measure for collinearity, have a geometric 
interpretation which allows them to be conveniently computed as a ratio of determinants. We as-
sume that the variables are centered. Reorder � = [�

[p],�(p)] with �
(p) = �p the pth column and �

[p], 
the design matrix � without the pth column, dubbed the resting columns. Garcia, Garcia and Soto 
(2011) introduced the metric number to measure the effect of adding the last column �

(p) to the 
resting columns �

[p] . An ideal pth column would be orthogonal to the other columns with the entries 
in the off diagonal elements of the pth row and pth column of �′

� all zeros, with idealized �′
� 

moment matrix

The metric number is defined by MN(�p) =
(
det(��

�)∕det(�p)
)1∕2

 and it measures the effect of 
enlarging the design matrix with the adding of the pth exploratory column. The metric number is 
easy to compute and is functionally equivalent to the VIF statistics with

for example, O’Driscoll and Ramirez (2015).

In spite of the established usage of ridge regression, it is now known that the surrogate estimators 
have superior statistical properties over the ridge estimators. Indeed, for their statistical analysis, 
Woods et al. (2012) used the Jensen–Ramirez surrogate estimates for modelling of diabetes in stock 
rats.

�p =

[
�

�

[p]�[p] �p−1

�
�

p−1 �
�

p�p

]
.

VIF(�̂p) =
det(�p)

det(��
�)
,



Page 5 of 9

O’Driscoll & Ramirez, Cogent Mathematics (2016), 3: 1144697
http://dx.doi.org/10.1080/23311835.2016.1144697

A crucial question for both the ridge estimators and the surrogate estimators is: What value of k 
should be used? McDonald (2009, 2010) has suggested that k can be determined by controlling the 
correlation between the observed values and the predicted values from ridge regression. We extend 
this methodology to surrogate regression and will compare the two procedures.

McDonald (2009, 2010) showed that the square of the correlation coefficient R2(�̂R(k)) between 
the observed values � and the ridge predicted values ̂�R(k) = ��̂R(k) is a monotone decreasing func-
tion in the ridge parameter k. The corresponding result for the square of the correlation coefficient 
R2(�̂S(k)) of the observed values � and the surrogate predicted values �̂S(k) = ��̂S(k) for the surro-
gate regression is a monotone decreasing function in the surrogate parameter k, as shown in Garcia 
and Ramirez (in press). This allows the user to determine a unique value for k by controlling the de-
crease in correlation between the observed and predicted values. The user can set a lower bound for 
the reduction in R2(�̂R(k)) and R2(�̂S(k)) and numerically compute the associated ridge and surro-
gate parameters, For example, to preserve 95% of the OLS correlation, we solve R2(k) = 0.95R2(0). 
With the computed value for k, we can measure the reduction in collinearity using the VIF statistic 
or using the condition number � of ��

� + k�p. For our case study, we use the example in McDonald 
(2010) which is known to have severe collinearity. We report the improvements in collinearity for 
both methods.

3. Raise estimators
We assume that the columns of � =

(
�
1
, �

2
,…, xp

)
 are centered and standardized, that is, �′

� is 
in correlation form with ||�j||2 = 1. For the n × p matrix � = [�

1
, �

2
,… , �

p
], the column span, is 

denoted by Sp(�), with �
(j) denoting the jth column vector �j and �

[j] denoting the n × (p − 1) matrix 
formed by deleting �

(j) from �. For the linear model � = �� + �, central to a study of collinearity is 
the relationship between �

(j) and Sp(�
[j]).

The raise estimators are based on perturbing a column �j → �̃j = �j + �j�j by a �j multiple of a 
vector �j orthogonal to the span of the remaining resting columns. We follow the notation from 
Garcia and Ramirez (in press). The regression of �j, viewed as the response vector using the remain-
ing resting columns as the explanatory vectors, has an error vector �j with the required properties. 
The raise estimators are constructed sequentially as follows.

• � Step 1: We raise the vector �
1
 from the regression of �

1
 using the resting vectors 

�
[1]

=
(
�
2
, �

3
,…xp

)
. From this regression, we take the error vector �

1
 with �

1
⟂ Sp(�

[1]
) to 

construct �̃
1
(𝜆
1
) = �

1
+ 𝜆

1
�
1
. The raised design matrix is denoted �

<1>
=
(
��
1
(𝜆
1
), �

2
,…, xp

)
.

•  �Step j: we raise the vector �j from the regression of �j using the resting vectors from �
<1,…,j−1>, 

namely �
<1,…,j−1>[j] =

(
�̃
1
(𝜆
1
),…, x̃j−1(𝜆j−1), �j+1,…, xp

)
. From this regression, we take the re-

sidual vector �j with �j ⟂ Sp(�<1,…,j−1>[j]) to construct �̃j(𝜆j) = �j + 𝜆j�j. The raised design matrix 

is denoted �
<1,…,j> =

(
�̃
1
(𝜆
1
),…, x̃j(𝜆j), �j+1,…, xp

)
.

• � Step p: we raise the vector �p from the regression of �p with the resting vectors from �
<1,…,p−1>, 

namely �
<1,…,p−1>[p] =

(
�̃
1
(𝜆
1
),…, x̃p−1(𝜆p−1)

)
. Then, we take the residual �p with 

�p ⟂ Sp(�<1,…,p−1>[p]) to construct �̃p = �p + 𝜆p�p. The raised design matrix is denoted 

�
<1,…,p> =

(
�̃
1
(𝜆
1
),…, x̃p(𝜆p)

)
 with parameters vector � = (�

1
,… , �p)

� to be chosen by the user. 

For convenience, we denote the final raise design �
<1,…,p> by �̃.

There is a monotone relationship between the variance inflation factors, VIFj , and the angle be-
tween (�j , Sp(�[j])), for example, Jensen and Ramirez (2013, Theorem 4). Let �

[j]
= �

[j]
(��

[j]
�

[j]
)−1��

[j]
 

be the projection operator onto the subspace Sp(�
[j]
) ⊂ ℝ

n spanned by the columns of the reduced 

(or relaxed) matrix �
[j]
. From the geometry of the right triangle formed by (�j ,�

[j]
�

(j)), it can be shown 
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that the angle �j between �j and �
[j]
�

(j) satisfies cos(�j) = ||�
[j]
�j||∕||�j|| and similarly the angle be-

tween �̃j and �
[j]
�

(j) satisfies cos(�̃j) = ||�
[j]�j||∕||�̃j|| since �j ⟂ �

[j]�j. Each Variance Inflation Factor, 

VIFj, for �̃ is functionally related to the angle �̃j by the rule �̃j = arccos(
√
1 − 1∕VIFj), for example 

Jensen and Ramirez (2013). Thus as �j → ∞, �̃j → 90◦ and the variance inflation factor VIFj con-
verges to one indicating that collinearity is being diminished, as in Garcia et al. (2011, Theorem 4.2).

Some desirable properties of the raised regression method are as follows.

(1) � Raising a column vector in � does not effect the basic OLS regression model as the raised vec-
tor remains in the original Sp(�), �j = �

(j) − �
[j]
�

(j) ∈ Sp(�) so Sp(�̃) = Sp(�), as shown in 
Garcia et al. (2011).

(2) � Garcia et al. (2011) has shown that the raise estimators satisfy the MSE Admissibility Condition 
assuring an improvement in Mean Squared Error MSE(�̃(�)) for some � ∈ (0,∞) and thus the 
raise estimators can be said to be of ridge-type.

(3) � The VIFs associated with the raise estimators are monotone functions, decreasing with �j, see 
Garcia, Garcia, López Martin, and Salmeron (2015).

(4) � Starting with �′
� in correlation form with 

results in the final raising matrix �̃ having moment matrix 

Thus, the raised regression perturbation matrix is equivalent to a  generalized ridge regression 
perturbation matrix. And conversely, any generalized ridge regression matrix has a corresponding 
raised regression matrix as in Garcia and Ramirez (in press).

The raise estimators allow the user to specify, for each of the variables, a precision �j that the data 
will retain during the raising stages by restricting the mean absolute deviation MAD in the jth column 
of � − �̃ from

Thus, given a specified precision 𝜋j > 0, the user can raise column j in �
<1,…,j>to �̃j(�j) = �j + �j�j, 

where �j is solved from Equation (5). The precision values should be based on the researcher’s belief 
in the accuracy of the data. The raised parameters �j are thus constrained to assure that the original 
data have not been perturbed more than what the researcher has permitted.

�
�
� =

⎛
⎜⎜⎜⎜⎜⎝

1 �
12

�
13

… �
1p

�
12

1 �
23

… �
2p

�
13

�
23

1 … �
3p

… … … … …

�
1p �

2p �
3p … 1

⎞⎟⎟⎟⎟⎟⎠

(4)
�̃

�
�̃ =

⎛
⎜⎜⎜⎜⎜⎝

1 + �
1

�
12

�
13

… �
1p

�
12

1 + �
2

�
23

… �
2p

�
13

�
23

1 + �
3

… �
3p

… … … … …

�
1p

�
2p

�
3p

… 1 + �
p

⎞⎟⎟⎟⎟⎟⎠

(5)�j
1

n

n∑
i=1

|�j,i| = �j .
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Remark 4  The ridge and surrogate procedures do not require � to be of full rank. For example, with 
the surrogate transformation �i →

√
�
2

i + k any zero singular value will be mapped to 
√
k > 0 with �k 

now full rank. On the other hand, the raise procedure does require the columns of � to be independ-
ent as the crucial step �

1
→ �̃

1
(𝜆
1
) = �

1
+ 𝜆

1
�
1
 moves �

1
 in the direction of the orthogonal comple-

ment of Sp(�
[1]
) ⊂ Sp(�) ⊂ ℝ

n in Sp(�), the span of the other columns. Thus if �
1
∈ Sp(�

[1]
) =Sp(�) 

then Sp(�
[1]
)⊥ ∩ Sp(�) = {0} and �

1
 cannot be raised.

4. Case study
Our case study is the numerical example in McDonald (2010). Here, n = 60 and p = 2  with  
� = [�

1
, �

2
] with �

1
 the nitrogen oxide pollution potential and �

2
 the hydrocarbon pollution potential 

and � the total mortality rate in 60 US metropolitan areas. The original data-set had 15 explanatory 
variables. Following McDonald (2010), we concentrate on the two variables which have the highest 
correlation p = 0.9838. Since, � is assumed to contain only explanatory variables, the vectors �

1
, �

2

, � are all mean-centered and scaled to have unit length.

Table 1 reports results for OLS, ridge and surrogate regression for the case study. The squared cor-
relation between the original data � and the predicted values �̂L(k) for OLS is 0.3249 . The perturba-
tion parameter for ridge and surrogate are chosen to retain 95% of this value for the squared 

Table 1. OLS, ridge, and surrogate regression with squared correlation R2(𝐲, 𝐲̂(k)), computed 
parameters k,  estimated coefficients �̂, squared lengths �̂′

�̂, condition numbers �, variance 
inflation factors VIF, and mean absolute deviation for 𝐗 − 𝐗

k
 for surrogate design

OLS Ridge Surrogate
R2(�, �̂(k)) 0.3249 0.3086 0.3086

k 0 0.01822 0.05775

�̂

[
3.0255

−3.1539

] [
1.3886

−1.5158

] [
1.0860

−1.212

]

�̂
′
�̂ 19.10 4.23 4.18

�(��
� + k�p) 122.76 58.23 27.62

VIF 31.19 15.06 12.53

MAD 0 none 0.009158

Table 2. OLS and raise regression with precision �
j
= 0.009158 squared correlation R2(𝐲, 𝐲̂(k)), 

computed parameters �
j
, estimated coefficients �̂, squared lengths �̂′

�̂, condition numbers �, 
variance inflation factors VIF, and mean absolute deviation for 𝐗 − 𝐗̃ for raise design

OLS Step 1 Step 2
�j 0 0.009158 0.009158

R2(�, �̂(�)) 0.3249 0.3169 0.3147

� 0 0.5671 0.3898

�̂

[
3.0255

−3.1539

] [
1.9307

−2.0767

] [
1.3831

−1.4942

]

�̂
′
�̂ 19.10 8.04 4.15

�(�̃�
�̃) 122.76 51.19 27.43

VIF 31.19 13.29 7.36

�j 10.31◦ 15.92◦ 21.62◦

MAD 0 0.009158 0.009158
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correlation between � and �̂R = ��R(k) for the ridge parameter and between � and �̂S = ��S(k) for 
the surrogate parameter. Thus, both methods have the same small decrease in R2(�, �̂(k)) down to 
0.3086 shown in Row 1 of Table 1 and with the associated parameters in Row 2 of Table 1. This al-
lows us to compare the improvement in collinearity between the two procedures. The estimated 
coefficients are shown in Row 3 of Table 1.

Ridge-type procedures are designed to (1) decrease the squared length of the estimated coeffi-
cient �′

� which is given in Row 4 of Table 1; (2) to decrease the condition number �(��
� + k�p) of the 

matrix which needs to be inverted which is given in Row 5 of Table 1; (3) to decrease the variance 
inflation factors VIF given in Row 6. Since p = 2, both VIFs have a common value so only one value 
appears in Row 6. For each of these three criteria, surrogate regression is shown to be a superior 
procedure achieving a model with smaller collinearity with comparable loss of squared correlation 
R2(�, �̂(k)).

The standard method for computing VIF for ridge regression in correlation form follows the proce-
dure suggested by Marquardt (1970), which is to use the values on the main diagonal values of 
(��

� + k�
�
)−1��

�(��
� + k�

�
)−1. Although this is the correct expression for k = 0, it has been shown 

to be in error for k > 0 by Garcia et al. (2015) as the Marquardt expression allows inadmissible values 
less than one. Thus, we have used Equation (22) and (25) in Garcia et al. (2015) to compute the cor-
rected values for VIF for ridge regression.

From Table 1, we see that the mean absolute deviation MAD for � − �̃ from the surrogate system 
is 0.009158. To compute a comparable raise system of estimators, we will set the precision 
�j = 0.009158 in Equation (5). The OLS values from Table 1 are shown in Column 1 of Table 2 for 
comparisons. Using �

1
= 0.009158 in Step 1, we solve for �

1
= 0.5671 to raise �

1
→ �̃

1
. With this 

value, the squared lengths �̂�
�̂ = 8.04, � = 51.19 and VIF = 13.29 all showing an improvement in 

collinearity. The angle between the two column vectors in the design has improved from 10.31◦ to 
15.92◦. The corresponding R2(�, �̂(�)) = 0.3169 indicates that 97.5% for the squared correlation 
has been retained. For Step 2, we solve for �

2
= 0.3898 to raise �

2
→ �̃

2
. This is the final raised de-

sign �̃ = [�̃
1
, �̃

2
]. With these values, the squared lengths �̂�

�̂ = 4.15, � = 27.43 and VIF = 7.36 all 
showing an improvement in collinearity. The angle between the two column vectors in the design 
has improved to 21.62◦. The corresponding R2(�, �̂(�)) = 0.3147 indicates that 96.9% for the 
squared correlation has been retained. Row 8 records MAD which is 0.009158 by construction.

The values in Column 3 of Table 2 are comparable to the values for the surrogate model from 
Table 1. However, following Marquardt (1970, p. 610), VIF should be less than 10 and thus, for this 
example, we would favor the raise estimators as the ridge-type method to be used.
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