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Abstract 

 

We address the problem that the A (trace) design criterion is not scale invariant 

and often is in disagreement with the D (determinant) design criterion. We 

consider the canonical moment matrix CM and use the trace of its inverse as 

the canonical trace CA design criterion and use the determinant of its inverse as 

the canonical determinant CD design criterion. For designs which contain 

higher order terms, we note that the determinant of the canonical moment 

matrix gives a measure of the collinearity between the lower order terms and 

the higher order terms. 
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Introduction 

 

We consider a linear regression Y = Xβ+ε with X a full rank n × p matrix and 

L(ε) = N(0, σ
2
In). The Least Squares Estimator is  with 

variance-covariance matrix , where . The 

diagonal terms of the matrix  are the variances of the Least Squares 

estimators  0 ≤  i ≤  p − 1 and it is desirable to keep these variances as small 

as possible and to have the off diagonal terms (covariance between the 

estimators) as close to zero as possible. If the experimenter knows, before the 

experiment takes place, where he wishes to make predictions , 

then the scaled prediction variance  is 

an excellent measure of the design efficiency. Here  is the variance 

of the estimated response with n to allow for comparisons of designs with 

varying sample sizes. Unfortunately, it is often the case that the experimenter 

does not know where in the design space he will need to predict. Thus an 

overall design criterion is required. 

Goos and Leemans (2004) state that “Not only courses, but also textbooks 

on experimental design, (for example, Kuehl 2000; Montgomery 2000; Neter, 

Kutner, Nachtsheim, and Wasserman 1996; Oehlert 2000; Weber and Skillings 

1999) pay little attention to the design of experiments involving quantitative 

variables. Typically, at most one chapter or section is spent on this kind of 

experiment, which is often referred to as a response surface experiment. The 

optimal design of experiments receives even less attention.” 

The standard optimality criteria (A, D, and E) are useful measures for 

comparing competing designs. The criteria are all based on the eigenvalues   

{λi > 0 : 1 ≤ i ≤p} of (XꞌX)
−1

 with A(X) = tr((XꞌX)
−1

) = 

and E(X) = max{λi  : 1 ≤ i ≤ n}. Εach 

determines a “size” of (XꞌX)
−1

. Authors have proposed other techniques to 

complement these existing criteria, such as the fraction of design space 

technique (FDS) of Zahran et al. (2003). 

To illustrate the optimal design using determinants (D-optimal), Goos and 

Leemans (2004) provide the following example for a simple linear regression 

model. 

“Physicians often use the so-called diving reflex to reduce abnormally 

rapid heartbeats in humans by submerging the patients’ faces in cold water. 

Suppose that a research physician would like to conduct an experiment in order 

to investigate the effects of the water temperature on the pulse rates of six 

small children. One intuitive way to approach the problem is to select six 

temperatures and to assign each of the children in a random fashion to these 

temperatures. A reasonable set of temperatures, measured in Farenheit, for this 

problem might be 45, 50, 55, 60, 65 and 70. The reduction in pulse can be 

measured for each child (e.g., in beats/minute) and a regression line can be 

fitted to the data.” In this case the design matrix 
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                                                  (1) 

 

gives 

 

          (2) 

 

In an effort to improve the design, we consider 

 

                                            (3) 

 

which gives 

 

       (4) 

 

Goos and Leemans (2004) use “Solver” in Microsoft Excel to show that 

the D-optimal design is found by changing the temperatures to 45,45,45,70,70 

and 70. In this case the D-optimal design matrix is 

 

                                                   (5) 

 

which gives 
 

            (6) 

 

The relative D-efficiency of two designs is defined as the ratio of the two 

determinants raised to the power of 1/p where p is the number of unknown 
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model parameters. In this example the relative D-efficiency between designs 

(1) and (5) is 0.6835. 

Consider designs which contain only the constant and main effects. We 

say that the design criterion C is scale invariant when for any two designs X 

and Z, with the same column rank p and D a p×p diagonalmatrix, that if C(X) ≤ 

C(Z) then C(XD) ≤ C(ZD). A criticism of the A and E design criteria is that 

these techniques are not scale invariant and thus investigators may differ on the 

choice of a design based on the units they will be using; for example, design X 

may be considered a better design than Z using English units, but the reverse 

using the metric system. While the D design is scale invariant, it favors ill-

conditioned designs with very oblique moment matrices, as in Jensen (2004), 

and often the optimal D design is infeasible. To avoid the scale invariance 

issue, X can be assumed to have been standardized with the moment matrix 

XꞌX having unity on the diagonal. We do not suggest this standardization for 

response surface designs as this standardization destroys the nature of the 

quadratic terms and does not guarantee agreement between the trace and 

determinant criteria. We offer an alternative design criterion for response 

surface designs. In this paper, we consider the canonical moment matrix CM 

and its associated trace CA and determinant CD criteria. For designs which 

contain higher order terms, we note that the determinant of the canonical 

moment matrix gives a measure of the collinearity between the lower order 

terms and the higher order terms.  

The variance inflation factor V IF measures the penalty for adding one 

non-orthogonal additional variable to a linear regression model and it can be 

computed as a ratio of determinants. The extension of V IF to a measure of the 

penalty for adding a subset of variables to a model is the generalized variance 

inflation factor GV IF of Fox and Monette (1992). We give the relationship 

between GV IF and CD to study response surface designs; in particular, as the 

penalty for adding the quadratic terms to the main effects.  

 

 

Simple Linear Regression and the A Criterion  

 

With a simple linear regression the model is Y Y = Xβ+ε with Y the (n × 

1) vector of responses, X the (n × p) experimental full rank design matrix, the 

(p×1) vector of linear parameters and ε the (n×1) vector of errors. For p = 2, 

denote 

 

  
 

where the moment matrix of this design is M(X(α)) = Xꞌ(α)X(α). The A 

criterion measures the “goodness” of the design by the trace of the inverse of 

the moment matrix as  
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Α(X(α)) = tr (M(X(α))
-1

)                                            (7) 

 

but is not scale invariant. For example, consider the models having three 

designs points with 

 

                            (8) 

 

The trace functions for the designs X(α) and Z(α) in (8) are shown in 

Figure 1. 

 

Figure 1. A(X(α)), A(Z(α))  

 
 

With α = 1, we choose the design X over the design Z; however, with  

α = 2, we would choose the design Z over the design X as 

 

  
 

 

Simple Linear Regression with the E Criterion 

 

Another popular design criterion is based on the largest eigenvalue of the 

inverse of the moment matrix as 

 

E(X) = max{eigenvalues of M(X(α))
−1

}.                                 (9) 

 

This design criterion also is not scale invariant. For example, consider the 

models having four design points with  
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                         (10) 

 

The eigenvalue functions for the designs X(α) and Z(α) in (10) are shown 

in Figure 2. 

  

Figure 2. E(X(α)), E(Z(α))  

 
 

With α = 1/2, we choose the design X over the design Z; however, with  

α = 1, we would choose the design Z over the design X as 

 

  
 

 

Hyperellipticity Index 

 

For a positive-definite matrix A with eigenvalues {λ1 ≥ λ2 ≥ ... ≥ λp > 0}, 

the measure of sphericity is the hyperellipticity index which is the ratio of the 

arithmetic mean of the eigenvalues to the geometric mean as 

 

 
 

Orthogonal designs with XꞌX a scalar matrix have ellip(XꞌX) = 1. If two 

designs have the same A value, then the optimal D design, by necessity, will 
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have a larger hyperellipticity index and thus it will be more ill-conditioned. 

Conversely, if two designs have the same D value, then the optimal A design is 

more spherical.  

 

 

The Standardized Moment Matrix (p = 2)  

 

For designs which contain only the constant and main effects, we can 

avoid the scale invariance issue by requiring the design matrices to have all 

columns of unit length. Thus in the case of simple linear regression with design 

matrix X, the standardized moment matrix has the form of the correlation 

matrix  

 

 
 

Following Hotelling (1936), we call  the canonical index for the design 

. The eigenvalues of SM(X)−1 are given by  and  . We 

define the scale free design crite 

ria using the trace and the determinant of SM(X)−1 and for p = 2  

 

                                        (11) 

 

with SA(X)/SD(X) = 2. Thus the minimum possible value for n×2 design has 

SA = 2 and SD = 1. 

For the three point designs in Eq. (8), 

 

SA(X) = 5                  SA(Z) = 3 

SD(X) = 2.5            SD(Z) = 1.5 

 

Both X and Z contain the design points 0 and 1. Using SA (equivalently 

SD), the optimal value for a third point for the design 

 

 
 

has t = −1, as can be seen from the graph of SA(W(t)) in Figure 3, with SA(W)  

= 2 and SD(W) = 1. 
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Figure 3. SA(W(t)) for the Standardized Moment Matrix  

  
 

Similarly, for the four point designs in Eq. (10), 

 

SA(X) = 5.60      SA(Z) = 2.00 . 

 

Both X and Z contain the design points 0 and 1. Using SA (equivalently SD), 

the optimal value for the design W with a repeated value t 

 

 
 

has t = −1/2 (Figure 4) with SA(W) = 2 and SD(W) = 1. 

 

Figure 4. SA(W(t)) for the Standardized Moment Matrix  
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The Standardized Moment Matrix (p = 3) 

 

We increase the complexity of the models under review by considering the 

model y = β0 + β1x1 + β2x2 with X = [1, x1, x2]. For each column of X, let 

 be the Euclidean length of the column and set DX to be the diagonal 

matrix with entries on the . The standardized moment 

matrix is given by 

 

SM(X) = DX(XꞌX)DX 

 

with SA(X) = tr(SM(X)
−1

) and SD(X) = det(SM(X)
−1

). 

The criterion SA(X) has been constructed to be scale invariant for first 

order designs. If S is a diagonal matrix which will change the scaling of X to 

XS, then the standardized moment matrix for XS is given by SM(XS) 

=DXS(SXꞌXS)DXS = (DXS
−1

)SXꞌXS(S
−1

DX) = DX(XꞌX)DX = SM(X). For the 

linear model Y = Xβ + ε, this change of scale of X is a change of scale in to Y  

(XS)(S
−1
β) + ε. 

Unfortunately, SA(X) lacks the desirable property of being in agreement 

with SD(X). For example, with  

 

                         (12) 

 

the design criteria are 

 

A(X) = 1.19        A(Z) = 2.75 

D(X) = 0.0113     D(Z) = 0.125 

SA(X) = 8.92     SA(Z) = 9.25 

SD(X) = 5.01      SD(Z) = 4.50 

 

so we would choose X using the trace criteria A, the determinant criteria D or 

the scale free trace SA, but we would choose Z using the scale free determinant 

SD. 

 

 

Optimal D Designs and Oblique Designs 

 

The D criterion is given by 

 

D(X) = det((XꞌX)
−1

). 

 

It has the desirable property of being scale invariant. One criticism of D(X) is 

that it favors oblique moment matrices (see Jensen (2004)). 
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The 9 × 3 central composite design for the quadratic model in Table A1 of 

Appendix A has a free parameter a which is classically set equal to . The 

optimal D design has a = 1 with D(X) = 0, but an infeasible solution. 

 

 

Variance Inflation Factors and the Metric Number 

 

Considering designs which contain only the constant and main effects, set 

DX to be the diagonal matrix with entries on the diagonal . 

When the design has been standardized X →XDX, the A criterion is the 

sum of the variance inflation factors V IFi as the V IFs are the diagonal entries 

of the inverse of the standardized moment matrix   . Note that 

we follow Steward (1987) and do not necessarily center the explanatory 

variables. 

For our linear model Y = Xβ + ε view X = [X[p], xp] with xp the p
th 

column 

of X and X[p] the matrix formed by the remaining columns. The variance 

inflation factors measure the effect of adding column xp to X[p]. For notational 

convenience, we demonstrate with the last column p. An ideal column would 

be orthogonal to the previous columns with the entries in the off diagonal 

elements of the p
th

 row and p
th

 column of XꞌX all zeros. Denote by Mp the 

idealized moment matrix 

 

 
 

 

The metric number associated to xp is defined by  

 

  
 

The metric number has been used in Garcia et al. (2011) as a measure of 

collinearity. A similar measure of collinearity is mentioned in Footnote 2 in 

Wichers (1975) and Theorem 1 of Berk (1977). The geometry for the metric 

number has been shown in Garcia et al. (1999). The case study in Garcia et al. 

(2011) suggests the functional relationship between MN(xp) and the variance 

inflation factor for  as 

 

 
 

We show that this relationship holds and so the metric number MN(xp)is 

also functionally equivalent to the variance inflation factors V IFp, and 

equivalently, to the collinearity indices κp of Stewart (1987). 
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To evaluate , transform XꞌX into standardized form R. With R = 

DX(XꞌX)DX, the V IFs are the diagonal entries of R
−1

 = D  . It 

remains to note that the inverse R
−1

 can be computed using cofactors Ci,j ; and, 

in particular, 

 

 
 

 

Generalized Variance Inflation Factors GV IF 

 

The generalized variance inflation factors are an extension of the classical 

variance inflation factors V IF from Eq. (15). For a linear model Y = Xβ+ε, 

view X = [X1,X2] partitioned with X1 of dimension n × r usually consisting of 

the lower order terms and X2 of dimension n × s usually consisting of the 

higher order terms. The idealized moment matrix for the (r, s) partitioning of X 

is 

 
 

Following Eq. (15), the generalized variance inflation factor is a measure 

of the effect of adding X2 to the design X1. That is for X2|X1 

 

                       (16) 

 

as in Eq. (10) of Fox and Monette (1992), who compared the sizes of the joint 

confidence regions for β for partitioned designs. Note that when X = [X[p], xp], 

GV IF[X[p], xp] = V IFp in Eq. (15). Eq. (16) is in spirit of the efficiency 

comparisons in linear inferences introduced in Theorems 4 and 5 of Jensen and 

Ramirez (1993). For the simple linear regression model with p = 2, Eq. (16) 

gives  as required. Fox and Monette suggested that X1 contain the 

variables which are of “simultaneous interest” while X2 contain additional 

variables selected by the investigator. We set X1 for the constant and main 

effects and set X2 the (optional) quadratic terms with values from X1. 
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The CA and CD Criteria 

 

We partition the design X =[X1|X2] with X1 consisting of the constant and 

the main effects and X2 consisting of the quadratic terms. In general, X1 will 

be of dimension n × r and will consist of the lower order terms and X2 will be 

of dimension n × s and consist of the higher order terms. Let 

 

 
 

Following the structure of the standardized moment matrix in the case of 

simple linear regression, we define the canonical moment matrix as 

 

CM([X1|X2]) = L[X1|X2]ꞌ[X1|X2]L                                    (17) 

 
 

 

We define the canonical A trace and canonical D determinant design 

criteria as the trace and determinant of the inverse of the canonical moment 

matrix with 

 

CA([X1|X2]) = tr(CM([X1|X2])
−1

)                                      (18) 

CD([X1|X2]) = det(CM([X1|X2])
−1

). 

 

For the linear model Y = [X1|X2][βꞌ1|βꞌ2]ꞌ + ε, the transformation X →XL 

is transformation β→ L
−1
β with Y = (XL)(L

−1
β ) + ε =  

. The canonical CD([X1|X2]) has the structure 

 

          (19) 

 

and thus is a measure of collinearity between the covariance matrices for and 

 for the lower order and higher order terms and  for the full model. 

For the four point designs given in Eq.(12) viewed y = β0+β1x1+ β2x
2
 with 

X = [1, x|x
2
], 
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Similarly 

 

 
 

Note that these matrices have the form 

 

 
 

with eigenvalues . The eigenvalues of CM([1, x|x
2
])

−1
 are the 

reciprocals of these values. Set 

 

   
 

the canonical index. The trace and determinant of CM([1, x|x
2
])

−1
 are functions 

of  and with p = 3, 

 

 
 

Thus the canonical CA criterion is in agreement with the canonical CD 

criterion, both agreeing that there is a little less collinearity between the lower 

and higher order terms with the Z design with 
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Central Composite and Factorial Designs 

 

In this section we will compare the Central Composite Design X and the 

Factorial Design Z. The design points are shown in Table A1 of Appendix A. 

Both designs are 9 × 6 and are used with the response model 

 

 
 

We partition the design matrix X = [X1|X2] with X1 the lower order terms 

consisting of the constant and linear columns and X2 the higher order terms 

consisting of the quadratic columns. The design Z is similarly partitioned. Both 

of these designs have an unique non-zero singular value γ for the off-diagonal 

array in the canonical matrix with  and . For these 

designs, with , Z has less collinearity between the lower and higher 

order terms than X: 

 

 
 

A surprising result is that the classical choice of has the most 

collinearity between the lower and higher order terms as measured by 

 

 
with 

 

 
 

The plot of the generalized variance inflation factors, GV IF(a), for the 

Central Composite Design is shown in Figure 5. 
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Figure 5. GV IF(a) for the Central Composite Design 

 
 

 

In O’Driscoll and Ramirez (2015), we have continued using GVIF as a 

design criterion and have studied the hybrid designs (H310 and H311B) of 

Roquemore (1976), the design from Box and Behnken (1960), the minimal 

design of Box and Draper (1970) and the small composite design of Hartley 

(1955). 

 

 

Integrated Variance IV Optimality for the Quadratic Response Model 

 

For computing optimal designs for quadratic models, Jones and Goos 

(2012) assert that “it makes sense to focus attention on the predictive capability 

of the designs” and thus they advocated the use of the IV -optimality criterion 

also called V -optimality, I-optimality or Q-optimality as noted in Myers and 

Montgomery (2002). 

Denote by X1 the 9 × 3 lower order terms for the Central Composite 

Design from Table A1 with  to be chosen later; and denote by X the 

9 × 6 full quadratic response model. The 6 × 6 variance-covariance matrix for 

the quadratic response model is denoted by ΣF = σ
2
(XꞌX)

−1
. For a given t = (x1, 

x2) in the design space, the variance of the predicted value  is 

 where denotes the 

augmentation of the design point t for use in the quadratic response model. The 

Integrated Variance IV criterion is a measure of the prediction performance 

over a region R of interest and is given by 
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for R = [−b, b] × [−b, b]. We note that in the extreme case with b → 0, IV 

→ the (1, 1) entry of  ΣF = σ
2
(XꞌX)

−1
. We will set R = [−1, 1] × [−1, 1] 

as our region of interest and seek the IV -optimal design X1 with . 

We follow Borkowski (2003, p. 75) who noted, with symbolic software 

such as Maple, that the IV criterion can be numerically evaluated. We find the 

optimal value a = 0.90630 with the graph of IV in Figure 6, showing that the 

Factorial Design with a = 1 and IV = 0.450 is favored over the popular Central 

Composite Design with  with IV = 0.631. 

 

Figure 6. IV (ΣF) for the Quadratic Response Model 

 
 

 

Summary 

 

We have discussed some standard optimal design criteria for first order 

models and have noted that, except for D-optimality, they are not necessarily 

scale in-variant. For quadratic response models we have shown that the metric 

number (equivalently, the generalized variance inflation factor) is a measure of 

collinearity for subsets of variables and that it is an extension of the Variance 

Inflation Factors for single variables. These optimal design criteria are 

important considerations for the researcher in planning the design of the 

experiment. Using the Goos and Leemans (2004) experiment discussed in 

Section 1, we considered three separate designs: X6 with six unique values 

from Eq. (1), X3 with three unique values from Eq. (3), and X2 with 2 unique 

values from Eq. (5). The design X2 is the preferred design using the D, A, and 

E criteria, and also with the integrated variance IV1 criterion for the simple 

regression model y = β0 + β1t over the Region of Interest R = [45, 70]. 
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However, if the researcher believes the responses follow a quadratic model y = 

β0 + β1t + β2t
2 

then, using the quadratic version IV2 of the integrated variance 

criterion, X2 is infeasible and X6 would be preferred. 

 

 
 

Appendix A 

 

Table A1. 

 

The Lower Order Matrix for the Central Composite Design 

with Center Run with , n = 9 and 

The Lower Order Matrix for the Factorial Design with Center Run, n = 9. 
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