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Abstract: 

 

The slope of the best-fit line xxhy 10)(    from minimizing a function 

of the squared vertical and horizontal errors is the root of a polynomial of 

degree four which has exactly two real roots, one positive and one negative, 

with the global minimum being the root corresponding to the sign of the 

correlation coefficient. We solve second order and fourth order moment 

equations to estimate the variances of the errors in the measurement error 

model. Using these solutions as an estimate of the error ratio in the maximum 

likelihood estimator, we introduce a new estimator kap
1 . We create a function 

  which relates   to the oblique parameter , used in the parameterization of 

the line from ))(,( xhx  to )),(( 1 yyh , to introduce an oblique estimator 
lam
1 .  

A Monte Carlo simulation study shows improvement in bias and mean squared 

error of each of these two new estimators over the ordinary least squares 

estimator. In O’Driscoll and Ramirez (2011), it was noted that the bias of the 

MLE estimator of the slope is monotone decreasing as the estimated variances 

error ratio    approaches the true variances error ratio     
    

 . However for 

a fixed estimated variances error ratio   , it was noted that the bias is not 

monotone decreasing as the true error ratio κ approaches   . This paper explains 

this anomaly by showing that as κ approaches a fixed   , the bias of the MLE 

estimator of the slope is also dependent on the magnitude of   
 . Other 

anomalies with the MLE estimator of the slope in the presence of errors in both 

x and y are discussed.  

  
Keywords: Maximum likelihood estimation, Measurement errors, Moment estimating 

equations, Oblique estimators 
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1 Introduction 

With ordinary least squares )( xyOLS  regression we have data 

 ),(),...,,( 111 nnnn xXYxxXYx   and we minimize the sum of the squared 

vertical errors to find the best-fit line xxhy 10)(    where it is assumed 

that the independent or causal variable X is measured without error. The 

measurement error model does not assume that X is measured without error, 

has wide interest with many applications and has been studied in depth by 

many, for example, Carroll et al. (2006) and Fuller (1987). As in the regression 

procedure of Deming (1943) to account for both sets of errors   
  and   

 , we 

determine a fit so that a function of both the squared vertical and the squared 

horizontal errors will be minimized. In Section 2, we outline the Oblique Error 

Method and the measurement error model and introduce second order and 

fourth order equations to estimate     
    

  in the maximum likelihood 

estimator. We also introduce two new estimators kap
1  and 

lam
1  and describe 

our Monte Carlo simulations. We report on our findings in Section 3 and 

conclude that that our estimators kap
1 and 

lam
1 greatly reduce the Bias and 

MSE associated with the ordinary least squares estimator
ver
1 . 

 

2 Methodology 

2.1 Minimizing Squared Oblique Errors  

From the data point ),(
ii

yx  to the fitted line xxhy 10)(   , define the 

vertical length 
iii

xyv
10

   from which it follows that the sum of the 

squares of the oblique lengths from ),( ii yx to 

)))(()),(()(( 11
iiiiii yxhyyhxyh    is  

  ./)1(),,( 222
1

22
10 iio vvSSE      (1) 

   In a comprehensive paper by Riggs et al. (1978), the authors state that: “It is 

a poor method indeed whose results depend upon the particular units chosen 

for measuring the variables.” As in O’Driscoll et al. (2011), so that our 

equation is dimensionally correct we consider a standardized weighted model  

  222
1

22
10 /)1(),,( ixxiyyo vsvsSSE   

where 

     
       

 

 

 
   ,      

       
 

 

 
    and      

              

 

 
     . 

The solution of 
       

   
 = 0 is given by xy 10    and the solutions of  

       

   
 = 0 are the roots of the fourth degree polynomial, )(

14
P , 

.5.0)/(2)1(
1

2)1(3
1

/24
1

5.1)/(2
xx

s
yy

s
yy

s
xx

s
yy

s
xx

s         (2) 

   From O’Driscoll et al. (2008), the Complete Discrimination System
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},...,{ 1 nDD of Yang (1999) is a set of explicit expressions that determine the 

number (and multiplicity) of roots of a polynomial. This system is used to 

show that the fourth order polynomial )(
14

P  has exactly two real roots, one 

positive and one negative with the global minimum being the positive 

(respectively negative) root corresponding to the sign of .xys  

   With λ = 1 we recover the minimum squared vertical errors with estimated 

slope 
ver
1  and with λ = 0 we recover the minimum squared horizontal errors 

with estimated slope
hor

1 . The geometric mean estimator xxyy
gm

ss /1   

has the fixed oblique parameter λ = 0.5 and for the measurement error model, 

when both the vertical and horizontal models are reasonable, a compromise 

estimator such as gm
1  is widely used and

 

is hoped to have improved 

efficiency. However, Lindley and El-Sayyad (1968) proved that the expected 

value of gm
1

 

is biased unless     
    

  where, as before,     
    

  is the 

ratio of the errors in y and x respectively.  

2.2 Measurement Error Model; Second and Fourth Moment Estimation  

We now consider the measurement error model as follows. In this paper it is 

assumed that X and Y are random variables with respective finite variances 2

X


and 2

Y
 , finite fourth moments and have the linear functional relationship

.10 XY   The observed data { ),(
ii

yx , ni 1 } are subject to error by 

iii
Xx   and 

iii
Yy   where it is also assumed that   is ),0( 2

N  and τ is

),0( 2

N .  It is well known, in a measurement error model, that the expected 

value for 
ver
1 ( )|( xyOLS ) is attenuated to zero by the attenuating factor 

)/( 222

 
XX called the reliability ratio by Fuller (1987); and similarly the 

expected value for 
hor

1  ( )|( yxOLS ) is amplified to infinity by the amplifying 

factor 222 /)(
YY

  . From Gillard and Iles (2009), second moment equations 

are 

                                   
     

          
    

     
              

                 (3) 

and fourth moment equations are 

                                             
    

             
             

    
          (4) 

These equations yield the estimators    

                        2~
      

    

   
    2~

                   (5) 

the Frisch hyperbola of Van Montfort (1987) 

                                                   222 )~)(~( xyyyxx sss                               (6) 

and the fourth order equation  

   )~3()~())(~3( 22222

  xyxyyyxxxyxyxxxy ssssss  .                        (7) 
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We use equations (6) and (7) to solve for 
2~
  and 

2~
  imposing suitable 

restrictions on the possible solutions; firstly the variances must be positive; 

secondly the kurtosis of the underlying distribution must be significantly 

different from the kurtosis of the normal distribution to assure the validity of 

Equation (4) and thirdly the sample sizes must be adequately large. We then 

use these solutions as estimates for the ratio   in the maximum likelihood 

estimator as described in Section 2.3. An alternative procedure for computing 

 will be shown in Section 5. 

 

2.3 The Maximum Likelihood Estimator  

If the ratio of the error variances 22 /    is assumed finite, then Madansky 

(1959), among others, showed that the maximum likelihood estimator for the 

slope is  

              

yyxx

yyxxxxyyxxyymle

ss

ssssss






2

4)()(
)(ˆ

22

11


 .   (8) 

For finite   it also follows that the moment estimator agrees with the MLE. If 

  = 1 in Equation (8) then the MLE (often called the Deming Regression 

estimator) is equivalent to the perpendicular estimator, ,1

per first introduced by 

Adcock (1878). In the particular case where            then 
mle

1  has a 

fixed λ value of 0.5.  

If the researcher knows the true error ratio     
    

  then  

                 ( )(ˆ
1                                             (9) 

and there are no bias problems. We will discuss the more realistic situation 

when κ is an unknown parameter and must be estimated by   .  

3. The Empirical Bias of the MLE for an incorrect choice of κ. 

3.1 Empirical Bias 

In practice, the researcher estimates   by    with error           . To 

develop an expression for the bias                , we recall equation (9) and 

write  

                                                                     

We define the empirical bias, in using    to estimate κ, as           :   

               , which in terms of               is  

 

    
                        

        
             

 
      

           (10)            

          

           



P a g e  | 5 

 

The empirical bias is an estimate of the error that occurs in        as a result of 

using    for the unknown error ratio κ. In our simulation study we record 

                   in Table 1. 

   Using the fact that the second sample moments converge in probability to 

their expectations, it follows from (3) that 

        

      
 

   
   

    
      

    
  

     
    =                   

 and 

  
    

      
 

  
    

 

     
        

 /  
      

where  
 
   

 
  is the noise to signal ratio of the model.  

   With           and      
 
   

 
 , the bias,        :  , in terms of 

         is then  
                         

        
 

  
 

  

  
         

 

  
 

  

  
    

     
  

  
  

    
 

  
 
  

  
 
                                           

We note that        :     only when            

3.2 Series Expansion for the Bias 

The series expansion,        :  , of the bias may be written in terms of ε as  

 

 
        

  
   

   
    

     

   
     

 
          

     
     

     

   
     

                                

Since 

        

  
   

 
        

 

    
 
  
   

 
   

Equation (12) shows that        :   is not alone dependent on the magnitude 

of      but is also dependent on the magnitude of σ
2

δ; that is, the magnitude of 

the bias is dependent on the magnitude of the difference     
    

  and our 

claim in the Abstract is justified. 

 

3.2 Monte Carlo Simulation 

We set      and    . The X data was generated from a uniform 

distribution on              to set   
       The linear regression model 

had slope            and sample size n = 50. For the measurement error 

model, we used normal errors with mean equal to zero and variances    
    

   

varying over {1,2,3,4,5,9 }. Typical values for the bias,        :    and the 

Third Order series approximation,           :  , are shown in Table 1. We 

used Minitab for our simulation study setting the number of runs N=5000. The 
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results for the bias                 and the estimated empirical bias 

                  are recorded in Table 1.  

(table 1 here) 

   The rows of Table 1 are sorted in ascending order of the theoretical bias, 

       :   displayed in Column 7. Column 8 shows that our approximation, 

          :  , is a good estimate for        :  . Columns 5 and 6 also show 

that our simulation study produced very good results for                 

and                     
   We make the following observations. Firstly, with     , the ranking for the 

bias concurs with the ranking of the differences in the error variances σ
2

τ−σ
2

δ but 

does not concur with the ranking for κ=σ
2

τ/σ
2

δ in terms of its  closeness to    . 

The value for κ=0.555 in Row 2 is closer to the assumed value      than the 

value for κ=0.500 in Row 3 is. However the absolute value for the bias 0.0198 

in Row 2 is approximately double the absolute value for the bias 0.0100 in 

Row 3; that is, the magnitude of the bias for the MLE estimator        is not 

monotone in κ.  

   Secondly, for equal   =3/1 in Row 7 and κ=9/3 in Row 10, the respective 

biases 0.0101 and 0.0304 are approximately proportional to the respective 

differences of the error variances 2 and 6. 

 

4. The efficiency of different slope estimators 

Using the solutions 
2~
  and 

2~
  from equations (6) and (7) as estimates for   

in 
mle

1 , we introduce a new estimator kap
1  which performs very well in our 

Monte Carlo simulation. 

4.1 Relation between kappa and lambda 

With  estimated as in Section 2.2, the invertible function ]1,0[],0[: 

defined by 
yyxx ssccc /),1/()(   , creates a new estimator 

lam
1 . 

This proposed oblique estimator also performs very well in our Monte Carlo 

simulation. Since the range of κ includes infinity, we do not compute its 

average value in our simulation. Instead, we compute the average λ value for 

lam
1 , and use )(

_
1    as the effective average ~  for κ. To determine the 

efficiency of the six estimators {
ver
1 , gm

1 , 
hor

1 , per
1 , kap

1 , 
lam
1 }, we 

conducted a set of Monte Carlo simulations for varying values of the true slope 

1 . 

   We report in Tables 2-5 the MSE, the Bias, the associated parameter  and 

the associated oblique angle   for each of the six estimators above.  

(tables 2 and 3 here) 

In the cases represented by Tables 2 and 3 we can see that 
kap

1  and 
lam
1  

make significant improvement in (MSE, Bias) over the estimator 
ver
1  and 
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each of the ‘compromise’ estimators gm
1  and per

1 . Of course 
hor

1 performs 

well in each of these cases but its use would have been based on prior 

knowledge that 22
   . 

(tables 4 and 5 here) 

   In the cases represented by Tables 4 and 5 we again see that kap
1  and 

lam
1  

make significant improvement in (MSE, Bias) over the estimators
ver
1  and 

hor
1 . With 1 , per

1  performed very well in each case as expected since 

  
    

 . The condition of Lindley and El-Sayyad (1968) of      
    

  is 

satisfied in the case represented by Table 4 but not by Table 5 and hence gm
1  

performed very well in Table 4 but not as well in Table 5. Riggs et al. (1978) 

state that “no one method of estimating the true slope is the best method under 

all circumstances”. Tables 2-5 show that kap
1 and 

lam
1  perform well in all of 

the above four cases where no prior knowledge of the errors is assumed. Table 

6 reports the effective average for~ , as described in Section 4.1, for ( 2
 , 2

 )

 }9,4,1{}9,4,1{  . 

(table 6 here) 

5. Anomalies with MLE Estimator for the Slope 

The likelihood function for the measurement error model is proportional to  

  

 
 

  
   

 
       

       
 

   
 

 

   

  
       

 

   
 

 

   

  

with maximum likelihood equations for          
        , with     

    
  as  

                                                

                                      
                      

              (13) 

With κ assumed to be known, the n+2 Equations (13) yield MLE estimators for 

         
        . The earliest reference we know of such equations is Dent 

((1935), Equations 27–31) where she uses the additional equations  

  
   

       
 

 

 

   

        
   

       
 

 

 

   

 

to give the MLE estimator for  , and the functional relationship (Dent (1935), 

Equation 38)),  

   
  

  
 

  
      

Lindley ((1947), Equations 58–62) re-examined this derivation with respect to 

consistency. Lindley ((1947), Equation 73) showed that   
  converges in 

probability to   
    and thus is not a consistent estimator. The information 

matrix for the MLE estimators has been given in Barnett (1970) where 

replicated observations are allowed. Lindley and El-Sayyad (1968) gave a 

simple explanation of the problem inherent in these MLE solutions, where they 
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note that if there is a functional relationship among the estimators          
     

   
and if all estimators are consistent, the identical functional relationship must 

also hold among the parameters        
    

    which need not be the case. 

   Moment estimators for   
  and   

  using the geometric mean estimator 

  
  

         have a functional relationship among the estimators 

   
  

    
    

  
     

    
  

   as noted in O’Driscoll and Ramirez ((2011), 

Proposition 2)  

                      
  

      
    

  
    

    
  

       
  

 .                         (13) 

The functional relationship in (13) shows that the estimators 

   
  

    
    

  
     

    
  

    cannot all be consistent estimators. 

   The MLE estimator       from Equation (8) requires users to estimate the 

unknown ratio     
    

 . Table 2 in O’Driscoll and Ramirez (2011)) shows 

the error ratio     
    

  for varying estimators of the slope using standard 

methods. We can add to this table the fourth moment estimator   
    which 

will be described shortly. This estimator will satisfy the functional 

relationships given in Equation (5). 

   With   assumed to be an unknown parameter, Solari (1969) showed that the 

maximum likelihood estimator for the slope    does not exist, as the maximum 

likelihood surface has a saddle point at the critical value. Sprent (1970) pointed 

out that the result of Solari does not imply the maximum likelihood principle 

has failed, but rather that the likelihood surface has no maximum at the critical 

value. Copas (1972) suggested a remedy. He assumed the data has rounding 

errors in the observations which allows for an approximate likelihood function 

to be used, and this approximated likelihood function,   
     

 is bounded below 

by the standard OLS estimator, 
ver
1 when s

yy
<s

xx
 or bounded above by hor

1

when s
yy

>s
xx

. O’Driscoll and Ramirez (2011) used a simple data set 

{(1,1),(2,3),(3,2),(4,x)} to demonstrate the jump discontinuity inherent with 

  
     

 . For this set,   
        

           when x=3.99 and   
      

  
            when x=4.01. Their remedy is to use the fourth moment slope 

estimator  

  
                                     

described by Gillard and Iles (2005, Equation 26) to smooth out the jump 

discontinuity between 
ver
1  and hor

1 ; that is use   
    only when 

ver
1

<  
   < hor

1  and the OLS estimators otherwise. This procedure constrains the 

moment estimators so that the error variances are positive. We adopt this 

convention for   
    in our simulation study below. 

The estimator,   
    can be shown to be in the family of MLE estimators with 

  
        

        

             
    

  

In studying the ratio of errors, it usually does not matter whether one uses the 

sum of squares such as             
  

    or the normalized sum of squares 

     
       

 

 
 
   . 
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However, the formula for   
    does require the normalized values, which is 

the notation that we have adopted throughout. 

   Solving Equations (6) and (7) yields a moment estimator,      ), for     
  

  
 . The slope estimator   

    and the associated   allows for a direct 

computation for the identical variance error ratio. Since the MLE estimator κ 

for the ratio of error variances has not been a useful estimator for κ, some 

authors such as Al-Nasser (2012) have suggested using the second order 

moments estimators in Equation (5) along with the fourth moment slope 

estimator   
   . This was shown to have some promise in O’Driscoll and 

Ramirez (2011). We consider the moment estimator,      ), as part of our 

simulation below.  

   Table 8 records the results for the moment estimators 

   
       

    
        

    
      for the expectation of the moment estimators 

for the error variances      
   and      

  ; the expected bias     
         

using   
    and the expected standard deviation         

    ).  

(table 7 here) 

6. Conclusion and References 

Our simulations support the claim that our estimators kap
1 and 

lam
1 , under the 

conditions outlined above, greatly reduce the Bias and MSE associated with 

the ordinary least squares estimator
ver
1 . The expected values for the moment 

estimators for the error variances appear to suggest that the moment estimators 

are potentially useful for estimating the error ratios as suggested by Al-Nasser 

(2012).  
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Table 1 

                        ;                        ;        :  ;           :    with 

             
          

    
                      . 

  
    

      
    

             bias(  :κ)               

3 9 0.333 −6.0 −0.0298 −0.0286 −0.0296 −0.0281 

5 9 0.555 −4.0 −0.0201 −0.0200 −0.0198 −0.0202 

2 4 0.500 −2.0 −0.0100 −0.0095 −0.0100 −0.0103 

1 3 0.333 −2.0 −0.0089 −0.0092 −0.0099 −0.0112 

1 2 0.500 −1.0 −0.0048 −0.0047 −0.0050 −0.0052 

2 1 2.000 1.0 0.0047 0.0051 0.0050 0.0048 

3 1 3.000 2.0 0.0103 0.0104 0.0101 0.0088 

4 2 2.000 2.0 0.0107 0.0118 0.0101 0.0097 

9 5 1.800 4.0 0.0204 0.0201 0.0202 0.0197 

9 3 3.000 6.0 0.0318 0.0306 0.0304 0.0286 

 

Table 2 

X is UD(0,20), 1 =1.0, 0 =0, R=1000, n=100,  =1,  =3 

 MSE 310  %Bias λ    
ver
1  46.569 -21.189 1 51.76 
gm

1
 11.897 -9.947 0.500 95.99 

hor
1  4.402 2.957 0 134.17 
per

1
 15.130 -11.246 0.556 89.93 

kap
1

 4.625 -1.382 0.169 118.37 
lam
1  4.442 -0.029 0.237 123.49 

 

Table 3 

X is UD(0,20), 1 =1.25, 0 =0, R =1000, n=100,  =1,  =3 

 MSE 310  %Bias λ    
ver
1  70.809 -20.929 1 45.33 
gm

1
 18.425 -10.036 0.500 83.29 

hor
1  5.708 2.413 0 127.99 
per

1
 15.081 -8.546 0.434 89.90 

kap
1

 6.304 -1.180 0.171 114.70 
lam
1  5.847 0.092 0.145 116.62 

 

Table 4 

X is UD(0,20), 1 =1.0, 0 =0, R =1000, n =100,  =2,  =2 

 MSE 310  %Bias λ    
ver
1  13.403 -10.688 1 48.23 
gm

1
 2.117 0.0989 0.500 89.94 

hor
1  18.146 12.232 0 131.70 
per

1
 2.672 0.126 0.500 89.92 

kap
1

 4.432 0.295 0.495 90.38 
lam
1  5.962 0.425 0.497 90.14 
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Table 5 

X is UD(0,20), 1 =0.75, 0 =0, R =1000, n =100,  =2,  =2 

 MSE 310  %Bias λ    
ver
1  7.791 -10.518 1 56.13 
gm

1
 2.603 4.196 0.500 103.99 

hor
1  28.487 21.417 0 137.68 
per

1
 2.041 0.169 0.640 89.96 

kap
1

 4.233 0.725 0.590 95.55 
lam
1  5.402 -0.029 0.615 92.97 

 

Table 6 

Effective ~  average, X is UD(0,20), 1 =1, 0 = 0, R =1000, n =100 

 2
 =1 2

 = 4 2
 = 9 

2
 =1 1.1781 3.3975 6.1251 

2
 =4 0.3185 0.9169 1.9514 

2
 =9 0.1701 0.4090 1.1658 

 
Table 7. 

Simulation Study of      
  ,      

        
                  

     with 

                  
          

    
                       

  
      

       
        

       
                  

    ).  

4 9 4.29 8.14 -0.00221 0.06372 

1 1 0.95 0.96 0.00001 0.02131 

1 2 1.16 1.71 -0.00213 0.02743 

1 3 1.37 2.45 -0.00396 0.03238 

1 4 1.47 3.30 -0.00500 0.03611 

2 1 1.69 1.17 0.00247 0.02757 

2 2 1.91 1.91 0.00123 0.03227 

2 3 2.10 2.68 -0.00094 0.03666 

2 4 2.23 3.51 -0.00257 0.03993 

3 1 2.46 1.36 0.00456 0.03233 

3 4 2.74 2.04 0.00212 0.03683 

3 3 2.85 2.84 0.00098 0.04086 

3 4 3.04 3.60 -0.00152 0.04419 

4 1 3.25 1.52 0.00604 0.03663 

4 2 3.50 2.20 0.00390 0.04107 

4 3 3.68 2.30 0.00271 0.04107 

4 4 3.83 3.80 0.00112 0.04784 

9 4 8.01 4.29 0.00911 0.06466 

 

 


