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Abstract. Let X be a geometrically irreducible smooth projective curve defined over a
field k, and let E be a vector bundle on X. Then E is semistable if and only if there is a
vector bundle F on X such that Hi(X,F⊗E) = 0 for i = 0, 1. We give an explicit bound
for the rank of F . The proof uses a result of Popa for the case that k is algebraically
closed.

Résumé. Sur les fibrés vectoriels semi-stable au-dessus des courbes. Soit X
une courbe projective lisse géométriquement irréductible définie au-dessus d’un corps k,
et soit E un fibré vectoriel sur X. E est semi-stable si et seulement s’il y a un fibré
vectoriel F sur X tel que Hi(X,F ⊗ E) = 0 pour i = 0, 1. Nous donnons une borne
explicite pour le rang de F . La preuve utilise un résultat de Popa pour le cas oú k est
algébriquement clos.

1. Introduction

Let k be field with algebraic closure K, and let X be a geometrically irreducible, smooth,

projective curve defined over k of genus g ≥ 2. Recall that a vector bundle E over X

is called semistable if for all subbundles of positive rank E ′ ⊂ E defined over k, the

inequality µ(E ′) ≤ µ(E) holds. Here the rational number µ(E ′) := deg(E′)
rk(E′)

is the slope

of the vector bundle E ′. It is known that E is semistable if and only if the base change

E ⊗k K −→ X ×k K is semistable; this is proved in [4, p. 97, Proposition 3].

Assume that there exists a second vector bundle F on X, such that H∗(X,F ⊗ E) = 0,

meaning H0(X,F ⊗E) = 0 = H1(X,F ⊗E). Such a vector bundle F we call cohomologi-

cally orthogonal to E. This implies that χ(F⊗E) = 0, or equivalently, µ(F )+µ(E) = g−1.

If there were a destabilizing bundle E ′ ⊂ E, then we would have µ(F ⊗E ′) > g−1 imply-

ing h0(F ⊗E ′) > 0. This is absurd because H0(F ⊗E ′) ⊂ H0(F ⊗E) = 0. Consequently,

the statement H∗(X,F ⊗ E) = 0 implies the semistability of E (and of F as well).

Faltings showed in [2] that for k algebraically closed, the converse is also true: if E is

semistable, then there exists a vector bundle F with H∗(X,F ⊗E) = 0. Popa showed in

[5, Theorem 5.3], that F can be chosen to have a prescribed rank and determinant that

depend only on the rank and degree of E.

Faltings’ result generalizes to arbitrary fields k as follows. Given the semistable vector

bundle E on X defined over k, it yields a cohomologically orthogonal bundle F ′ defined

over K. This F ′ is then defined over some finite extension `/k. The pushforward F of F ′

along the morphisms X ×k ` −→ X gives us a vector bundle F defined over k, which is

cohomologically orthogonal to E according to the projection formula.

For perfect fields k, a bound on the rank of F is given in [1]. The main result, namely

Theorem 3.1, of [1] shows that for a perfect field k and a semistable vector bundle E on
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X/k there exists a vector bundle F of a given rank R defined over k such that H∗(X,F ⊗
E) = 0. However, the rank R of F is huge in general, and the bound in [1] is far from

being optimal.

The purpose of this paper is twofold: First we remove the perfectness assumption. Sec-

ondly, we improve the bound on the rank R of the sheaf F which is cohomologically

orthogonal to a semistable E.

In [1], a point outside the divisor ΘE was constructed using [1, corollary 2.5] and the fact

that the moduli space of S-equivalence classes of rank R vector bundles on X is projective.

Here we use the geometry of the moduli space of rank R bundles with fixed determinant,

which is known to be a unirational variety.

Acknowledgements. G. Hein and N. Hoffmann are supported by the SFB/TR 45 Pe-

riods, moduli spaces and arithmetic of algebraic varieties.

2. Notation

k – a field
K – its algebraic closure
X – a smooth, projective curve defined over the field k which is geometrically

irreducible
g – the genus of X
ωX – the dualizing line bundle on X
E – a vector bundle on X defined over k
r – the rank rk(E) of E
d – the degree deg(E) of E
h – h := gcd(r, d), the greatest common divisor of r and d

m – m := d r2+1
8h
e the round up

R – R := 2rm (this will be the rank of a cohomologically orthogonal bundle
F over k or some finite extension L/k if k is a finite field)

D – D := m(2r(g − 1)− 2d) (this will be the degree of F )
L – L := ω⊗mrX ⊗ det(E)⊗−2m (this will be the determinant of the bundle F ).

3. Infinite fields

Theorem 1. Suppose k is a infinite field, and let X be a smooth projective geometrically

irreducible curve over k. For a vector bundle E of rank r and degree d over X, the

following three statements are equivalent:

(i) The vector bundle E is semistable.

(ii) There exists a vector bundle F on X defined over k such that H∗(X,F ⊗E) = 0.

(iii) There exists a vector bundle F on X defined over k of rank R and determinant L

such that H∗(X, F ⊗ E) = 0.

Proof. Note that (iii) =⇒ (ii) is trivial, and (ii) ⇐⇒ (i) was discussed in the introduc-

tion. We will show that (i) =⇒ (iii). Here are the steps of the proof.

(1) Since the statement is twist invariant we may assume (replacing E by E⊗ω⊗nX for

an appropriate integer n) that 2− 3g ≤ µ(E) < −g.
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(2) We take R and L as above, and let F be any semistable vector bundle of rank R and

determinant L defined over K. We obtain µ(F ) = g−1−µ(E) > 2g−1. Thus, for

any point P ∈ X(K) we have µ(F (−P )) > 2g − 2. By semistability we conclude

that Hom(F (−P ), ωX) = 0. From Serre duality we have H1(X,F (−P )) = 0.

Therefore, it follows that any semistable bundle F of rank R and determinant L

is globally generated.

(3) Since F is globally generated we obtain a surjection H0(X,F )⊗k OX −→ F . For

a general (R + 1)–dimensional linear subspace

W ⊂ H0(X ×k K, F ⊗k K) ,

the corresponding homomorphism W⊗KOX×kK −→ F⊗kK is surjective because

X is smooth of dimension one.

(4) If detF ∼= L, then for any surjection π : O⊕(R+1)
X −→ F , the kernel is L−1.

Thus, all those F (and a little bit more) are overparameterized by P(V ) where

V := Hom(L−1,O⊕(R+1)
X )∨. We consider the morphisms

X X × P(V )
poo q // P(V )

and have the universal short exact sequence on X × P(V ):

0 −→ L−1 �O(−1) −→ p∗O⊕(R+1)
X −→ F −→ 0 .

Obviously, both P(V ) and F are defined over k.

(5) We tensor the above short exact sequence of sheaves with p∗E, and apply the push

forward q∗ to P(V ). Let

−→ H1(X,E ⊗ L−1)⊗OP(V )(−1)
ψE−→ H1(X,E⊕(R+1))⊗OP(V )

−→ R1q∗(p
∗E ⊗F) −→ 0

be the resulting long exact sequence of sheaves on P(V ). Since E⊗L−1 and E⊕(R+1)

are semistable vector bundles of negative degree, they have no global sections.

Using the Riemann–Roch theorem, we get h1(X,E ⊗ L−1) = h1(X,E⊕(R+1)) =

rD+ g− 1− d. The support ΘE of R1q∗(p
∗E⊗F ) is therefore the vanishing locus

of the divisor det(ψE) ∈ H0(OP(V )(rD+g−1−d)). Set theoretically ΘE describes

all short exact sequences

0 −→ L−1
α−→ O⊕(R+1)

X −→ Fα −→ 0

such that h1(E ⊗ Fα) > 0. This includes all Fα which are not locally free, or not

semistable. Popa’s result [5, Theorem 5.3] implies that with our choices of the

rank R the set ΘE ⊂ P(V ) is a divisor, or equivalently, det(ψE) 6= 0.

(6) Since k has infinitely many elements the k-rational points of the divisor ΘE are a

proper subset of P(V )(k). See also [3, p. 4, Proposition 1.3(a)]. �

4. Finite fields

In this section we consider a field k with q elements. We will need the additional number

M := dlogq(rD + g − 1− d)e along with the notation from Section 2.
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Theorem 2. Suppose k is a finite field with q elements, and let X be a smooth projective

geometrically irreducible curve over k. For a vector bundle E of rank r and degree d over

X, the following statements are equivalent:

(i) The vector bundle E is semistable.

(ii) There exists a vector bundle F on X defined over k such that H∗(X,F ⊗E) = 0.

(iii) For every field extension `/k of degree at least M , there exists a vector bundle F ′

of rank R defined over ` such that H∗(X ×k `, F ′ ⊗ (E ⊗k `)) = 0.

(iv) There exists a vector bundle F on X defined over k of rank R · M such that

H∗(X,F ⊗ E) = 0.

Proof. We will show that (i) =⇒ (iii) =⇒ (iv). Also note that (iv) =⇒ (ii) is obvious,

and (ii) ⇐⇒ (i) was discussed in the introduction.

(i) =⇒ (iii): We follow the proof of Theorem 1 in steps 1–5. To find a point outside

the divisor ΘE ⊂ P(V ), we pass to a field extension `/k with at least deg(ΘE) elements.

Thus, any field extension of degree at least M will do by our choice of M above. By

[1, Lemma 2.2], there exists a point in P(V )(`) outside ΘE. This point corresponds to a

vector bundle F ′ defined over ` such that H∗(X ×k `, F ′ ⊗ (E ⊗k `)) = 0.

(iii) =⇒ (iv): We take a finite field extension `/k of degree M . Now the field extension

`/k is Galois with Galois group Gal = Gal(`/k). Setting F :=
⊕

γ∈Gal γ
∗F ′ we obtain a

vector bundle of rank R · [` : k] which is defined over k, and H0(X, F ⊗ E) = 0. �

Remark: The rank of the cohomologically orthogonal bundle F in Theorem 1 (the case of

infinite fields) is independent of the genus g of our curve X. However, the number M in

Theorem 2 depends on g. Thus, in the case of a finite field the rank of F depends on g.
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