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1. Introduction
We consider a linear regression Y = X� + � with X a full rank n × p matrix and (�) = N(0, �2In). 
The variance inflation factor VIF, Belsley (1986), measures the penalty for adding one non-orthogo-
nal additional explanatory variable to a linear regression model, and they can be computed as a 
ratio of determinants. The extension of VIF to a measure of the penalty for adding a subset of vari-
ables to a model is the generalized variance inflation factor GVIF of Fox and Monette (1992), which 
will be used to study response surface designs, in particular, as the penalty for adding the quadratic 
terms to the model.

2. Variance inflation factors
For our linear model Y = X� + �, let DX be the diagonal matrix with entries on the diagonal 
DX[i, i] = (X�X)−1∕2

i,i
. When the design has been standardized X→ XDX , the VIFs are the diagonal 

entries of the inverse of SX = DX(X
�X)DX. That is, the VIFs are the ratios of the actual variances for 
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the explanatory variables to the “ideal” variances had the columns of X been orthogonal. Note that 
we follow Stewart (1987) and do not necessarily center the explanatory variables.

For our linear model Y = X� + �, view X = [X
[p], xp] with xp the pth column of X and X

[p] the matrix 
formed by the remaining columns. The variance inflation factor VIFp measures the effect of adding 
column xp to X

[p]. For notational convenience, we demonstrate VIFp with the last column p. An ideal 
column would be orthogonal to the previous columns with the entries in the off-diagonal elements 
of the pth row and pth column of X′X all zeros. Denote by Mp the idealized moment matrix

The VIFs are the diagonal entries of S−1X = D−1

X (X�X)−1D−1

X . It remains to note that the inverse, S−1X , 
can be computed using cofactors Ci,j. In particular,

the ratio of the determinant of the idealized moment matrix Mp to the determinant of the moment 
matrix X′X. This definition extends naturally to subsets and is discussed in the next section.

For an alternate view of the how collinearities in the explanatory variables inflate the model vari-
ances of the regression coefficients when compared to a fictitious orthogonal reference design, con-
sider the formula for the model variance

where R2j  is the square of the multiple correlation from the regression of the jth column of X = [xij] 
on the remaining columns as in Liao and Valliant (2012). The first term �2∕

∑
(xij − xj)

2 is the model 
variance for �̂j had the jth explanatory variable been orthogonal to the remaining variables. The 
second term 1∕(1 − R2j ) is a standard definition of the jth VIF as in Thiel (1971).

3. Generalized variance inflation factors
In this section, we introduce the GVIFs as an extension of the classical variance inflation factors VIF 
from Equation 1. For the linear model Y = X� + �, view X = [X

1
,X

2
] partitioned with X

1
 of dimension 

n × r usually consisting of the lower order terms and X
2
 of dimension n × s usually consisting of the 

higher order terms. The idealized moment matrix for the (r, s) partitioning of X is

Following Equation 1, to measure the effect of adding X
2
 to the design X

1
, that is for X

2
|X

1
, we define 

the generalized variance inflation factor as

as in Equation 10 of Fox and Monette (1992), who compared the sizes of the joint confidence regions 
for � for partitioned designs and noted when X = [X

[p], xp] that GVIF[xp|X[p]] = VIFp. Equation 2 is in 
the spirit of the efficiency comparisons in linear inferences introduced in Theorems 4 and 5 of Jensen 
and Ramirez (1993). A similar measure of collinearity is mentioned in Note 2 in Wichers (1975), 

Mp =

[
X�

[p]X[p] 0p−1
0�

p−1 x�pxp

]
.

(1)

VIFp = [S−1X ]p,p = [D−1

X (X�X)−1D−1

X ]p,p

= (x�pxp)
1∕2
det(Cp,p)

det(X�X)
(x�pxp)

1∕2 =
det(Mp)

det(X�X)

VarM(�̂j) =
�2∑n

i=1(xij − xj)
2

1

1 − R2j

M
(r,s) =

[
X�

1
X
1

0r×s
0s×r X�

2
X
2

]
.

(2)GVIF(X
2
|X

1
) =

det(M
(r,s))

det(X�X)
=
det(X�

1
X
1
)det(X�

2
X
2
)

det(X�X)
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Theorem 1 of Berk (1977), and Garcia, Garcia, and Soto (2011). For the simple linear regression model 
with p = 2, Equation 2 gives VIF =

1

1−�2
 with � the correlation coefficient as required. Fox and Monette 

(1992) suggested that X
1
 contains the variables which are of “simultaneous interest,” while X

2
 con-

tains additional variables selected by the investigator. We will set X
1
 for the constant and main  

effects and set X
2
 the (optional) quadratic terms with values from X

1
.

Willan and Watts (1978) measured the effect of collinearity using the ratio of the volume of the 
actual joint confidence region for �̂  to the volume of the joint confidence region in the fictitious  
orthogonal reference design. Their ratio is in the spirit of GVIF as det(X�X) is inversely proportional 
to the square of the volume of the joint confidence region for �̂ . They also introduced a measure of 
relative predictability and they note: “The existence of near linear relations in the independent  
variables of the actual data reduces the overall predictive efficiency by this factor.” For a simple case 
study, consider the simple linear regression model with n = 4, x

1
= [−2,−1, 1, 2]�, and 

y = [4, 1, 1, 4]�. The 95% prediction interval for x
1
= 0 is 2.5 ± 10.20. If the model also includes 

x
2
= [−2.001,−1.001, 1.001, 2.001]�, then the 95% prediction interval for (x

1
, x

2
) = (0, 0) is 

2.5 ± 46.02 demonstrating the loss of predictive efficiency due to the collinearity introduced by x
2
.

For the (r, s) partition of X = [X
1
,X

2
] with X

1
 of dimension n × r and X

2
 of dimension n × s, set

and denote the canonical moment matrix as

with determinant

equivalently,

where Br×s =
(
X�

1
X
1

)−1∕2
(X�

1
X
2
)
(
X�

2
X
2

)−1∕2
.

In the case {r = p − 1, s = 1}, X
2
= xp is a n × 1 vector and the partitioned design X = [X

1
, xp] has 

det(R) = 1 − [x�pX1
(
X�

1
X
1

)−1
X�

1
xp]∕

(
x�pxp

)
. From standard facts for the inverse of a partitioned 

matrix, for example, Myers (1990, p. 459), VIFp = [R−1
]p,p = [D−1

(p−1,1)(X
�X)−1D−1

(p−1,1)]p,p can be com-
puted directly as

D
(r,s) =

[ (
X�

1
X
1

)−1∕2
0

0
(
X�

2
X
2

)−1∕2
]
,

(3)

R = D
(r,s)(X

�X)D
(r,s)

=

[
Ir×r

(
X�

1
X
1

)−1∕2
(X�

1
X
2
)
(
X�

2
X
2

)−1∕2
(
X�

2
X
2

)−1∕2
(X�

2
X
1
)
(
X�

1
X
1

)−1∕2
Is×s

]
;

det(R) =
det(X�X)

det(X�

1
X
1
)det(X�

2
X
2
)
=

1

GVIF(X
2
|X

1
)
;

det(R) = det(Ir×r − Br×sB
�

s×r) = det(Is×s − B
�

s×rBr×s)

(
x�pxp

)1∕2
(X�X)−1p,p

(
x�pxp

)1∕2
=

x�pxp

x�pxp − x
�

pX1
(
X�

1
X
1

)−1
X�

1
xp

=
1

1 − [x�pX1
(
X�

1
X
1

)−1
X�

1
xp]∕

(
x�pxp

)

=
1

det(R)
= GVIF(X

2
|X

1
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We study the eigenvalue structure of M
(r,s) in Appendix 1. Let {�

1
≥ �

2
≥ … ≥ �

min(r,s) ≥ 0} be the 

non-negative singular values of 
(
X�

1
X
1

)−1∕2
(X�

1
X
2
)
(
X�

2
X
2

)−1∕2
. It is shown in Appendix 1 that an  

alternative formulation for GVIF is

4. Quadratic model with p = 3

For the partitioning X = [Xr|Xs], the canonical moment matrix, Equation 3, has the identity matrices 
Ir, Is down the diagonal and off-diagonal array 

(
X�

1
X
1

)−1∕2
X�

1
X
2

(
X�

2
X
2

)−1∕2
. For the quadratic model 

y = �
0
+ �

1
x + �

2
x2 and partitioning X = [1, x|x2], we have

From Equation 4, GVIF(x2|1, x) = (1 − �2)−1 where � =

√
�2
1
+ �2

2
 is the unique positive singular 

value of [�
1
, �

2
]�. Denote

as the canonical index with GVIF(x2|1, x) = 1

1−�2X
=

1

det(R)
. Surprisingly, many higher order designs 

also have the off-diagonal entry of the canonical moment matrix with a unique positive singular 
value with GVIF(X

2
|X

1
) =

1

1−�2X
 with the collinearity between the lower order terms and the upper 

order terms as a function of the canonical index �2X.

5. Central composite and factorial designs for quadratic models (p = 6)

In this section, we compare the central composite design (CCD) X of Box and Wilson (1951) and the 
factorial design Z. The design points are shown in Table B1 of Appendix 2. Both designs are 9 × 6 and 
use the quadratic response model

The CCD traditionally uses the value a =
√
2 in four entries, while the factorial design uses the value 

a = 1. To study the difference in the designs with these different values, we computed the GVIF  
to compare the “orthogonality” between the lower order terms X

1
 of dimension 9 × 3 and the higher 

order quadratic terms X
2
 of dimension 9 × 3. The off-diagonal B

3×3
 entry of R from Equation 3 in 

Section 3 has the form

(4)GVIF(X
2
|X

1
) =

min(r,s)∏
i=1

(1 − �2i )
−1
.

R =

⎡
⎢⎢⎣

1 0 �
1

0 1 �
2

�
1

�
2

1

⎤
⎥⎥⎦
.

�2X = �2
1
+ �2

2

y = �
0
+ �

1
x
1
+ �

2
x
2
+ �

11
x2
1
+ �

22
x2
2
+ �

12
x
1
x
2
+ �.

B
3×3

=

⎡⎢⎢⎣

�
1

�
2

0

0 0 0

0 0 0

⎤⎥⎥⎦

Table 1. CCD with parameter a, canonical index �2
X
, and GVIF

a �
2
X

GVIF(X
2
|X

1
)

0.000 0.4444 1.800

1.000 0.8000 5.000

1.500 0.8858 8.758
√
2 0.8889 9.000

1.750 0.8514 6.729

∞ 0.4444 1.800
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with �
1
= �

2
=

2

3

2+a2√
8+2a4

, canonical index �2X = �2
1
+ �2

2
 and GVIF(X

2
|X

1
) =

1

1−�2X
 as in the quadratic 

model case with p = 3 shown in the Section 4. For Table 1, if a = 1, then �
1
= �

2
= 2∕

√
10, 

�2X = 8∕10, and GVIF(X
2
|X

1
) = 5. Surprisingly, the classical choice of a =

√
2 gives the largest value 

for GVIF(X
2
|X

1
), that is the worst value, indicating the greatest collinearity between the lower and 

higher order terms, as noted in O’Driscoll and Ramirez (in press).

6. Larger designs (p = 10)

We consider the quadratic response surface designs for

with n responses and with X partitioned into 
[
X
1
|X
2

]
 with X

1
 the four lower order terms (r = 4) and 

X
2
 the six quadratic terms (s = 6). Four popular designs are given in Appendix 2. They are the hybrid 

designs (H310 and H311B) of Roquemore (1976) Tables B2 and B3, the Box and Behnken (1960) 
(BBD) design Table B4, and the CCD of Box and Wilson (1951) Table B5.

For each design, we compute the 10 × 10 canonical moment matrix. It is striking that, for all these 
designs, the off-diagonal 4 × 6 array in R has only one non-zero singular value with its square the 
canonical index �2X. It follows that GVIF(X

2
|X

1
) =

1

1−�2X
.

Table 2 reports that the design H310 is the most conditioned with respect to the GVIF with the 
least amount of collinearity between the lower and higher order terms.

7. More complicated designs with ordered singular values
Let X be the minimal design of Box and Draper (1974) BDD with n = 11 from Table B6, and let Z be 
the small composite design of Hartley (1959) SCD with n = 11 from Table B7 for the quadratic  
response surface model (r = 4 and s = 6) as in Equation (5). Let � = {�

1
≥ … ≥ �r ≥ 0} and 

� = {�
1
≥ … ≥ �r ≥ 0} be the non-negative singular values of the off-diagonal array for RX and RZ, 

respectively. As �i ≤ �i (1 ≤ i ≤ r) (Table 3), it follows that GVIF(X
2
|X

1
) ≤ GVIF(Z

2
|Z
1
) showing less 

collinearity between the lower and higher order terms for the BDD design.

(5)
y = �

0
+ �

1
x
1
+ �

2
x
2
+ �

3
x
3
+

�
11
x2
1
+ �

22
x2
2
+ �

33
x2
3
+ �

12
x
1
x
2
+ �

13
x
1
x
3
+ �

23
x
2
x
3
+ �

Table 2. Hybrid designs H310, H311B, Box and Behnken BBD,and CCD
Design n r �

2
X

GVIF(X
2
|X

1
)

H310 11 4 0.8199 5.553

H311B 11 4 0.9091 11.00

BBD 13 4 0.9231 13.00

CCD 15 4 0.9333 15.00

Table 3. Singular values for off-diagonal array of R for BDD and SCD with GVIF
BDD SCD

0.9017 0.9535

� = 0.3424 � = 0.6325

0.3424 0.6325

0.1877 0.6325

GVIF = 7.114 50.93
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8. An improved H310 design
When the diagonal matrix �r×s in Equation 6 in Appendix 1 has only one non-zero entry, we have 
denoted the square of this value the canonical index. We extend this definition to the case when (
X�

1
X
1

)−1∕2
(X�

1
X
2
)
(
X�

2
X
2

)−1∕2
 has multiple positive singular values. The Frobenious norm for a rec-

tangular matrix Ar×s is defined by ��A��2F =
∑r

i=1

∑s

j=1 a
2

ij = trace(A
�A). For a design matrix X, we 

extend the definition of the  canonical index with �2X = ||�r×s||2F. Alternatively, 
�2X = trace(

(
X�

2
X
2

)−1
(X�

2
X
1
)
(
X�

1
X
1

)−1
(X�

1
X
2
)) as in Equation 7.

We examine, in detail, the H310 design matrix X
11×10

, Table B2 in Appendix 2, with our attention 
to the value of −0.1360 in row 2 for x

3
. In succession, we will replace the values 

{1.1736, 0.6386,−0.9273, 1.0000, 1.2906,−0.1360} by a free parameter and use �2X to deter-
mine an optimal value. For example, replacing the four entries which are 1.1736 with c

1
, we calcu-

late the minimum value for �2X = 0.8199 with c
1
= 1.1768 denoted c

min
 in Table 4. These values are 

within the four digit accuracy of the data. We performed a similar calculation with c
2
 using the four 

entries which are 0.6386; with c
3
 with the four entries which are −0.9273; with c

4
 with the eight 

entries which are 1; and with c
5
 with the single entry 1.2906. The original design has �2X = 0.8199. 

The entries in the H310 design are given to four significant digits. With this precision, the original 
design is nearly optimal with respect to the canonical index �2X for the first five entries in Table 4. The 
sixth entry of c

6
= −0.1360 was not optimal with �2X = 0.8181 with c

min
= −0.01264, a magnitude 

value smaller.

Denote the “improved” H310 design as the H310 design with the value of c
6
= −0.01264. The 

“improved” H310 also has a unique positive singular value for the off-diagonal of R with its square the 
canonical index �2X. All of the standard design criteria favor the “improved” H310 design over the H310 
design, which was originally constructed based on the rotatability criterion to maintain equal vari-
ances for predicted responses for points that have the same distance from the design center. As usual 
A(X) = tr((X�X)−1), D(X) = det((X�X)−1), and E(X) = max{eigenvalues of (X�X)−1}. The small rela-
tive changes Δ in the design criteria are shown in Table 5 in Column 4.

The abnormality of the second row in H310 has been noted in Jensen (1998) who showed that the 
design is least sensitive to the second row of X, the row containing the value c

6
= −0.1360.

Table 4. Optimal values c
min

 for �2
X

Design entries c
min �

2
X

c
1

0.6386 -0.9273 1 1.2906 −0.1360 1.1768 0.8199

1.1736 c
2

-0.9273 1 1.2906 −0.1360 0.6356 0.8199

1.1736 0.6386 c
3

1 1.2906 −0.1360 −0.9303 0.8199

1.1736 0.6386 −0.9273 c
4

1.2906 −0.1360 0.9975 0.8199

1.1736 0.6386 −0.9273 1 c
5

−0.1360 1.2880 0.8199

1.1736 0.6386 −0.9273 1 1.2906 c
6

−0.0126 0.8181

Table 5. Design criteria for the “improved” H310 with � the relative change
c
6
= −0.1360 c

6
= −0.01264 �

A 2.697 2.688 0.33%

D 0.1552 × 10
−6

0.1542 × 10−6 0.64%

E 0.8611 0.8512 1.15%

�2X
0.8199 0.8181 0.22%
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9. Conclusions
The VIF measure the penalty for adding a non-orthogonal variable to a linear regression. The VIF can 
be computed as a ratio of determinant as in Equation 1. A similar ratio criterion was studied by Fox 
and Monette (1992) to measure the effect of adding a subset of new variables to a design and they 
dubbed it the generalized variance inflation factor GVIF, Equation 2. We have noted the relationship 
between GVIF and the singular values of the off-diagonal array in the canonical moment matrix and 
have used GFIV to study standard quadratic response designs. The H310 design of Roquemorer 
(1976) was shown not to be optimal with respect to GFIV and an “improved” H310 design was  
introduced which was favored over H310 using the standard design criteria A, D, and E.
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Appendix 1
We study the eigenvalue structure of M

(r,s). Let {�
1
≥ �

2
≥ … ≥ �

min(r,s) ≥ 0} be the non-negative 
singular values of 

(
X�

1
X
1

)−1∕2
(X�

1
X
2
)
(
X�

2
X
2

)−1∕2
.

As with the canonical correlation coefficients Eaton (1983), write the off-diagonal rectangular  
array Br×s of R as PΛQ�with P and Q orthogonal matrices and �r×s the rectangular diagonal matrix 
with the non-negative singular values down the diagonal. Set

For notational convenience, we assume r ≤ s. The matrix L is orthogonal and transforms R→L′RL 
into diagonal matrices:

L =

[
Pr×r 0r×s
0s×r Qs×s

]
.

(A1)

[
Ir �r×s

�
�

s×r Is

]
=

[
Ir [SVr×r|0r×(s−r)]

[SVr×r|0r×(s−r)]� Is

]

mailto:diarmuid.odriscoll@mic.ul.ie
mailto:der@virginia.edu
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with �r×s = [SVr×r|0r×(s−r)] where SVr×r is the diagonal matrix of the non-negative singular values. 
Since L is orthogonal, this transformation has not changed the eigenvalues. To compute the deter-
minant of R, convert the matrix in Equation 6 into an upper diagonal matrix by Gauss Elimination on 
�

�

s×r. This changes r of the 1′s on the diagonal in rows r + 1 to r + r into 1 − �2i , and thus 
det(R) =

∏min(r,s)

i=1
(1 − �2i ) with

The singular values of R
12

=
(
X�

1
X
1

)−1∕2
(X�

1
X
2
)
(
X�

2
X
2

)−1∕2
 are the non-negative square roots of the 

eigenvalues of �′
� denoted by

If the trace of the inverse of the matrix in Equation 6 is required, then we note that

with trace given by tr((L�RL)−1) = �r − s� + 2∑min(r,s)

i=1

1

1−�2i
.

GVIF(X
2
|X

1
) =

min(r,s)∏
i=1

1

1 − �2i

.

(A2)

eigvals(��
�) = eigvals((Q�R�

12
P) (P�R

12
Q)))

= eigvals(
(
X�

1
X
1

)−1
) (X�

1
X
2
)
(
X�

2
X
2

)−1
(X�

2
X
1
)).

[
Ir �r×s

�
�

s×r Is

]−1
=

[
(Ir − �r×s�

�

s×r)
−1 −�r×s(Is − �

�

s×r�r×s)
−1

−��

s×r(Ir − �r×s�
�

s×r)
−1

(Is − �
�

s×r�r×s)
−1

]

Appendix 2

Central composite design Factorial design
1 x

1
x
2 1 x

1
x
2

1 1 1 1 1 1

1 1 -1 1 1 -1

1 -1 1 1 -1 1

1 -1 -1 1 -1 -1

1 a 0 1 1 0

1 −a 0 1 -1 0

1 0 a 1 0 1

1 0 −a 1 0 -1

1 0 0 1 0 0

Table B1. The lower order matrix for the CCD with center run with a =
√
2, n = 9 and the lower 

order matrix for the factorial design with center run n = 9
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1 x
1

x
2

x
3

1 0 0 2.4495
1 0 0 -2.4495
1 2.1063 0.7507 1
1 2.1063 -0.7507 -1
1 -2.1063 -0.7507 1
1 -2.1063 0.7507 -1
1 0.7507 2.1063 -1
1 0.7507 -2.1063 1
1 -0.7507 -2.1063 -1
1 -0.7507 2.1063 1
1 0 0 0

Table B3. The lower order matrix for the hybrid (H311B) design of Roquemore (1976) with 
center run, n = 11

1 x
1

x
2

x
3

1 1 1 0
1 1 -1 0
1 1 0 1
1 1 0 -1
1 -1 1 0
1 -1 -1 0
1 -1 0 1
1 -1 0 -1
1 0 1 1
1 0 1 -1
1 0 -1 1
1 0 -1 -1
1 0 0 0

Table B4. The lower order matrix for the Box and Behnken (1960) design (BBD) with center run, 
n = 13

1 x
1

x
2

x
3

1 0 0 1.2906

1 0 0 -0.1360

1 1 1 0.6386

1 1 -1 0.6386

1 -1 1 0.6386

1 -1 -1 0.6386

1 1.1736 0 -0.9273

1 -1.1736 0 -0.9273

1 0 1.1736 -0.9273

1 0 -1.1736 -0.9273

1 0 0 0

Table B2. The lower order matrix for the hybrid (H310) design of Roquemore (1976) with 
center run, n = 11
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1 x
1

x
2

x
3

1 1 1 1

1 1 1 -1

1 1 -1 1

1 1 -1 -1

1 -1 1 1

1 -1 1 -1

1 -1 -1 1

1 -1 -1 -1

1 1.732 0 0

1 -1.732 0 0

1 0 1.732 0

1 0 -1.732 0

1 0 0 1.732

1 0 0 -1.732

1 0 0 0

Table B7. The Lower order matrix for the small composite design of Hartley (1959) (SCD) for 
� = 1.732 with center run, n = 11

1 x
1

x
2

x
3

1 1 -1 -1
1 -1 1 -1
1 -1 -1 1
1 -1 -1 -1
1 0.1925 0.1925 -1
1 0.1925 -1 0.1925
1 -1 0.1925 0.1925
1 -0.2912 1 1
1 1 -0.2912 1
1 1 1 -0.2912
1 0 0 0

Table B6. The lower order matrix for the Box and Draper (1974) minimal design (BDD) with 
center run, n = 11

1 x
1

x
2

x
3

1 1 1 1
1 1 -1 -1
1 -1 1 -1
1 -1 -1 1
1 1.732 0 0
1 -1.732 0 0
1 0 1.732 0
1 0 -1.732 0
1 0 0 1.732
1 0 0 -1.732
1 0 0 0

Table B5. The lower order matrix for the Box and Wilson (1951) CCD for � = 1.732 with center 
run, n = 15
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