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Abstract 

 
The standard linear regression model can be written as Y = Xβ+ε with X a full rank 

n × p matrix and L(ε) = N(0, σ
2
In). The least squares estimator is = (X΄X)

−1
XY with 

variance-covariance matrix Coυ( ) = σ
2
(X΄X)

−1
, where Var(εi) = σ

2
. The diagonal 

terms of the matrix Coυ( ) are the variances of the Least Squares estimators  0 ≤ 

i ≤  p−1 and the Gauss-Markov Theorem states  is the best linear unbiased 

estimator. However, the OLS solutions require that (X΄X)
−1 

be accurately computed 

and ill conditioning can lead to very unstable solutions. Tikhonov, A.N. (1943) first 

introduced the idea of regularisation to solve ill-posed problems by introducing 

additional information which constrains (bounds) the solutions. Specifically, Hoerl, 

A.E. (1959) added the constraint term to the least squares problem as follows: 

minimize ||Y – Xβ||
2
 subject to the constraint ||β||

2
 = r

2
 for fixed r and dubbed this 

procedure as ridge regression. This paper gives a brief overview of ridge regression 

and examines the performance of three different types of ridge estimators; namely the 

ridge estimators of Hoerl, A.E. (1959), the surrogate estimators of Jensen, D.R. and 

Ramirez, D.E. (2008) and the raise estimators of Garcia, C.B., Garcia, J. and Soto, J. 

(2011). 
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Introduction 

 

The standard linear regression model Y = Xβ+ε has uncorrelated, zero-

mean, and homoscedastic errors ε. In this paper we assume that X is a full rank 

n×p matrix containing the explanatory variables and the response vector y is n 

× 1 consisting of the observed data. The Ordinary Least Squares OLS estimator 

 is the solution of 

 

                                           (1) 

and the Gauss-Markov Theorem states that  is the best linear unbiased 

estimator. However, with economic or medical data the predictor variables may 

have a high level of collinearity and hence (X΄X)
−1 will be numerically difficult 

to calculate resulting in very unstable solutions. Small changes in the data may 

lead to large changes to the regression coefficients.  

For example, if a repeated experiment produces the following design 

matrices X1 and X2 with associated Y1 and Y2 

 

 
 

the least squares estimators are respectively 

 

 
 

The high condition numbers 22133 and 16067 of X1΄X1 and X2΄X2 

respectively result in the least squares solutions being unstable. 

The basic idea behind ridge regression is to trade off some bias in the 

estimators to gain a reduction in the variance of these estimators. Hoerl, A.E. 

(1959) added the penalty term to the least squares problem as follows: 
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Minimize ||Y – Xβ||
2
 subject to ||β||

2
 = r

2 

, 

which is solved with Lagrange Multipliers by setting the derivatives and  

 equal to zero in the (ridge regression) loss function 

 

L(β, λ) = ||Y – X||β
2
 + λ(||β||

2
 − r

2
). 

 

The first portion of the loss function, ||Y – Xβ||
2
, is the same as the ordinal 

least squares RSS and is referred to as the data fidelity term and λ(||β||
2
 − r

2
) is 

referred to as the regularization (penalty) parameter. 

Davidov (2006) proved that an equivalent problem is to minimize 
 

||Y − Xβ||
2
 subject to the constraint ||β||

2
 ≤  r2

 with r
2
 fixed. 

 
The constraint is the convex ball in Figure 1 and the problem is a 

constrained optimization problem which uses quadratic programming. 

 
Figure 1. Geometric View of Ridge Regression 

 
 



ATINER CONFERENCE PAPER SERIES No: STA2016-2074 

 

6 

The ellipses correspond to level curves of the residual sum of the squares 

(RSS) and are minimized at the ordinal least squares estimate (OLS). The 

penalty parameter in this case is restricting the ridge estimate to the disc. The 

Lagrange method gives a solution at the tangent point to the ellipse and the 

circle and is the trade off between the bias and the variance of the estimators 

and will be discussed in Section 2. Section 3 will show how to evaluate the 

ridge estimators of Hoerl A. E., the surrogate estimators of Jensen, D.R. and 

Ramirez, D.E. and the raise estimators of Garcia, C.B., Garcia, J. and Soto, J. 

Section 4 will summarise the properties and the results of the three estimators. 

 

 

Ridge Regression 

 

The loss function 

 

 
 

is minimized when 

 

 
 

yielding the ridge estimator solution 

 

                  (2) 

 

with satisfying 

 

 
 

In particular, for orthogonal covariates, X΄X = nIp and 

 

 
 

 
 

Also L(β, λ) is strictly convex since the Hessian  
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is positive definite, which guarantees that the ridge solution is unique and 

yields a minimum value for L(β, λ). 

With A = (X΄X + λIp) and writing  as  

 

                            (3) 

 

       (4) 

 

(5) 

 

We illustrate the trade off between bias and variance by the following 

example. 

If is N(1, 1) and  α ≥ 0, then 

 

 
 

The graphs of ; and are illustrated in Figure 2. 
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Figure 2. ; ;  

 

For the optimal choice of α = 1, < . In this case, the 

distributions of and  are illustrated in Figure 3. 
 

Figure 3. Density functions f or and  

 
 

Hoerl and Kennard (1970) proved that for increasing λ, is a 

strictly decreasing function of λ,  is a strictly increasing function of 

λ and that there always exists λ such that  <  

If D is the matrix of eigenvalues d1 ≥ d2... ≥ dp > 0 of X΄X, then the 

eigenvalues of A are (di + λ), 1 ≤ i ≤ p. If P is the orthogonal transformation 

such that X΄X = PDP΄ then A = P(D+ λIp)P΄. Writing α= P΄β, the canonical 

variable, 
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           (6) 

 

From Eq(7), 

 
And B(λ) is monotone increasing as 

                                 (7) 

 

Similarly 

                       (8) 

 

From Eq(9), 

 
And V(λ) is monotone decreasing as 

                                   (9) 

 

From Eq(8) and Eq(10) 

 

And hence there always exists a λ such that  

However as and 

 

 is a monotone increasing function for such λ. In Table 1 of Jensen 

and Ramirez (2010), the authors give an example of λ for which 

. 
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Ridge, Surrogate and Raise Estimators 

 

In this section we will discuss three standard remedies for addressing 

collinearity in linear regression; namely (1) the ridge system {(X΄X + λIp)β = 

X΄X; λ≥0} (Hoerl and Kennard, 1970) with solutions (2) the 

surrogate system {( X΄X + λIp) β = (X΄λXλ)β =X΄λY; λ≥0} (Jensen and 

Ramirez, 2008) with solutions and (3) the raise system with 

solutions  (Garcia et al, 2011). 

The ridge estimators come from modifying X΄X → X΄X + λIp on the left 

side of Eq.(1) while the Jensen and Ramirez surrogate estimators modify the 

design matrix X → Xλ on both sides of Eq (1). In matrix notation, ridge 

regression comes from perturbing the eigenvalues of X΄X as di → di + λ while 

surrogate regression comes from perturbing the singular values of X as 

The raise estimators are based on perturbing a column 

where ej is orthogonal to the span of the remaining resting 

columns. 

The ridge and surrogate procedures do not require X to be of full rank. For 

example, with the surrogate transformation any zero singular 

value will be mapped to with Xλ now full rank. On the other hand, the 

raise procedure does require the columns of X to be independent as the crucial 

step  moves x1 in the direction of the orthogonal 

complement of Sp(X[1]) ⸦ Sp(X) ⸦  in Sp(X), the span of the other columns. 

Thus if , then and x1 cannot be 

raised. We now show how to evaluate each of these three estimators using the 

following example. Consider the following design matrix X with associated Y 

 

 
 

It is common practice (Belsley, 1986) to center the explanatory variables 

to improve the collinearity, with recovered from the relationship 

. If we center, then the design matrix CX with associated 

CY become 
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for which the least squares estimators and variance inflation factors are 

respectively 

 
 

The high variance inflation factor vector [62.79, 7.38, 45.07] is indicative 

of the high level of collinearity between the variables. A suggested acceptable 

level for VIF is 10 and we will show how to achieve this level for the ridge and 

the surrogate estimators. The condition numbers of X΄X and (CX)΄CX 

respectively are 2296.15 and 454.39, demonstrating that centering has 

improved the collinearity. 

 

Ridge Estimators 

 

For our linear model Y = Xβ + ε view X = [X[p], xp] with xp the p
th

 column 

of X and X[p] the matrix formed by the remaining columns. The variance 

inflation factors measure the effect of adding column xp to X[p]. For notational 

convenience, we demonstrate with the last column p. An ideal column would 

be orthogonal to the previous columns with the entries in the off diagonal 

elements of the p
th

 row and p
th

 column of X΄X all zeros. Denote by Mp the 

idealized moment matrix 

 
 
O’Driscoll and Ramirez (2015) show that 

                                           (10) 

 
In our example we set 

 
 

and to reduce the maximum variance inflation factor of 62.79 to 10 we solve 

                                                        (11) 

 

for which λ = 2.810 and the ridge estimators are [0.562, 0.842, 1.661]. 

A “ridge trace” plot of the behaviour of  and  versus λ ≥ 0 is 

shown in Figure 4. McDonald (2010) states that “generally an analyst tends to 

a λ value where the trace has stabilized and major changes on the trace are to 
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the left of the chosen value for λ. For our choice of λ = 2.810 these 

characteristics are satisfied. 

 

Figure 4. Ridge Plots  

 
 

Surrogate Estimators 

 

By the Singular Value Decomposition Theorem there exist orthonormal 

matrices U and V such that CX = UDV΄, where D is a diagonal matrix 

consisting of the singular values 14.853, 3.117 and 0.697 of CX. Then 

 

 
 
and to find the surrogate estimators we solve 
 

                                                           (12) 

 

As in the case of the ridge estimator, to reduce the maximum variance 

inflation factor of 62.79 to 10, λ = 2.810 and the surrogate estimators are 

[0.195, 0.884, 1.843] with design matrix 
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We summarise our results in Table 1. 

 

Table 1. OLS, Ridge, and Surrogate Regression, Computed Parameters λ, 

Estimated Coefficients , Squared Lengths Condition Numbers κ, 

Maximum Variance Inflation Factor maxVIF,Mean Absolute Deviation for CX 

− CXS for Surrogate Design 

 
 

Raise Estimators 

 

For the n × p matrix A = [a1, a2, ..., ap], the column span is denoted by 

Sp(A), with A(j) denoting the j
th

 column vector aj and A[j] denoting the n× (p− 

1) matrix formed by deleting A(j) from A.  

For the linear model y = Xβ + ε, central to a study of collinearity is the 

relationship between X(j) and Sp(X[j]). We assume that the columns of X = 

(x1, x2, ..., xp) are centered.The raise estimators are based on perturbing a 

column  by a kj multiple of a vector ej, which is orthogonal 

to the span of the remaining resting columns. We follow the notation from 

Garcia and Ramirez (201x). The regression of xj, viewed as the response vector 

using the remaining resting columns as the explanatory vectors, has an error 

vector ej with the required properties. In this case, the projection matrix is 

 

 
 

with error vector 

 

  
 

The parameters vector k = (k1, ..., kp)΄ is to be chosen by the user. We 

illustrate how the raise estimators are constructed sequentially for the matrix 

CX. Setting it follows that 
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The raise estimators allow the user to specify, for each of the variables, a 

precision πj that the data will retain during the raising stages by restricting the 

mean absolute deviation MAD inthe j
th 

column of  from 

 

                                                                 (13) 

 

Thus, given a specified precision πj > 0, the user can raise column j in 

 = cxj + λjej, where kj is solved from Eq. (13). From Table 1, 

we see that the mean absolute deviation MAD for  from the 

surrogate system is 0.24933. To compute a comparable raise system of 

estimators, we will set the precision πj = 0.24933 in Eq. (13) and we firstly 

solve for k1 = 0.7843 to raise . 

The first raised design matrix is  

 

 
We now raise the vector cx2 from the regression of cx2 using the resting 

vectors from CX<1>. 

 

 
 

From Eq.(13) k2 = 0.2161 and the second raised matrix is  



ATINER CONFERENCE PAPER SERIES No: STA2016-2074 

 

15 

 
We finally raise the vector cx3 from the regression of cx3 using the resting 

vectors from CX<1,2>. 

 
 

From Eq.(13) k3 = 0.2398 and the final raised matrix is 

 

 
The OLS values from Table 1 are shown in Column 1 of Table 2 for 

comparisons. 

 

Table 2. OLS and Raise Regression with Precision πj = 0.24933Computed 

Parameters kj,Estimated Coefficients  Squared Lengths Condition 

Numbers κ, Maximum Variance Inflation Factor maxVIF, 
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Conclusion 

 

We have followed the standard practice of centering the explanatory 

variables which removes what is often dubbed as the nonessential collinearity. 

The ridge procedure perturbs the moment matrix X΄X → X΄X + λIp but does 

not allow the user to compute the new design X and so the changes to X are 

unknown to the user. The surrogate procedure has the advantage of allowing 

the user to explicitly compute the new surrogate design XS in terms of the 

singular values of X. Thus the Mean Absolute Deviation ||X − XS||MAD = 

 can be computed which gives the average change in the 

design X → XS. However, the surrogate procedure does not allow for the 

perturbations to differ for each explanatory variables. Since the ridge procedure 

cannot determine the new design, it seeks stability of (X΄X)
−1

 only on the left-

hand side of the normal equations (X΄X)
−1

β = X΄y, transforming the normal 

equations into the ridge equations (X΄X+λIp)
−1

β = X΄y. Both the surrogate X 

→ XS and raised procedures use the modified matrix on both sides of 

the normal equations in the spirit of OLS. 

It is important to note that the raise procedure does satisfy both objectives. 

It yields the explicit new design  and thus the mean absolute 

deviations given in Eq.(13) are permitted to vary for each explanatory variable. 

Hence the user can set the mean absolute deviation to be small for variables 

which are known to be accurate and allow larger deviations for variables which 

are known to be less accurate. We believe this latter feature will be very useful 

with real data sets.  

To compare the three ridge-type estimators, we first computed the OLS 

and ridge estimators. The ridge parameter was solved by reducing maxVIF 

down to 10.0, a common value used with variance inflation factors. Next the 

surrogate estimators were computed also by solving for the surrogate parameter 

that reduces maxVIF down to 10.0. The surrogate estimators are constructed so 

that both the ridge and surrogate moment matrices are identical with these 

choices of parameters. Since the surrogate design XS can be explicitly 

computed, we are able to compute the Mean Absolute Deviation which 

measures the change to the original OLS design. Knowing the MAD allows for 

a fair comparison of the surrogate and raise estimators. The raised estimator 

 is obtained from successive raising of the columns X 

using an elegant idea of perturbing a column of X in a direction orthogonal to 

the span of the other columns. This retains the OLS coefficient of 

determination R2. The raised parameter is solved by setting MAD to concur 

with the value from the surrogate procedure. 

In our example the three methods gave similar results, where the main 

advantage of the surrogate over the ridge procedure is to allow the user to 

compute the new design. The main advantage of the raised over the surrogate 

procedure is that the latter allows the user to visualize the perturbations of the 

underlying model and easily control the amount of perturbations to the original 

design, retaining a specified precision in the data for each explanatory variable. 
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