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1. Introduction

The determination of rigidity and flexibility of bar-joint frameworks consisting of 
rigid bars connected at their ends by idealised joints is a highly active research area in 
discrete geometry with a long and rich history dating back to considerations of linkages, 
trusses and polyhedral structures by Maxwell, Cauchy and Euler, among others. Since 
bar-joint frameworks are suitable models for a variety of both man-made and natural 
structures (buildings, linkages, molecules, crystals, etc.), rigidity theory has a broad 
range of modern practical applications in fields such as engineering, robotics, CAD and 
materials science. (See [18–20] e.g.) This transfer of knowledge between fundamental 
and applied researchers is one of the motivations for exploring constraint systems in new 
geometric contexts, such as the normed spaces considered in this article (see also [1,2] for 
related problems). Another strong motivation comes from the potential for developing 
combinatorial Laman-type characterisations ([8]) of rigid graphs in any dimension, due 
to the amenability of the matroidal sparsity counts arising in some of these contexts.

In this article, we consider first-order rigidity for bar-joint frameworks with a finite 
abelian symmetry group, developing both a general linear theory as well as sharp com-
binatorial results in the case of half-turn rotational symmetry in the �1 and �∞-plane. 
This complements and extends work of Schulze [16], Jordán, Kaszanitzky and Tanigawa 
[4], Malestein and Theran [11], and Schulze and Tanigawa [17] on symmetric frameworks 
in Euclidean space, and work of Kitson and Power [5] and Kitson and Schulze [6,7] on 
infinitesimal rigidity in normed spaces.

In Sect. 2, we introduce the natural notion of a framework complex and develop several 
key tools for analysing frameworks with a finite abelian symmetry group acting freely on 
the vertex set. These include a decomposition theorem for the framework complex (which 
incorporates a block decomposition for the rigidity operator) and counting criteria for 
the accompanying group-labelled quotient graph (called a gain graph). For a large class 
of d-dimensional normed spaces, with d ≥ 2, this leads to the identification of (d, d, m)-
gain-tight gain graphs, with m ∈ {0, 1, 2, d − 2}, as the underlying structure graphs for 
phase-symmetrically isostatic frameworks with rotational symmetry (see Corollary 2.20). 
In contrast to Euclidean contexts, these classes of graphs are matroidal for all dimensions 
d, and are computationally accessible through associated pebble-game algorithms [9].

In Sect. 3, a new inductive construction is obtained for the class of (2, 2, 0)-gain-
tight gain graphs (Theorem 3.20). Previous recursive characterisations of (2, 2, m)-gain-
tight graphs, with m ∈ {1, 2}, can be found in [15]. The construction presented here is 
necessarily more involved due to a step change in the possible minimum degree when 
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m = 0. Recursive constructions of classes of graphs are of fundamental importance in 
rigidity theory, occurring for example in Laman’s landmark characterisation of rigidity in 
the Euclidean plane [8]. Of particular relevance are previous characterisations of classes 
of gain graphs [4,15] and characterisations where graph simplicity is required to be 
preserved [12,13].

In Sect. 4, geometric and combinatorial characterisations are obtained for the rigid-
ity of two-dimensional frameworks with half-turn rotational symmetry in the �1 and 
�∞-plane. The geometric results (Theorem 4.2) use an edge-colouring technique which 
expresses the gain graph of a phase-symmetrically isostatic framework as an edge-disjoint 
union of either two unbalanced spanning map graphs (defined in Sect. 4.1), or two span-
ning trees. Combinatorial characterisations are then obtained for graphs which admit a 
placement as a phase-symmetrically isostatic framework with half-turn rotational sym-
metry (Theorems 4.3 and 4.9) by combining these geometric results with the construction 
scheme from Sect. 3. The analogous problem for frameworks with reflectional symmetry 
requires different methods and was settled in [7].

2. Symmetric frameworks and gain sparsity

The aim of this section is to derive necessary gain-graph counting conditions for 
symmetrically isostatic bar-joint frameworks in normed spaces. Throughout this article, 
X denotes a finite dimensional real vector space with a norm ‖ · ‖ and dimension d ≥ 2. 
The group of linear isometries of X is denoted Isom(X, ‖ · ‖), or simply Isom(X). The 
complexification C⊗RX is denoted XC and, for convenience, elementary tensor products 
of the form λ ⊗x are denoted by λx. Also, Γ will denote a finite abelian group with identity 
element 1 and Γ̂ will denote the dual group of characters χ : Γ → {z ∈ C : |z| = 1}.

2.1. Bar-joint frameworks

Let G = (V, E) be a finite simple undirected graph and let p = (pv)v∈V ∈ XV . If 
the components of p are distinct vectors in X then the pair (G, p) is called a bar-joint 
framework in X. If H is a subgraph of G and pH = (pv)v∈V (H) then the pair (H, pH) is 
called a subframework of (G, p). Define,

fG : XV → RE , (xv)v∈V �→ (‖xv − xw‖)vw∈E .

If fG is differentiable at p then the bar-joint framework (G, p) is said to be well-positioned
in X.

Lemma 2.1. [6, Proposition 6] If (G, p) is well-positioned in X then the differential of 
fG at p satisfies,

dfG(p) : XV → RE , (uv)v∈V �→ (ϕv,w(uv − uw))vw∈E ,
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where, for each edge vw ∈ E, ϕv,w : X → R is the linear functional,

ϕv,w(x) = lim
t→0

1
t

(‖pv − pw + tx‖ − ‖pv − pw‖) , ∀x ∈ X.

A rigid motion of X is a family of continuous paths {αx : [−1, 1] → X}x∈X such 
that αx(0) = x and ‖αx(t) − αy(t)‖ = ‖x − y‖ for all pairs x, y ∈ X and all t ∈ [−1, 1]. 
An infinitesimal rigid motion of X is a vector field η : X → X with the property 
that η(x) = α′

x(0) for all x ∈ X, for some rigid motion {αx}x∈X . The collection of all 
infinitesimal rigid motions of X is a vector subspace of XX , denoted T (X).

Let (G, p) be a bar-joint framework in X and define ρ(G,p) : T (X) → XV , η �→
(η(pv))v∈V . Note that if (G, p) is well-positioned, then dfG(p) ◦ρ(G,p) = 0 (see [5, Lemma 
2.1]). The framework complex for (G, p), denoted comp(G, p), is the chain complex,

0 −−−−→ T (X)
ρ(G,p)−−−−→ XV dfG(p)−−−−→ RE −−−−→ 0. (1)

The kernel of dfG(p), denoted F (G, p), is referred to as the space of infinitesimal flexes
of (G, p), while the image of ρ(G,p), denoted T (G, p), is referred to as the space of trivial
infinitesimal flexes of (G, p).

Definition 2.2. A well-positioned bar-joint framework (G, p) in a normed space X is,

(a) full if the framework complex comp(G, p) is exact at T (X).
(b) infinitesimally rigid if the framework complex comp(G, p) is exact at XV .
(c) independent if the framework complex comp(G, p) is exact at RE .

A well-positioned bar-joint framework is isostatic if it is both infinitesimally rigid and 
independent. Note that comp(G, p) is a short exact sequence if and only if (G, p) is both 
full and isostatic.

2.2. Symmetric graphs

A Γ-symmetric graph is a pair (G, θ) where G is a finite simple undirected graph 
with automorphism group Aut(G) and θ : Γ → Aut(G) is a group homomorphism. It is 
assumed throughout this article that θ acts freely on the vertex set of G. Thus v 
= θ(γ)v
for all v ∈ V and for all γ ∈ Γ with γ 
= 1. For convenience, we suppress θ and denote 
θ(γ) by γ for each group element γ ∈ Γ. Also, for each edge e = vw ∈ E we denote by 
γe, or γ(vw), the edge in E which joins the vertices γv and γw.

Proposition 2.3. Let (G, θ) be a Γ-symmetric graph and let τ : Γ → Isom(X) be a group 
representation.

(i) (XC)V =
⊕

ˆ Xχ where,
χ∈Γ



D. Kitson et al. / Linear Algebra and its Applications 607 (2020) 231–285 235
Xχ = {x = (xv)v∈V ∈ (XC)V : xγv = χ(γ)τ(γ)xv, ∀ γ ∈ Γ, ∀ v ∈ V }.

(ii) CE =
⊕

χ∈Γ̂ Yχ where,

Yχ = {y = (ye)e∈E ∈ CE : yγe = χ(γ)ye, ∀ γ ∈ Γ, ∀ e ∈ E}.

Proof. Each x = (xv)v∈V ∈ (XC)V may be expressed as a sum x =
∑

χ∈Γ̂ xχ where 
xχ = (xχ,v)v∈V ∈ (XC)V has components,

xχ,v = 1
|Γ|

⎛
⎝∑

γ∈Γ
χ(γ)τ(γ−1)xγv

⎞
⎠ .

Similarly, each y = (ye)e∈E ∈ CE may be expressed as a sum 
∑

χ∈Γ̂ yχ where yχ =
(yχ,e)e∈E ∈ CE has components,

yχ,e = 1
|Γ|

⎛
⎝∑

γ∈Γ
χ(γ)yγe

⎞
⎠ .

We use here the standard identity,

∑
χ∈Γ̂

χ(γ) =
{

|Γ| if γ = 1,
0 otherwise.

Note that xχ ∈ Xχ and yχ ∈ Yχ for each χ ∈ Γ̂.
Let S ⊆ Γ̂ be a maximal subset which gives rise to a direct sum ⊕χ∈SXχ and suppose 

there exists χ̃ ∈ Γ̂\S. If x ∈ Xχ̃ ∩ (⊕χ∈SXχ) then xv = χ̃(γ)τ(γ−1)xγv for all v ∈ V

and all γ ∈ Γ. Moreover, x =
∑

χ∈S zχ for some unique zχ ∈ Xχ. It follows that, for all 
v ∈ V and all γ ∈ Γ,

xv = χ̃(γ)τ(γ−1)

⎛
⎝∑

χ∈S

zχ,γv

⎞
⎠

= χ̃(γ)τ(γ−1)

⎛
⎝∑

χ∈S

χ(γ)τ(γ)zχ,v

⎞
⎠

= χ̃(γ)

⎛
⎝∑

χ∈S

χ(γ)zχ,v

⎞
⎠ .

Thus x = χ̃(γ)(
∑

χ∈S χ(γ)zχ) for all γ ∈ Γ. Since the sum x =
∑

χ∈S zχ is direct, if x 
= 0
then χ̃ = χ for some χ ∈ S. This is a contradiction and so Xχ̃ ∩ (⊕χ∈SXχ) = {0}. How-
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ever, this contradicts the maximality of S and so it follows that S = Γ̂. This establishes 
the direct sum ⊕χ∈Γ̂Xχ and a similar argument can be applied for ⊕χ∈Γ̂Yχ. �
2.3. Symmetric frameworks

A Γ-symmetric bar-joint framework is a tuple G = (G, p, θ, τ) where (G, p) is a 
bar-joint framework, (G, θ) is a Γ-symmetric graph and τ : Γ → Isom(X) is a group 
representation which satisfies τ(γ)(pv) = pγv for all γ ∈ Γ and all v ∈ V .

Lemma 2.4. Let G = (G, p, θ, τ) be a well-positioned and Γ-symmetric bar-joint frame-
work in X and let vw ∈ E. Then ϕγv,γw = ϕv,w ◦ τ(γ−1) for all γ ∈ Γ.

Proof. Let p0 = pv − pw. Then τ(γ)(p0) = pγv − pγw and so for each x ∈ X,

ϕγv,γw(x) = lim
t→0

1
t

(
‖τ(γ)(p0 + t τ(γ−1)x)‖ − ‖τ(γ)p0‖

)
= lim

t→0

1
t

(
‖p0 + t τ(γ−1)x‖ − ‖p0‖

)
= ϕv,w(τ(γ−1)x). �

In the following, the same symbol will be used to denote a real affine transformation 
T : Y → Z between two real linear spaces Y and Z and its complex extension T :
YC → ZC. In particular, we consider the complex linear functionals ϕv,w : XC → C, the 
complex linear transformations τ(γ) : XC → XC and the complex differential dfG(p) :
(XC)V → CE associated to a bar-joint framework (G, p) in X.

Proposition 2.5. Let G = (G, p, θ, τ) be a well-positioned and Γ-symmetric bar-joint 
framework in X. With respect to the direct sum decompositions obtained in Proposi-
tion 2.3,

(XC)V =
⊕
χ∈Γ̂

Xχ and CE =
⊕
χ∈Γ̂

Yχ,

the (complex) differential dfG(p) may be expressed as a direct sum of linear transforma-
tions,

dfG(p) =
⊕
χ∈Γ̂

Rχ(G),

where Rχ(G) : Xχ → Yχ for each character χ ∈ Γ̂.

Proof. Let vw ∈ E. If (xv)v∈V ∈ Xχ then, using Lemma 2.4,

ϕv,w(xv − xw) = ϕγv,γw(τ(γ)(xv − xw)) = ϕγv,γw(χ(γ)(xγv − xγw))

= χ(γ)ϕγv,γw(xγv − xγw),
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for each χ ∈ Γ̂ and each γ ∈ Γ. Thus, by Lemma 2.1, dfG(p)(Xχ) ⊆ Yχ and the result 
follows. �
2.4. Infinitesimal rigid motions

Denote by T (X; C) the complex vector space spanned by vector fields ηC : X → XC, 
x �→ 1 ⊗ η(x) where η ∈ T (X). For convenience, ηC will simply be denoted η.

Proposition 2.6. Let τ : Γ → Isom(X) be a group representation. Then, T (X; C) =⊕
χ∈Γ̂ Tχ(X) where,

Tχ(X) = {η ∈ T (X;C) : η(τ(γ)x) = χ(γ)τ(γ)η(x), ∀ γ ∈ Γ, ∀ x ∈ X}.

Proof. Applying an argument similar to Lemma 2.3, each η ∈ T (X; C) may be expressed 
as a sum η =

∑
χ∈Γ̂ ηχ where ηχ : X → XC is the vector field,

ηχ(x) = 1
|Γ|

⎛
⎝∑

γ∈Γ
χ(γ)τ(γ−1)η(τ(γ)x)

⎞
⎠ .

Note that ηχ ∈ Tχ(X) for each χ ∈ Γ̂.
Let S ⊆ Γ̂ be a maximal subset which gives rise to a direct sum ⊕χ∈STχ(X) and sup-

pose there exists χ̃ ∈ Γ̂\S. If η ∈ Tχ̃(X) ∩(⊕χ∈STχ(X)) then η(x) = χ̃(γ)τ(γ−1)η(τ(γ)x)
for all x ∈ X and all γ ∈ Γ. Moreover, η =

∑
χ∈S δχ for some unique δχ ∈ Tχ(X). Thus, 

for all x ∈ X and all γ ∈ Γ,

η(x) = χ̃(γ)τ(γ−1)

⎛
⎝∑

χ∈S

δχ(τ(γ)x)

⎞
⎠

= χ̃(γ)τ(γ−1)

⎛
⎝∑

χ∈S

χ(γ)τ(γ)δχ(x)

⎞
⎠

= χ̃(γ)

⎛
⎝∑

χ∈S

χ(γ)δχ(x)

⎞
⎠ .

Thus η = χ̃(γ)
(∑

χ∈S χ(γ)δχ
)

for all γ ∈ Γ. Since the sum η =
∑

χ∈S δχ is direct, 
if η 
= 0 then it follows that χ̃ = χ for some χ ∈ S. This is a contradiction and so 
Tχ̃(X) ∩ (⊕χ∈STχ(X)) = {0}. However, this contradicts the maximality of S and so 
S = Γ̂. �

We now consider the complex restriction map ρ(G,p) : T (X; C) → (XC)V , η �→
(η(pv))v∈V for a given bar-joint framework (G, p) in X.
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Proposition 2.7. Let G = (G, p, θ, τ) be a well-positioned and Γ-symmetric bar-joint 
framework in X. With respect to the direct sum decompositions obtained in Proposi-
tions 2.6 and 2.3,

T (X;C) =
⊕
χ∈Γ̂

Tχ(X), and, (XC)V =
⊕
χ∈Γ̂

Xχ,

the (complex) restriction map ρ(G,p) may be expressed as a direct sum of linear transfor-
mations,

ρ(G,p) =
⊕
χ∈Γ̂

ρχ(G),

where ρχ(G) : Tχ(X) → Xχ for each character χ ∈ Γ̂.

Proof. Let χ ∈ Γ̂. If η ∈ Tχ(X) then, for each γ ∈ Γ and all v ∈ V ,

η(pγv) = η(τ(γ)pv) = χ(γ)τ(γ)η(pv).

Thus, ρ(G,p)(Tχ(X)) ⊆ Xχ and the result follows. �
2.5. Decomposing the framework complex

Denote by compC(G, p) the complexified framework complex for a bar-joint framework 
(G, p),

0 −−−−→ T (X;C)
ρ(G,p)−−−−→ (XC)V dfG(p)−−−−→ CE −−−−→ 0. (2)

If G = (G, p, θ, τ) is a well-positioned and Γ-symmetric bar-joint framework in X then, 
recalling the decompositions dfG(p) =

⊕
χ∈Γ̂ Rχ(G) and ρ(G,p) =

⊕
χ∈Γ̂ ρχ(G) from 

Propositions 2.5 and 2.7, we have Rχ(G) ◦ ρχ(G) = 0 for all χ ∈ Γ̂. The χ-symmetric 
framework complex for G, denoted compχ(G), is the chain complex,

0 −−−−→ Tχ(X) ρχ(G)−−−−→ Xχ
Rχ(G)−−−−→ Yχ −−−−→ 0. (3)

The kernel of Rχ(G), denoted Fχ(G), is referred to as the space of χ-symmetric infinites-
imal flexes of G. The image of ρχ, denoted Tχ(G), is referred to as the space of trivial
χ-symmetric infinitesimal flexes of G.

Theorem 2.8. Let G = (G, p, θ, τ) be a well-positioned and Γ-symmetric bar-joint frame-
work in X. Then,

compC(G, p) =
⊕

ˆ
compχ(G).
χ∈Γ
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Proof. The result follows from Propositions 2.5, 2.6 and 2.7. �
Definition 2.9. A well-positioned and Γ-symmetric bar-joint framework G = (G, p, θ, τ)
in a normed space X is said to be,

(a) χ-symmetrically full if compχ(G) is exact at Tχ(X).
(b) χ-symmetrically infinitesimally rigid if compχ(G) is exact at Xχ.
(c) χ-symmetrically independent if compχ(G) is exact at Yχ.

A Γ-symmetric bar-joint framework is χ-symmetrically isostatic if it is both χ-
symmetrically infinitesimally rigid and χ-symmetrically independent.

Corollary 2.10. Let G = (G, p, θ, τ) be a well-positioned and Γ-symmetric bar-joint frame-
work in X. The following statements are equivalent.

(i) (G, p) is full (respectively, infinitesimally rigid, independent or isostatic).
(ii) G is χ-symmetrically full (respectively, χ-symmetrically infinitesimally rigid, χ-

symmetrically independent or χ-symmetrically isostatic) for each χ ∈ Γ̂.

Let G = (G, p, θ, τ) be a Γ-symmetric bar-joint framework in X. A Γ-symmetric 
subframework of G is a Γ-symmetric framework H = (H, pH , θH , τH) where (H, pH) is 
a subframework of (G, p), θH : Γ → Aut(H) is the group homomorphism induced by θ
and τH = τ .

Lemma 2.11. Let G = (G, p, θ, τ) be a well-positioned and Γ-symmetric bar-joint frame-
work in X and let χ ∈ Γ̂. If G is χ-symmetrically independent then every Γ-symmetric 
subframework of G is χ-symmetrically independent.

Proof. Let H = (H, pH , θH , τH) be a Γ-symmetric subframework of G and consider the 
direct sum decompositions,

X
V (G)
C = X

V (H)
C ⊕X

V (G)\V (H)
C , and, CE(G) = CE(H) ⊕CE(G)\E(H)

Note that Xχ = XHχ ⊕X
G\H
χ where XHχ = X

V (H)
C ∩Xχ and XG\Hχ = X

V (G)\V (H)
C ∩Xχ. 

Similarly, Yχ = Y Hχ ⊕ Y
G\H
χ where Y Hχ = CE(H) ∩ Yχ and Y G\Hχ = CE(G)\E(H) ∩ Yχ. 

With respect to these decompositions, Rχ(G) admits a block decomposition of the form,

Rχ(G) =
(
Rχ(H) 0

C D

)
.

Thus, if Rχ(G) is surjective then so too is Rχ(H). �
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2.6. Quotient graphs

Let (G, θ) be a Γ-symmetric graph and suppose θ acts freely on the vertices and 
edges of G. The orbit of a vertex v ∈ V (respectively an edge e ∈ E) is denoted by [v]
(respectively [e]). Thus [v] = {γv : γ ∈ Γ} and [e] = {γe : γ ∈ Γ}. The collection of all 
vertex orbits (respectively, edge orbits) is denoted V0 (respectively, E0). The quotient 
graph G0 = G/Γ is a multigraph with vertex set V0, edge set E0 and incidence relation 
satisfying [e] = [v][w] if some (equivalently, every) edge in [e] is incident with a vertex 
in [v] and a vertex in [w].

Proposition 2.12. Let G = (G, p, θ, τ) be a well-positioned and Γ-symmetric bar-joint 
framework in X. Let χ ∈ Γ̂ and suppose G is χ-symmetrically full.

(i) If G is χ-symmetrically infinitesimally rigid then,

|E0| ≥ (dimRX)|V0| − dimC Tχ(X).

(ii) If G is χ-symmetrically independent then,

|E0| ≤ (dimRX)|V0| − dimC Tχ(X).

(iii) If G is χ-symmetrically isostatic then,

|E0| = (dimRX)|V0| − dimC Tχ(X).

Proof. Applying Proposition 2.5,

|E0| = dimC Yχ ≥ rankRχ = dimC Xχ − dimC kerRχ = (dimC XC)|V0| − dimC Fχ(G).

If (i) holds then Fχ(G) = Tχ(G) and dimC Tχ(G) = dimC Tχ(X). If (ii) holds then 
dimC Yχ = rankRχ and dimC Fχ(G) ≥ dimC Tχ(G) = dimC Tχ(X). If (iii) holds then 
the result follows from (i) and (ii). �
2.7. Norms with a minimal space of infinitesimal rigid motions

The space T (X) of infinitesimal rigid motions of a normed space X is minimal if 
given any η ∈ T (X) there exists x0 ∈ X such that η(x) = x0 for all x ∈ X. This class 
includes all �p-spaces, with p 
= 2, and all normed spaces with a polyhedral unit ball (see 
[5, Lemma 2.5]). If dimRX = 2, then this class includes all norms not derived from an 
inner product. In the following, the identity map on X is denoted IX , or simply I.

Lemma 2.13. Let τ : Γ → Isom(X) be a group representation and let χ ∈ Γ̂. If T (X) is 
minimal then,
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dimC Tχ(X) = dimC

⎛
⎝⋂

γ∈Γ
ker(τ(γ) − χ(γ)I)

⎞
⎠ .

Proof. Let η ∈ T (X). Since T (X) is minimal, there exists x0 ∈ X such that η(x) = x0
for all x ∈ X. Note in particular that x0 = η(τ(γ)(x0)) for each γ ∈ Γ. Thus ηC ∈ Tχ(X)
if and only if x0 = χ(γ)τ(γ)(x0) for each γ ∈ Γ. The result now follows. �

Let ω = e2πi/n, where n ∈ N and n ≥ 2, and consider the multiplicative cyclic group 
Zn = {ωk : k = 0, 1, . . . , n − 1}. Recall that the dual group for Zn consists of characters 
χ0, χ1, . . . , χn−1 where χj(ω) = ωj for each j = 0, 1, . . . , n − 1.

Lemma 2.14. Let τ : Zn → Isom(X) be a group representation where n ≥ 2. If T (X) is 
minimal then, for each j = 0, 1, . . . , n − 1,

dimC Tχj
(X) = dimC ker(τ(ω) − ωjI).

Proof. Let j ∈ {0, 1, . . . , n − 1}. Note that ker(τ(ω) − ωjI) ⊆ ker(τ(ωk) − ωjkI) for 
k = 0, 1, . . . , n − 1. Thus, by Lemma 2.13,

dimC Tχj
(X) = dimC

(
n−1⋂
k=0

ker(τ(ωk) − ωjkI)
)

= dimC ker(τ(ω) − ωjI). �

In the following, an n-fold rotation (n ≥ 2) of a two-dimensional real vector space X
is a linear operator S : X → X with matrix 

( cos(2π/n) − sin(2π/n)
sin(2π/n) cos(2π/n)

)
with respect to some 

basis for X. If dimX ≥ 3 then a linear operator T : X → X is an n-fold rotation if there 
exists a direct sum decomposition X = Y ⊕Z, where Y is a two-dimensional subspace of 
X, with respect to which T = S⊕ IZ , S is an n-fold rotation of Y and IZ is the identity 
operator on Z.

Lemma 2.15. Let τ : Zn → Isom(X) be a group representation where τ(ω) is an n-fold 
rotation of X and n ≥ 2. Suppose, in addition, that T (X) is minimal.

(i) If n = 2 then,

dimC Tχj
(X) =

{
dimRX − 2 if j = 0,
2 if j = 1.

(ii) If n ≥ 3 then,

dimC Tχj
(X) =

⎧⎪⎨
⎪⎩

dimRX − 2 if j = 0,
1 if j ∈ {1, n− 1},
0 otherwise.
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Proof. Write X = Y ⊕Z and τ(ω) = S⊕IZ where dimY = 2 and S is an n-fold rotation 
of Y . Then XC = YC ⊕ ZC. Note that τ(ω) − χ0(ω)I = (S − IY ) ⊕ 0. Also, S − IY is 
invertible and so, by Lemma 2.14,

dimC Tχ0(X) = dimC ker((S − IY ) ⊕ 0) = dimRX − 2.

Now let j ∈ {1, . . . , n − 1}. If n = 2, then ω = −1 and S = −IY . Note that τ(ω) − ωI =
0 ⊕ 2IZ and so, by Lemma 2.14,

dimC Tχ1(X) = dimC ker(0 ⊕ 2IZ) = dimR Y = 2.

If n ≥ 3, then S has eigenvalues of multiplicity 1 at ω and ω. Note that τ(ω) − ωjI =
(S − ωjIY ) ⊕ (1 − ωj)IZ and so, by Lemma 2.14,

dimC Tχj
(X) = dimC ker(τ(ω) − ωjI) = dimC ker(S − ωjIY ) =

{
1 if j ∈ {1, n− 1},
0 otherwise.

�
2.8. Gain graphs

Let (G, θ) be a Γ-symmetric graph and fix an orientation on the edges of the quotient 
graph G0 = (V0, E0). For each vertex orbit [v] ∈ V0, choose a representative vertex ṽ ∈ [v]
and denote the set of all such representatives by Ṽ0. For each directed edge [e] = ([v], [w])
in the directed multigraph G0 there exists a unique γ ∈ Γ, referred to as the gain on [e], 
such that ṽ(γw̃) ∈ [e]. This gain assignment ψ : E0 → Γ, [e] �→ ψ[e], is well-defined and 
the pair (G0, ψ) is referred to as a (quotient) gain graph for (G, θ). The graph G is also 
called the covering graph of (G0, ψ).

Note that a gain assignment ψ is dependent on the choice of representative vertices 
Ṽ0 and also on the choice of orientation for each edge of G0. We may switch the gain 
assignment on the directed multigraph G0 by choosing a different set of vertex orbit rep-
resentatives. We regard two gain assignments on the directed multigraph G0 as equivalent 
if one can be obtained from the other by such a switching operation. Note that if the 
orientation of an edge [e] in G0 is reversed then the induced gain ψ[e] is replaced with 
ψ−1

[e] .
In general, we refer to a group-labelled directed multigraph (G0, ψ) with ψ : E0 → Γ

as a Γ-gain graph if it is a quotient gain graph for a Γ-symmetric graph (G, θ). Note that, 
since G is assumed to be simple, (G0, ψ) has no parallel edges with the same gain when 
oriented in the same direction and no loops with a trivial gain. We regard two Γ-gain 
graphs as equivalent if they are derived from the same Γ-symmetric graph (G, θ). For 
more on gain graphs we refer the reader to [4,21].

Example 2.16. Fig. 1 illustrates several examples of Z2-symmetric graphs together with 
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Fig. 1. Examples of Z2-gain graphs and their covering graphs. These are precisely the base Z2-gain graphs 
for the (2, 2, 0)-gain-tight inductive construction described in Section 3. The bottom rows illustrate χ0-
symmetrically isostatic realisations for the �∞-plane under half-turn rotational symmetry. The monochrome 
subgraphs induced by these realisations (described in Section 4) are indicated in black and grey.

accompanying quotient gain graphs. These gain graphs will form base graphs for the 
inductive construction presented in Section 3. Note that in the case of Z2-symmetric 
graphs, gain assignments are independent of the chosen edge orientation. Thus edge 
orientations have been omitted from Fig. 1. In each gain graph, the indicated gains are 
determined by the set of representative vertices, labelled by p, in its covering graph. Note 
that each covering graph is presented as a two-dimensional bar-joint framework with half-
turn rotational symmetry. Moreover, it can be shown that these bar-joint frameworks 
are χ0-symmetrically isostatic with respect to the �∞ norm. The reasons for this, and 
the significance of the edge colourings, are explained in Section 4.1.

The gain of a path of directed edges F = [v1], [e1], [v2], . . . , [ek], [vk] in a gain 
graph (G0, ψ) (where [v1] may be equal to [vk]) is defined as the product ψ(F ) =
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Πk
i=1 ψ([ei])sign([ei]), where sign([ei]) = 1 if [ei] is directed from [vi] to [vi+1] and 

sign([ei]) = −1 if [ei] is directed from [vi+1] to [vi]. A set of edges F is balanced if 
it does not contain a cycle of edges, or, has the property that every cycle of edges in F
has gain 1. A subgraph of G0 is balanced in (G0, ψ) if its edge set is balanced; otherwise, 
the subgraph is unbalanced.

Lemma 2.17 ([4,21]). Let G0 be a quotient graph and fix an orientation on the edges of 
G0. If a subgraph H0 is balanced for some gain assignment on the directed quotient graph 
G0 then,

(i) H0 is balanced for every equivalent gain assignment on the directed quotient graph 
G0.

(ii) there exists an equivalent gain assignment ψ on the directed quotient graph G0 which 
satisfies ψ([e]) = 1 for all [e] ∈ E(H0).

2.9. A special case

Let G = (G, p, θ, τ) be a well-positioned and Γ-symmetric bar-joint framework in 
X and suppose the Γ-symmetric graph (G, θ) has an associated gain graph which is 
balanced. By Lemma 2.17, there exists a choice of vertex orbit representatives Ṽ0 such 
that the induced gain assignment satisfies ψ([e]) = 1 for all [e] ∈ E(G0). It follows that 
G0 is a simple graph. Consider the well-positioned bar-joint framework (G0, p̃) in X
where p̃[v] = pṽ for each vertex orbit [v] ∈ V0 and vertex orbit representative ṽ ∈ Ṽ0 with 
ṽ ∈ [v]. The following lemma shows the relationship between the differential dfG0(p̃) and 
the components of the block decomposition of dfG(p) described in Proposition 2.5.

Lemma 2.18. Let χ ∈ Γ̂ and define a pair of linear transformations,

Sχ(G) : (XC)V0 → Xχ, (x[v])[v]∈V0 �→ (χ(γ)τ(γ)x[v])v∈V

where v = γṽ for some unique ṽ ∈ Ṽ0 and some unique γ ∈ Γ, and,

Tχ(G) : CE0 → Yχ, (x[e])[e]∈E0 �→ (χ(γ)x[e])e∈E

where e = γ(ṽw̃) for some unique ṽ, w̃ ∈ Ṽ0 and some unique γ ∈ Γ.
Then the following diagram commutes.

(XC)V0 CE0

Xχ Yχ

dfG0 (p̃)

Sχ(G) Tχ(G)

Rχ(G)

In particular, dfG0(p̃) and Rχ(G) are similar linear transformations.
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Proof. Let u = (u[v])[v]∈V0 ∈ (XC)V0 and let e = vw ∈ E. Then v = γṽ and w =
γw̃ for some unique vertex orbit representatives ṽ, w̃ ∈ Ṽ0 and some unique γ ∈ Γ. 
Recall from Proposition 2.5 that Rχ(G) is the restriction of dfG(p) to the subspace 
Xχ ⊂ (XC)V . Thus, by Lemma 2.1, the e-component of (Rχ(G) ◦ Sχ(G))(u) is given 
by ϕv,w(χ(γ)τ(γ)(u[v] −u[w])). Also, by applying Lemma 2.1 to the bar-joint framework 
(G0, p̃), and using Lemma 2.4, we see that the e-component of (Tχ(G) ◦ dfG0(p̃))(u) is 
given by χ(γ)ϕṽ,w̃(u[v] − u[w]) = ϕv,w(χ(γ)τ(γ)(u[v] − u[w])). �
2.10. Gain-sparsity

Let k ∈ N, let l ∈ {0, 1, . . . , 2k − 1} and let m ∈ {0, 1, . . . , l}.

Definition 2.19. A gain graph (G0, ψ) is (k, l, m)-gain-sparse if

(a) |F | ≤ k|V (F )| − l for any nonempty balanced F ⊆ E(G0), and,
(b) |F | ≤ k|V (F )| −m for all F ⊆ E(G0).

Moreover, (G0, ψ) is (k, l, m)-gain-tight if |E(G0)| = k|V (G0)| −m and (G0, ψ) is (k, l, m)-
gain-sparse.

Consider again the multiplicative cyclic group Zn = {ωk : k = 0, 1, . . . , n − 1} with 
characters χj(ω) = ωj for j = 0, 1, . . . , n − 1. A Zn-symmetric bar-joint framework 
G = (G, p, θ, τ) in X is said to be Cn-symmetric if τ(ω) is an n-fold rotation of X.

Corollary 2.20. Let G = (G, p, θ, τ) be a well-positioned and Cn-symmetric bar-joint 
framework in X, where n ≥ 2, and let d = dimRX. Suppose, in addition, that T (X) is 
minimal and G is χj-symmetrically isostatic.

(i) Suppose n = 2.
(a) If j = 0 then (G0, ψ) is (d, d, d − 2)-gain-tight.
(b) If j = 1 then, (G0, ψ) is (d, d, 2)-gain-tight.

(ii) Suppose n ≥ 3.
(a) If j = 0 then (G0, ψ) is (d, d, d − 2)-gain-tight.
(b) If j ∈ {1, n − 1} then, (G0, ψ) is (d, d, 1)-gain-tight.
(c) If j /∈ {0, 1, n − 1} then, (G0, ψ) is (d, d, 0)-gain-tight.

Proof. Let χ = χj . Note that since T (X) is minimal, every bar-joint framework in X is 
full. By Lemma 2.10, G, and every Cn-symmetric subframework of G, is χ-symmetrically 
full. Also note that dimXχ = (dimRX)|V0| and dimYχ = |E0|. Let F ⊆ E(G0), let 
H0 be the subgraph of G0 spanned by the edges in F and let H be the covering graph 
for H0 in G. By Lemma 2.11, the Cn-symmetric subframework H = (H, pH , θH , τH) is 
χ-symmetrically independent. Thus, by Proposition 2.12(ii),
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|E(H0)| ≤ (dimRX)|V (H0)| − dimC Tχ(X).

If H0 is a balanced subgraph of G0 then we may consider an associated bar-joint frame-
work (H0, p̃H), as described in Section 2.9. By Lemma 2.18, dfH0(p̃H) and Rχ(H) are 
similar linear transformations. It follows that (H0, p̃H) is an independent subframework 
of (G, p) and so,

|E(H0)| = rank dfH0(p̃H) = (dimRX)|V (H0)| − dimR F (H0, p̃H)

≤ (dimRX)|V (H0)| − dimR T (X).

Since T (X) is minimal, dimR T (X) = dimRX. Thus the results now follow from 
Lemma 2.15 and Proposition 2.12(iii). �
Remark 2.21. Note that, by the above corollary, for two-dimensional χj-symmetrically 
isostatic bar-joint frameworks with rotational symmetry, the associated gain graph must 
be either (2, 2, 0)-gain tight, (2, 2, 1)-gain-tight or (2, 2, 2)-gain-tight. Inductive construc-
tions for (2, 2, 1)- and (2, 2, 2)-gain-tight gain graphs are presented in [15] (see also 
[13,12]). In the next section we present an inductive construction for (2, 2, 0)-gain-tight 
gain graphs. Also note that, in any dimension, the (k, l, m)-gain tight counts given by 
Corollary 2.20 are the bases of a matroid as was observed in [15]. (Note however that 
this matroidal property does not hold for arbitrary triples k, l, m ∈ N. Indeed it fails in 
some rigidity contexts [3].)

3. An inductive construction of (2, 2, 0)-gain tight Z2-gain graphs

Let (G0, ψ) be a Z2-gain graph with covering graph G. For simplicity, we will omit 
the square brackets in the notation of vertices and edges of (G0, ψ) in this section, and 
simply write v for the vertex [v], and (uv, α) for the edge ([u], [v]) with gain α. Note 
that the orientation of the edges of (G0, ψ) does not matter, since (G0, ψ) is a Z2-gain 
graph and Z2 is of order 2. For the remainder of this article we will only consider Z2-gain 
graphs and so from now on the term gain graph will be used to mean Z2-gain graph.

3.1. Base graphs

Let B denote the family of (2, 2, 0)-gain-tight base graphs presented in Fig. 1. It will 
be convenient to assign names to elements of B. Let iK�

j denote the complete graph on 
j vertices, with i copies of each edge and � loops on each vertex. Then 2K1

2 and K1
3 with 

a balanced K3 are the gain graphs in Figs. 1(a) and (b), respectively. The graph formed 
from 2K3 by adding a loop and deleting an edge not incident with the vertex with the 
loop will be denoted by R. (See Fig. 1(c).) We denote by K+

4 any Z2-gain graph formed 
from a balanced copy of K4 by adding a single edge (subject to (2, 2, 0)-gain-sparsity). 
We shall also use K++

4 to denote any one of the non-isomorphic (2, 2, 0)-gain-tight gain 
graphs formed from K4 by adding two edges. (See Figs. 1(d)-(h).)
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3.2. Preliminaries

We first record two preliminary lemmas about gain graphs which go back to Zaslavsky 
[21].

Lemma 3.1. Let G0 be a (simple) cycle. A Z2-gain graph (G0, ψ) is unbalanced if and 
only if the vertices in V0 can be switched so that any one edge has non-identity gain and 
every other edge in the resulting Z2-gain graph (G0, ψ′) has identity gain.

Lemma 3.2. Let (G0, ψ) be a Z2-gain graph and let A and B be subgraphs of (G0, ψ). 
Suppose that A ∩B is connected. If A and B are balanced then A ∪B is also balanced.

We will also need some elementary results about sparse graphs which we record here 
for convenience. Let f(G0) = 2|V0| − |E0|. So, for example, any (2, 2, 0)-gain-tight gain 
graph G0 satisfies f(G0) = 0 while any balanced subgraph G′

0 satisfies f(G′
0) ≥ 2.

Lemma 3.3. Let G0 be connected and 4-regular. Then f(G′
0) ≥ 1 for any proper subgraph 

G′
0 ⊂ G0.

Proof. Suppose G0 contains a subgraph G′
0 with f(G′

0) = 0. Then G′
0 has average degree 

4, so G′
0 must be 4-regular (by the 4-regularity of G0). Since G0 is connected it follows 

that G′
0 = G0. �

For two disjoint vertex sets A, B ⊂ V (G0), we denote by d(A, B) the number of edges 
between A and B.

Lemma 3.4. Let H0 = (V ′
0 , E

′
0) be a subgraph of G0. If the degree of v in G0 is at least 4 

for all v ∈ V ′
0 then d(V ′

0 , V0 − V ′
0) ≥ 2f(H0).

Proof. Since |E′
0| = 2|V ′

0 | − f(H0) and every vertex in V ′
0 has degree at least 4 in G0 we 

have,

4|V ′
0 | ≤

∑
v∈V ′

0

degG0
(v) = 2|E′

0| + d(V ′
0 , V0 − V ′

0) = 4|V ′
0 | − 2f(H0) + d(V ′

0 , V0 − V ′
0).

�
Lemma 3.5. Let (G0, ψ) be (2, 2, 0)-gain-sparse, and let G′

0 be a balanced subgraph of 
(G0, ψ) with f(G′

0) ∈ {2, 3}. Then G′
0 is connected.

Proof. Suppose G′
0 is disconnected. Let A be a connected component of G′

0 and let 
B = G′

0 − A. Since any subgraph of a balanced gain graph is also balanced, we have 
f(A) ≥ 2 and f(B) ≥ 2. Hence f(G′

0) = f(A) + f(B) ≥ 4, contradicting the hypothesis 
of the lemma. �
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Fig. 2. H1 a, b, c operations on gain graphs. Gain labels are omitted.

Lemma 3.6. Let (G0, ψ) be (2, 2, 0)-gain-tight. Let H ′
0 and H ′′

0 be balanced subgraphs of 
(G0, ψ) with V (H ′

0) ∩ V (H ′′
0 ) 
= ∅ and f(H ′

0) = 2 = f(H ′′
0 ). Then either

(i) f(H ′
0 ∩H ′′

0 ) = 4 and f(H ′
0 ∪H ′′

0 ) = 0, or,
(ii) f(H ′

0 ∪H ′′
0 ) = f(H ′

0 ∩H ′′
0 ) = 2.

Moreover, (ii) holds if and only if H ′
0 ∪H ′′

0 is balanced.

Proof. As H ′
0 ∩H ′′

0 ⊂ H ′
0 we have f(H ′

0 ∩H ′′
0 ) ≥ 2. If f(H ′

0 ∩H ′′
0 ) ≥ 4 then

0 ≤ f(H ′
0 ∪H ′′

0 ) = f(H ′
0) + f(H ′′

0 ) − f(H ′
0 ∩H ′′

0 ) = 4 − f(H ′
0 ∩H ′′

0 ) ≤ 0

and so (i) holds. If f(H ′
0 ∩ H ′′

0 ) ∈ {2, 3} then H ′
0 ∩ H ′′

0 is connected by Lemma 3.5. It 
follows that H ′

0 ∪H ′′
0 is balanced by Lemma 3.2 and hence f(H ′

0 ∪H ′′
0 ) ≥ 2. Thus,

2 ≤ f(H ′
0 ∪H ′′

0 ) = 2 + 2 − f(H ′
0 ∩H ′′

0 ) ≤ 2

and so (ii) holds. �
3.3. Henneberg-type operations

Now we define operations on Z2-gain graphs. The H1 operation (or Henneberg 1 
move, or 0-extension) adds a new vertex of 3 possible types. In type 1a the new vertex 
has degree 2 and two distinct neighbours; in type 1b the new vertex has degree 2 and 
one neighbour with two parallel edges; and in type 1c the new vertex has degree 3 with 
one neighbour and a loop. (See Fig. 2.) The gains on the new edges are arbitrary subject 
to the condition that the covering graph is simple, i.e. parallel edges have different gains 
and a loop has gain −1.

The H2 operation (or Henneberg 2 move, or 1-extension) deletes one edge (xy, α) and 
adds a new vertex v adjacent to x, y of five possible types. In type 2a, v has degree 3 and 
3 distinct neighbours with edges (xv, β) and (yv, γ) satisfying βγ = α; in type 2b, v has 
degree 3 and exactly 2 neighbours with edges (xv, 1), (xv, −1) and (yv, δ) with δ = ±1; 
in type 2c, the deleted edge xy is a loop (xx, −1) and v has degree 3 and exactly 2 
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Fig. 3. H2 a, b, c, d, e operations on gain graphs. Gain labels are omitted.

Fig. 4. H3 a, b, c, d operations on gain graphs. Gain labels are omitted.

neighbours with edges (xv, 1), (xv, −1) and (yv, δ) with δ = ±1; in type 2d, v has degree 
4 and exactly 2 neighbours with edges (xv, β), (yv, γ) and (vv, −1) satisfying α = βγ; 
finally, in type 2e, the deleted edge xy is a loop (xx, −1), v has degree 4 and exactly 1 
neighbour with edges (xv, 1), (xv, −1) and (vv, −1). (See Fig. 3.)

The H3 operation (or X-replacement, or 2-extension) deletes two edges (xy, α), (zw, β)
and adds a new degree 4 vertex v adjacent to x, y, z, w of five possible types. In type 3a, 
v has 4 distinct neighbours and edges (xv, γ), (yv, δ), (zv, ε), (wv, ζ) where α = γδ and 
β = εζ; in type 3b, v has 3 distinct neighbours, y = z and there are two parallel edges 
between v and y, with edges (xv, γ), (yv, 1), (yv, −1), (wv, ζ) where α = γ and β = −ζ; 
in type 3c, v has 3 distinct neighbours, x = y so α = −1 and there are two parallel edges 
between v and x with edges (xv, −1), (xv, 1), (zv, ε), (wv, ζ) and β = εζ; in type 3d, v
has 2 distinct neighbours, x = y and z = w so α = β = −1 and there are two parallel 
edges between v and x and between v and z with edges (xv, 1), (xv, −1), (zv, 1), (zv, −1). 
(See Fig. 4.)

A vertex-to-K4 operation removes a vertex v (of arbitrary degree) and all the edges 
incident with v, and adds in a copy of K4 with only trivial gains. Each removed edge 
(xv, γ), where x 
= v, is replaced by an edge (xy, γ) for some y in the new K4. If x = v

then the removed edge (vv, −1) is replaced by an edge (wz, −1) where w, z are vertices 
of the new K4. Note w and z need not be distinct. (See Fig. 5.)

A vertex splitting operation first chooses a vertex v1, a neighbour v2 of v1, and a 
partition N1, N2 of the remaining neighbours of v1; it then deletes the edges from v1 to 
vertices in N1, adds a new vertex v0 joined to vertices in N1 and finally adds two new 
edges v0v1, v0v2. If there is a loop at v1 then it is either left unchanged or replaced by a 
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Fig. 5. The vertex-to-K4 operation and the vertex splitting operation. Gain labels are omitted.

loop at v0. We specify that v0v1 is given gain 1 and v0v2 is given the same gain as v1v2. 
(See Fig. 5.)

By construction we have the following.

Lemma 3.7. Applying any of the above operations to a (2, 2, 0)-gain-tight gain graph re-
sults in a (2, 2, 0)-gain-tight gain graph.

Proof. When the operation is a H1, H2 or H3 operation then we may employ similar 
arguments to those in [4, Lemma 4.1 and 7.6].

Suppose (G, ψ) is obtained from (H, ψ′) by a vertex-to-K4 operation at v. If (G, ψ)
is not (2, 2, 0)-gain-tight then there exists a vertex-induced subgraph G1 of (G, ψ) such 
that f(G1) < 0, or, (G1, ψ|G1) is balanced and f(G1) ∈ {0, 1}. Consider the subgraph H1
of H corresponding to G1 obtained on contracting G to H. Note that in our definition of 
H1, if there is a loop at v in H then H1 will contain this loop if and only if G1 contains 
the extra edge (wz, −1) in the copy of K+

4 . Note that (H1, ψ′|H1) is balanced if and 
only if (G1, ψ|G1) is balanced. There are two possibilities: either |V (K4 ∩G1)| ∈ {1, 4}, 
or, |V (K4 ∩ G1)| ∈ {2, 3}. In the first case, f(H1) = f(G1) and in the second case 
f(H1) = f(G1) − 1, contradicting (2, 2, 0)-gain-sparsity.

Lastly, suppose (G, ψ) is obtained from a (2, 2, 0)-gain-tight gain graph (H, ψ′) by a 
vertex splitting operation at the vertex v1 which adjoins the new vertex v0. Suppose 
that (G, ψ) is not (2, 2, 0)-gain-tight. Since f(G) = 0 it follows that there exists a vertex-
induced subgraph G1 of (G, ψ) such that f(G1) < 0, or, (G1, ψ|G1) is balanced and 
f(G1) ∈ {0, 1}. Consider the subgraph H1 of H corresponding to G1 obtained on con-
tracting G to H. Note that if G1 contains v0 and v1, then f(H1) ≤ f(G1). Otherwise, 
f(H1) = f(G1). Hence H1 violates (2, 2, 0)-gain-sparsity. �
3.4. Reducing low-degree vertices via reverse Henneberg-type operations

Note that if a gain graph G′
0 is obtained from a (2, 2, 0)-gain-tight gain graph by 

reversing any of the above operations then f(G′
0) = 0. Thus G′

0 is (2, 2, 0)-gain-tight if 
and only if each subgraph of G′

0 satisfies the (2, 2, 0)-sparsity counts. A vertex v in a 
(2, 2, 0)-gain-tight gain graph is admissible if there is a reverse H1 operation, a reverse 
H2 operation or a reverse H3 operation removing v which results in a (2, 2, 0)-gain-tight 
gain graph. Similarly a balanced subgraph isomorphic to K4 or K3 is admissible if there 
is a K4-contraction (i.e. a reverse vertex-to-K4 operation) or edge contraction (i.e. a 
reverse vertex splitting operation) which results in a (2,2,0)-gain-tight gain graph.
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Our first lemma is trivial and deals with all H1 moves.

Lemma 3.8. Let (G0, ψ) be a (2, 2, 0)-gain-tight gain graph. Suppose v ∈ V0 has degree 2 
or is incident to a loop and has degree 3. Then v is admissible.

We now work through the H2 moves in turn.

Lemma 3.9. Let (G0, ψ) be a (2, 2, 0)-gain-tight gain graph. Suppose v ∈ V0 has degree 3 
with exactly three neighbours a, b, c. Then v is admissible if and only if it is not contained 
in a balanced subgraph isomorphic to K4.

Proof. Suppose v is admissible. Then there exists a (2, 2, 0)-gain-tight gain graph (G′
0, ψ

′)
which is the result of a reverse H2a operation at v. If v is contained in a balanced K4
subgraph then the deleted edge in (G′

0, ψ
′) must be one of two parallel edges with equal 

gain, contradicting the simplicity of the covering graph for (G′
0, ψ

′).
For the converse, suppose v is not contained in a balanced subgraph isomorphic to 

K4. Then there exists a gain graph (G′
0, ψ

′) which is the result of a reverse H2a operation 
at v. Let (av, α), (bv, β) and (cv, γ) be in E0.

We first show that if there exists a subgraph Hab of G0 − v which contains a, b with 
f(Hab) = 0, then v is admissible. Suppose for a contradiction that such a subgraph Hab

of G0 exists and that v is not admissible. If c ∈ V (Hab) then f(Hab ∪ v) < 0, which 
contradicts (2, 0)-sparsity. So c /∈ V (Hab). If the edges (ac, αγ), (bc, βγ) are in G0 then 
the union of Hab with v, c and the edges ac, bc, va, vb, vc violates (2, 0)-sparsity. So we 
may suppose (ac, αγ) /∈ E(G0). Then, since v is not admissible, there exists a subgraph 
Hac of G0 − v containing a, c such that either Hac is balanced (with every path from a
to c in Hac having gain αγ) and f(Hac) = 2, or f(Hac) = 0. In both cases, we clearly 
have f(Hab ∪Hac ∪ v) < 0, which is a contradiction.

A similar argument holds for the pairs a, c and b, c. Thus we may assume for each pair 
of vertices s, t ∈ {a, b, c} that there is no subgraph Hst of G0 − v which contains s, t and 
satisfies f(Hst) = 0.

Now assume, without loss of generality, that (ab, αβ) /∈ E0. Suppose there does not 
exist a balanced subgraph Hab of G0 − v which contains a, b with f(Hab) = 2 and all 
paths from a to b having gain αβ. Then v is admissible since adding the edge (ab, αβ)
will not violate (2, 2, 0)-gain-sparsity.

Suppose G0 − v does contain a balanced subgraph Hab which contains a, b with 
f(Hab) = 2 and all paths from a to b having gain αβ. We may assume by gain switching 
(Lemma 2.17) that all edges of Hab have gain 1. In this case, all paths from a to b have 
gain 1. If α 
= β then we claim that v is admissible. To see this note that if there exists 
a balanced subgraph H ′

ab which contains a, b with f(H ′
ab) = 2 and all paths from a to b

having gain −1 then Hab∩H ′
ab is not connected. Thus, by Lemma 3.6, f(Hab∪H ′

ab) = 0, 
contradicting our assumption above. Thus v is admissible since we may add the edge 
(ab, −1). We may now assume α = β. We may further assume, by gain switching at v, 
that α = β = 1.
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If Hab contained c then f(Hab∪v) = 1. If vc has gain 1 then we contradict (2, 2, 0)-gain-
sparsity and so γ = −1. If (ac, −1) and (bc, −1) are both in (G0, ψ) then the induced 
subgraph on V (Hab) ∪ {v} violates (2, 0)-sparsity. Without loss of generality, suppose 
(ac, −1) is not in (G0, ψ). Then v is admissible unless there exists a balanced subgraph 
Hac of G0 − v which contains a, c with f(Hac) = 2 and all paths from a to c having gain 
−1.

Suppose G0 − v does contain a balanced subgraph Hac which contains a, c with 
f(Hac) = 2 and all paths from a to c having gain −1. Note that f(Hab ∪Hac) ≥ 1 (for 
otherwise adding v and its three edges would contradict (2, 2, 0)-gain sparsity). Thus, by 
Lemma 3.6, Hab ∪Hac is balanced. By Lemma 3.5, Hab and Hac are connected and so 
it follows that Hab ∪Hac contains an unbalanced cycle. This is a contradiction and so v
is admissible since adding the edge (ac, −1) will not violate (2, 2, 0)-gain-sparsity.

Now suppose Hab does not contain c. In this case, by gain switching at the vertex c
(Lemma 2.17) we can assume γ = 1. If (ac, 1) and (bc, 1) are both in G0 then the union of 
Hab with vertices v, c and the five edges (ac, 1), (bc, 1), (va, 1), (vb, 1), (vc, 1) is balanced 
and violates (2, 2)-sparsity. This is a contradiction and so, without loss of generality, we 
may assume (ac, 1) /∈ G0. Then v is admissible unless there exists a balanced subgraph 
Hac of G0 − v which contains a, c with f(Hac) = 2 and all paths from a to c having gain 
1.

Suppose there exists a balanced subgraph Hac of G0−v containing a, c with f(Hac) =
2, with all paths in Hac from a to c having gain 1. By the previous argument we may as-
sume b is not in Hac since otherwise v is admissible. Since f(Hab∪Hac) ≥ 1 (for otherwise 
adding v and its three edges would contradict (2, 2, 0)-gain sparsity), Lemma 3.6 may 
be applied, that is Hab ∪Hac is balanced. By gain switching, we may assume the edges 
of Hab ∪Hac all have gain 1. Let α′, β′, γ′ be the resulting gains on the edges va, vb, vc
respectively. If α′ 
= β′ then, by the above argument, v is admissible and we may add the 
edge (ab, −1). Similarly, v is admissible if α′ 
= γ′. So now suppose α′ = β′ = γ′. Then 
Hab∪Hac∪v is balanced with f(Hab∪Hac∪v) = 1. This contradicts (2, 2, 0)-sparsity. �
Lemma 3.10. Let (G0, ψ) be a (2, 2, 0)-gain-tight gain graph. Suppose v ∈ V0 has degree 
3 with exactly two neighbours a, b. Then v is admissible if and only if it is not contained 
in a subgraph isomorphic to R (recall Fig. 1(c)).

Proof. If v is contained in a subgraph isomorphic to R, then v is clearly not admissible. 
For the converse, suppose that v is not in a subgraph isomorphic to R. Then there exists 
a gain graph (G′

0, ψ
′) which is the result of either a reverse H2b operation at v or a 

reverse H2c operation at v. Let (av, 1), (av, −1) and (bv, α) be in E0.
We first consider a reduction move at v which adds an edge between a and b. Observe 

that any subgraph H of G0−v containing a and b has f(H) > 0 (otherwise f(H∪v) < 0
would hold) so we need only consider balanced subgraphs.

Suppose there is no edge ab. If there is no admissible reverse H2b move then there 
exist distinct balanced subgraphs H1, H2 of G0 − v such that a, b ∈ V (Hi), f(Hi) = 2
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for i = 1, 2 and all paths in Hi from a to b have gain (−1)i. Since f(H1 ∩H2) ≥ 2 either 
H1 ∩ H2 is not connected and Lemma 3.6 implies that f(H1 ∩ H2) = 0 and adding v
violates (2, 0)-sparsity or H1∩H2 is connected. Then Lemma 3.6 implies that H1∪H2 is 
balanced. Hence all paths from a to b in H1∩H2 have two distinct gains, a contradiction. 
Thus v is admissible.

Secondly, suppose there is exactly one edge (ab, β) in E0. If there is no admissible 
reverse H2b move, then there exists a balanced subgraph Hab of (G0, ψ) containing a, b
but not v with f(Hab) = 2 such that all paths in Hab from a to b have gain −β. Note 
that a does not have a loop (otherwise (2, 0)-sparsity would be violated). Also, a is 
not contained in a subgraph H with f(H) = 0 (otherwise adjoining the edge (ab, β)
to H ∪Hab will violate (2, 0)-sparsity). Thus a reverse H2c move can be applied which 
preserves (2, 2, 0)-gain-sparsity. Thus v is again admissible.

Finally, if both (ab, 1) and (ab, −1) are in E0 then the reverse H2c move adding the 
loop (aa, −1) is non-admissible if and only if there is a subgraph H of G − v containing 
a which has f(H) = 0. Note that H does not contain b and so f(H ∪{v, b}) = f(H) − 1, 
giving a contradiction. �
Lemma 3.11. Let (G0, ψ) be a (2, 2, 0)-gain-tight gain graph. Suppose v ∈ V0 has degree 
4 with exactly one loop at v and one neighbour a. Then v is admissible if and only if v
is not contained in a subgraph isomorphic to 2K1

2 .

Proof. If v is not contained in a subgraph isomorphic to 2K1
2 then it is easy to check that 

v is admissible for a reverse H2e move adding a loop on a. Conversely, if v is contained 
in a subgraph isomorphic to 2K1

2 then G0 contains a loop at a and so v is clearly not 
admissible. �

We now move on to H3 moves. First consider the reverse H3d move.

Lemma 3.12. Let (G0, ψ) be a (2, 2, 0)-gain-tight gain graph which is 4-regular. Suppose 
v ∈ V0 has no loop and exactly two neighbours a, b with a double edge to each. Then v
is admissible if and only if G0 does not contain a loop at a and does not contain a loop 
at b.

Proof. Clearly, if G0 contains a loop at a or b then a reverse H3d move cannot be applied 
and so v is not admissible. For the converse, suppose G0 does not contain any loops at a
and b. If adding loops on a and b violates (2, 2, 0)-gain-sparsity then either there exists 
a subgraph H0 of G0 − v containing a and b with f(H0) = 1, or there exists a subgraph 
H0 of G0 − v containing a (or b) with f(H0) = 0. In both cases we may use 4-regularity 
to get a contradiction. If f(H0) = 0 then a must have degree 2 in H0. Note that H0 has 
average degree 4, giving a vertex c ∈ H0 with degree greater than 4 in H0, and hence in 
G0. This is a contradiction. If H0 contains a and b and f(H0) = 1, then a and b both 
have degree 2 in H0. All other vertices in H0 have degree at most 4. In this case, since 
|E(H0)| = 2|V (H0)| − 1, we obtain the contradiction,
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∑
v∈V (H0)

degH0
(v) ≤ 4(|V (H0)| − 2) + 2 + 2 < 4|V (H0)| − 2 = 2|E(H0)|. �

Lemma 3.13. Let (G0, ψ) be a (2, 2, 0)-gain-tight gain graph which is connected and 4-
regular. Suppose v ∈ V0 has exactly three neighbours a, b, c and no loop. Suppose no 
neighbour of v is admissible, then v is admissible if and only if v is not contained in a 
subgraph isomorphic to K+

4 .

Proof. If v is contained in a subgraph isomorphic to K+
4 , then v is clearly not admissible. 

For the converse, suppose v is not contained in a subgraph isomorphic to K+
4 . Let 

(av, 1), (av, −1), (bv, β), (cv, γ) be the edges incident to v. By Lemma 3.3, (G0, ψ) does 
not contain any proper subgraph H with f(H) = 0. Note also that no subgraph H of 
G0 − v containing N(v) = {a, b, c} can have f(H) = 1. We may suppose there is no 
loop on a (otherwise we can use Lemma 3.11 to see that a is admissible, which is a 
contradiction). Moreover, we may assume that one of the edges (ac, 1) and (ac, −1) is 
not in G0 (otherwise Lemma 3.12 would imply that a is admissible). Similarly, we may 
assume that one of the edges (ab, 1) and (ab, −1) is not in G0.

First observe that there are three possible reduction moves: a reverse H3c move which 
adds a loop at a and the edge (bc, βγ), a reverse H3b move which adds the edges 
(ab, β), (ac, −γ) and a reverse H3b move which adds the edges (ab, −β), (ac, γ). The 
reverse H3c move is admissible unless:
(a) the edge (bc, βγ) already exists in G0; or
(b) there is a balanced subgraph Hbc of G0 − v containing b, c with f(Hbc) = 2 in which 
all paths from b to c have gain βγ.

The reverse H3b move which adds the edges (ab, β), (ac, −γ) is admissible unless:
(c) one of the edges (ab, β), (ac, −γ) already exists in G0; or
(d) there is a balanced subgraph Hab of G0 − v containing a, b with f(Hab) = 2 in 
which all paths from a to b have gain β, or, there is a balanced subgraph Hac of G0 − v

containing a, c with f(Hac) = 2 in which all paths from a to c have gain −γ.
The reverse H3b move which adds the edges (ab, −β), (ac, γ) is admissible unless:

(e) one of the edges (ab, −β), (ac, γ) already exists in G0; or
(f) there is a balanced subgraph Hab of G0 − v containing a, b with f(Hab) = 2 in which 
all paths from a to b have gain −β, or, there is a balanced subgraph Hac of G0 − v

containing a, c with f(Hac) = 2 in which all paths from a to c have gain γ.
Suppose (a) holds. Note that if (ab, β) and (ac, γ) both exist or (ab, −β) and (ac, −γ)

both exist then there is a K+
4 containing v, which is a contradiction. Thus we may 

suppose that either (ab, β) and (ac, −γ) do not exist, or, (ab, −β) and (ac, γ) do not 
exist.

Without loss of generality, we suppose that (ab, β) and (ac, −γ) do not exist. If v is 
not admissible then there exists either a balanced subgraph Hab of G0 − v containing 
a, b with f(Hab) = 2 and all paths from a to b have gain β or a balanced subgraph Hac

of G0 − v containing a, c with f(Hac) = 2 and all paths from a to c having gain −γ. If 
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both exist then H = Hab ∪Hac is a proper subgraph of G0 and hence, by Lemma 3.3, 
f(H) ≥ 1. Thus, by Lemma 3.6, H is balanced and f(H) = 2. Note that (bc, βγ) ∈ E(H)
(otherwise adjoining this edge to H ∪ v violates (2, 0)-sparsity). By switching, we may 
assume without loss of generality that all gains on H are 1. In this case note that β = γ. 
Adjoining v and the edges (va, β), (vb, β), (vc, β) to H results in a balanced subgraph 
which violates (2, 2)-sparsity. This is a contradiction and so either Hab or Hac does not 
exist. Without loss of generality we assume Hab does not exist. If Hac does not exist 
then v is admissible. So suppose Hac does exist.

Suppose (ab, −β) ∈ E(G0). Then Hac contains the vertex b. (If not, then the vertex a
would have degree at most 1 in Hac, a contradiction.) By switching, we may assume all 
gains in Hac are 1. Moreover, (bc, βγ) ∈ E(Hac) for otherwise (2, 0)-sparsity is violated. 
Thus β = γ. Now adjoining v together with the edges (va, β), (vb, β), (vc, β) to Hac

results in a balanced subgraph which violates (2, 2)-sparsity. We conclude that (ab, −β) /∈
E(G0). If (ac, γ) ∈ E(G0) then (ac, γ) /∈ E(Hac), and hence a has degree at most 1 in 
Hac, a contradiction. Thus (ac, γ) /∈ E(G0).

If v is not admissible then there exists either a balanced subgraph H ′
ab of G0 − v

containing a, b with f(H ′
ab) = 2 and all paths from a to b have gain −β or a balanced 

subgraph H ′
ac of G0 − v containing a, c with f(H ′

ac) = 2 and all paths from a to c
having gain γ. If H ′

ab exists then H = H ′
ab ∪Hac is a proper subgraph of G0 and hence, 

by Lemma 3.3, f(H) ≥ 1. Thus, by Lemma 3.6, H is balanced and f(H) = 2. Note 
that the edge (bc, βγ) is not in H, for otherwise we may assume, by switching, that 
all gains in H are 1, and hence β = γ. As above, this contradicts the (2, 2)-sparsity of 
balanced subgraphs of G0. Now, adjoining the edge (bc, βγ) to H results in a subgraph 
of G0 − v with f(H) = 1 which contains {a, b, c}. This is a contradiction. If H ′

ac exists 
then H = Hac ∪H ′

ac is balanced. However, H contains an unbalanced cycle obtained by 
concatenating a path from a to c in Hac and a path from a to c in H ′

ac. This is again a 
contradiction. We conclude that v is admissible since we may apply a reverse H3b move.

Now suppose (a) does not hold. Consider a reduction at v adding a loop at a and the 
edge (bc, βγ). If this move is not admissible then there is a balanced subgraph Hbc of 
G0 − v containing b, c with f(Hbc) = 2 in which all paths from b to c have gain βγ. By 
switching, we may assume without loss of generality that all gains of Hbc equal 1. In this 
case β = γ since all paths in Hbc from b to c have gain 1. We may assume that Hbc does 
not contain a (otherwise adjoining v to Hbc results in a balanced subgraph of (G0, ψ)
which violates (2, 2)-sparsity).

Suppose ab, ac ∈ E(G0) with arbitrary gains. The subgraph H obtained from Hbc

by adjoining the vertices a, v together with the edges (av, 1), (av, −1) and all edges 
between {a, v} and Hbc has f(H) = 0. Hence H = G0 and the only edges between Hbc

and a are the edges ab and ac. If ab and ac have the same gain, say δ, then note that 
H ′ = H−(va, −βδ) is balanced and satisfies f(H ′) = 1. This is a contradiction. If ab and 
ac have different gains then, without loss of generality, we can say (ab, 1) and (ac, −1)
are in G0. Since H = G0 and all gains on Hbc are 1, there is no path in G0 − a between 
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b and c with gain −1. It follows that there is an admissible reduction at a adding a loop 
at v and the edge (bc, −1). This is a contradiction since no neighbour of v is admissible.

Without loss of generality, we may now assume there is no edge between a and b
in G0. Consider the reduction at v adding (ab, 1) and (ac, −1). Suppose there is a bal-
anced subgraph Hab of G0 − v containing a, b with f(Hab) = 2. Note that c /∈ V (Hab)
since otherwise adjoining v to Hab results in a balanced subgraph which violates (2, 2)-
sparsity. The subgraph H obtained from the union of Hab with Hbc and the edges 
(va, β), (vb, β), (vc, β) is balanced and violates (2, 2)-sparsity. This is a contradiction and 
so Hab does not exist. Similarly, there is no balanced subgraph Hac of G0 − v containing 
a, c with f(Hac) = 2. Hence if the reduction at v adding (ab, 1) and (ac, −1) is not 
admissible then (ac, −1) ∈ E(G0). By a similar argument, if the reduction at v adding 
(ab, −1) and (ac, 1) is not admissible then (ac, 1) ∈ E(G0). This is a contradiction since 
G0 does not contain both (ac, 1) and (ac, −1), for otherwise a would be admissible. �
Lemma 3.14. Let (G0, ψ) be a (2, 2, 0)-gain-tight gain graph. Suppose v ∈ V0 has degree 4 
with exactly four neighbours a, b, c, d. Let (va, α), (vb, β), (vc, γ) and (vd, δ) be the edges 
incident to v. Then a reduction at v adding (ab, αβ), (cd, γδ) is non-admissible if and 
only if one of the following conditions holds:

(i) there is a subgraph Hab of G0 containing a, b but not v with f(Hab) = 0 or there is 
a subgraph Hcd of G0 containing c, d but not v with f(Hcd) = 0;

(ii) there is a balanced subgraph Hab of (G0, ψ) containing a, b but not v with f(Hab) = 2
and every path from a to b in Hab has gain αβ or there is a balanced subgraph Hcd

of (G0, ψ) containing c, d but not v with f(Hcd) = 2 and every path from c to d in 
Hcd has gain γδ;

(iii) there is a balanced subgraph H of (G0, ψ) containing N(v) but not v with f(H) = 3
where every path from a to b in H has gain αβ and every path from c to d in H
has gain γδ;

(iv) one of the edges (ab, αβ), (cd, γδ) already exists in (G0, ψ).

Proof. If any one of these conditions holds then it is clear that v is not admissible. 
Conversely, suppose that the result of a reduction at v adding (ab, αβ), (cd, γδ) is the 
gain graph (G′

0, ψ
′). If the reduction is non-admissible then (G′

0, ψ
′) is not (2, 2, 0)-

gain-tight. It follows that either the covering graph of (G′
0, ψ

′) is not simple, there is a 
subgraph which violates (2, 0)-sparsity or there is a subgraph which violates balanced 
(2, 2)-sparsity. In the first case (iv) holds. In the second case, suppose H ′ is a subgraph of 
(G′

0, ψ
′) which violates (2, 0)-sparsity. Either H ′ received one edge in the reduction move 

and (i) holds or H ′ received two edges and there is a subgraph H of (G0, ψ) containing 
N(v) but not v with f(H) ≤ 1. However f(H ∪ v) < 0, contradicting (2, 2, 0)-gain-
sparsity.

Hence it remains to consider the last case. There is a subgraph H ′ of (G′
0, ψ

′) which 
violates balanced (2, 2)-sparsity. Therefore H ′ contains (ab, αβ) or (cd, γδ) or both. By 
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symmetry we may suppose (ab, αβ) ∈ H ′. If H ′ does not contain (cd, γδ) then this implies 
that there is a balanced subgraph H of (G0, ψ) containing a, b but not v with f(H) = 2
and every path from a to b in H has gain αβ, giving (ii). Similarly if H ′ contains (ab, αβ)
and (cd, γδ) then there is a balanced subgraph H of (G0, ψ) containing N(v) but not v
with f(H) = 3 where every path from a to b in H has gain αβ and every path from c to 
d in H has gain γδ, giving (iii). �
Lemma 3.15. Let (G0, ψ) be a (2, 2, 0)-gain-tight gain graph which is connected and 4-
regular. Suppose v ∈ V0 has exactly four neighbours a, b, c, d. Then v is admissible if and 
only if the following conditions hold,

(i) v is not contained in a balanced subgraph isomorphic to K4, and,
(ii) v is not contained in a balanced subgraph isomorphic to K1,1,3 with the property that 

v has degree 4 in this subgraph.

Proof. If (i) or (ii) fail to hold then v is clearly not admissible. For the converse, let 
(va, α), (vb, β), (vc, γ) and (vd, δ) be the edges incident to v.

We first show that if condition (ii) holds in Lemma 3.14, then c and d are not in 
Hab. Suppose N(v) ⊂ V (Hab). Since Hab is balanced, we may assume, by switching, 
that all gains on Hab are 1. Since all paths from a to b in Hab have gain αβ, it fol-
lows that α = β. If at least 3 edges incident to v all have gain 1 or all have gain 
−1, then we contradict (2, 2)-sparsity. Thus, without loss of generality, we may assume 
that (va, 1), (vb, 1), (vc, −1), (vd, −1) ∈ E(G0). Since G0 is 4-regular, Lemma 3.3 implies 
that Hab together with the edges incident to v is all of G0. In particular Hab was an 
induced subgraph of G0. Thus it is easy to see that the reduction move at v adding 
(ad, −1), (bc, −1) is admissible.

So without loss of generality, we may suppose that d /∈ V (Hab). We claim that c /∈
V (Hab). Suppose to the contrary that c ∈ V (Hab). By the same argument as above, 
we may assume that (va, 1), (vb, 1), (vc, −1) ∈ E(G0). Notice that if we add the edges 
(va, 1), (vb, 1), (vc, −1) to Hab, then we obtain a subgraph H with f(H) = 1. Thus, 
Hab is an induced subgraph of G0, for otherwise the fact that d /∈ V (Hab) would give 
a contradiction, by Lemma 3.3. Consider the reduction move at v adding (bc, −1) and 
(ad, δ). If v is not admissible then one of the conditions in Lemma 3.14 must hold for 
the pair (bc, −1) and (ad, δ). Since G0 is 4-regular, Lemma 3.3 implies condition (i) of 
Lemma 3.14 cannot hold. If there is a balanced subgraph Had of G0 − v containing 
a, d with f(Had) = 2 in which all paths from a to d have gain δ, then, by Lemma 3.6, 
H = Hab ∪ Had is balanced with f(H) = 2 and N(v) ⊂ V (H). So we can repeat the 
argument used to show that d /∈ V (Hab) to obtain a contradiction. Suppose there is a 
balanced subgraph Hbc of G0 − v containing b, c with f(Hbc) = 2 in which all paths 
from b to c have gain −1. Then we must have f(Hab ∪ Hbc) = f(Hab ∩ Hbc) = 2, by 
Lemma 3.6. Hence Hab ∩ Hbc is connected by Lemma 3.5 and every edge has gain 1, 
a contradiction. Similarly, condition (iii) of Lemma 3.14 cannot hold. Finally, the edge 
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(bc, −1) is clearly not in G0, so we suppose that (ad, δ) is in G0. By switching at the 
vertex d, we may assume that δ = 1. We claim that the reduction move at v adding 
(ac, −1), (bd, 1) is now admissible. If (bd, 1) is present in G0, then Hab together with the 
5 edges (va, 1), (vb, 1), (vd, 1), (ad, 1), (bd, 1) violates (2, 2)-sparsity. So suppose there is 
a balanced subgraph Hbd of G0 − v containing b, d with f(Hbd) = 2 in which all paths 
from b to d have gain 1. But then, by Lemma 3.6, H = Hab ∪ Hbd is balanced with 
f(H) = 2 and N(v) ⊂ V (H), and hence the same argument from above may be applied 
once again to obtain a contradiction. If there is a balanced subgraph Hac of G0 − v

containing a, c with f(Hac) = 2 in which all paths from a to c have gain −1, then 
f(Hab ∪ Hac) = f(Hab ∩ Hac) = 2, by Lemma 3.6. Hence Hab ∩ Hac is connected and 
every edge has gain 1, a contradiction. Similarly, condition (iii) of Lemma 3.14 cannot 
hold for the pair (ac, −1), (bd, 1). So the reduction move at v adding (ac, −1), (bd, 1) is 
indeed admissible. Thus, we conclude that c /∈ V (Hab).

Now, suppose that conditions (i) and (ii) in the statement of this lemma hold. Then 
condition (iv) in Lemma 3.14 cannot hold for all possible pairs of edges, so we may 
assume that the edges (ab, αβ), (cd, γδ) do not exist in (G0, ψ). Since G0 is 4-regular, 
Lemma 3.3 implies that condition (i) in Lemma 3.14 does not hold. Suppose H is a 
balanced subgraph of (G0, ψ) that satisfies condition (iii) in Lemma 3.14. By switching, 
we may assume that all gains on H are 1. By the assumptions in condition (iii) it follows 
that αβ = γδ = 1, contradicting (2, 2)-sparsity of G0 if α = β = γ = δ. So suppose 
without loss of generality that α = β = 1 and γ = δ = −1. Note that at most one of the 
edges (ac, −1), (ad, −1), (bc, −1), (bd, −1) can be present in G0, for otherwise the graph 
obtained from H by adding two of those edges together with the four edges incident to v
violates (2, 0)-sparsity. Hence (ad, −1), (bc, −1) /∈ E(G0) or (ac, −1), (bd, −1) /∈ E(G0). 
Without loss of generality we assume that (ad, −1), (bc, −1) /∈ E(G0) and consider the 
reduction operation on v that adds (ad, −1) and (bc, −1).

Suppose there exists a balanced subgraph H ′ of (G0, ψ) that satisfies condition (iii) 
in Lemma 3.14 for the pair (ad, −1), (bc, −1), that is, all paths from a to d and all paths 
from b to c in H ′ have gain −1. Then H ∩H ′ is disconnected (since there cannot be any 
path from a to d or from b to c in H ∩H ′). It follows that f(H ∩H ′) ≥ 2 + 2 = 4 and 
hence f(H ∪H ′) ≤ 3 +3 −4 = 2. Thus, f(H ∪H ′) = 2, for otherwise the graph obtained 
from H ∪ H ′ by adding the four edges incident to v would violate (2, 0)-sparsity. This 
says that H ∩H ′ has exactly two components C1 and C2, with either a, b ∈ V (C1) and 
c, d ∈ V (C2) or a, c ∈ V (C1) and b, d ∈ V (C2).

Suppose first that a, b ∈ V (C1) and c, d ∈ V (C2). Then every path in H ′ from a to b
and from c to d has gain 1. Since every path from a to d and from b to c has gain −1
in H ′, and H ′ is balanced, it follows that every path from a to c and from b to d must 
have gain −1. Therefore, H ′ together with the four edges incident to v is balanced and 
violates (2, 2)-sparsity.

Suppose next that a, c ∈ V (C1) and b, d ∈ V (C2). Then every path in H ′ from a to 
c and from b to d has gain 1. This implies that (ac, −1) and (bd, −1) cannot exist in 
G0. (If one of those edges did exist in G0, then it cannot be an edge of H ∪ H ′, and 
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hence H ∪ H ′ together with this edge and the four edges incident to v would violate 
(2, 0)-sparsity.) We now consider the reduction operation on v that adds (ac, −1) and 
(bd, −1). Suppose there exists a balanced subgraph H ′′ of (G0, ψ) that satisfies condition 
(iii) in Lemma 3.14 for the pair (ac, −1), (bd, −1), that is, all paths from a to c and 
all paths from b to d in H ′′ have gain −1. Note that (H ∪ H ′) ∩ H ′′ is disconnected 
since there cannot be any path from a to c or from b to d in (H ∪H ′) ∩H ′′. Therefore, 
f((H ∪ H ′) ∩ H ′′) ≥ 2 + 2 = 4 and hence f((H ∪ H ′) ∪ H ′′) ≤ 2 + 3 − 4 = 1. So the 
subgraph obtained from (H ∪H ′) ∪H ′′ by adding the four edges incident to v violates 
(2, 0)-sparsity. So if the reduction operation on v that adds (ac, −1) and (bd, −1) is 
not admissible, then condition (ii) in Lemma 3.14 holds for (ac, −1), (bd, −1). As we 
have shown in the beginning of this proof, we may assume that there exists a balanced 
subgraph Hac of (G0, ψ) containing a, c but not b, d, v with f(Hac) = 2 and every path 
from a to c in Hac has gain −1. Then H ∩ Hac is disconnected (since there cannot be 
a path from a to c in H ∩Hac) and hence f(H ∪Hac) ≤ 3 + 2 − 4 = 1. It follows that 
H ∪Hac together with the four edges incident to v violates the (2, 0)-sparsity of G0.

Therefore, if v is not admissible, then condition (ii) in Lemma 3.14 holds for (ad, −1), 
(bc, −1). As we have shown in the beginning of this proof, we may assume that there 
exists a balanced subgraph Hbc of (G0, ψ) containing b, c but not a, d, v with f(Hbc) = 2
and every path from b to c in Hbc has gain −1. But then, by the same argument as 
in the paragraph above, we have f(H ∪ Hbc) ≤ 3 + 2 − 4 = 1, which contradicts the 
(2, 0)-sparsity of G0.

So if v is not admissible, then condition (ii) in Lemma 3.14 holds for (ab, αβ), (cd, γδ). 
By using the argument in the beginning of this proof again, we may assume that there 
exists a balanced subgraph Hab of (G0, ψ) containing a, b but not c, d, v with f(Hab) = 2
and every path from a to b in Hab has gain αβ. Consider the reduction operation on v
that adds (ad, αδ) and (bc, βγ).

If this move is not admissible then one of the conditions (ii), (iii) or (iv) in Lemma 3.14
holds for (ad, αδ), (bc, βγ). Suppose first that (iv) fails, that is, (ad, αδ) and (bc, βγ)
are not edges of (G0, ψ). Suppose there exists a balanced subgraph H of (G0, ψ) that 
satisfies condition (iii) for the pair (ad, αδ), (bc, βγ), that is, all paths from a to d in H
have gain αδ and all paths from b to c in H have gain βγ. If H ∩ Hab is connected, 
then every path from a to b in H has gain αβ. But since H is balanced, this implies 
that the subgraph H ′ of G0 consisting of H and the four edges incident to v is balanced 
and satisfies f(H ′) = 1, contradicting (2, 2)-sparsity. Thus H ∩Hab is disconnected, and 
hence f(H∪Hab) ≤ 3 +2 −4 = 1. But since H∪Hab contains all four neighbours of v, this 
contradicts (2, 0)-sparsity. So we may assume that condition (ii) in Lemma 3.14 holds for 
(ab, αβ), (cd, γδ). Without loss of generality we may assume that there exists a balanced 
subgraph Had of (G0, ψ) containing a, d but not b, c, v with f(Had) = 2 and every path 
from a to d in Had has gain αδ. If Had ∩Hab is connected, then Had ∪Hab is balanced 
with f(Had ∪ Hab) = 2, and the subgraph H ′ of (G0, ψ) consisting of Had ∪ Hab and 
the three edges joining v with a, b and d is also balanced with f(H ′) = 1, contradicting 



260 D. Kitson et al. / Linear Algebra and its Applications 607 (2020) 231–285
(2, 2)-sparsity. Thus Had∩Hab is disconnected, and hence f(Had∪Hab) ≤ 2 +2 − 4 = 0. 
But since Had ∪Hab contains three neighbours of v, this contradicts (2, 0)-sparsity.

So without loss of generality we may assume that (bc, βγ) is an edge of (G0, ψ). Then 
the edge (bd, βδ) cannot exist in G0 (for otherwise b would have degree at most 1 in Hab

by 4-regularity of G0, a contradiction). The edge (ac, αγ) can also not exist in G0, for oth-
erwise the graph consisting of Hab and the edges (va, α), (vb, β), (vc, γ), (ac, αγ), (bc, βγ)
would be balanced and would violate (2, 2)-sparsity. So consider the reduction operation 
on v that adds (ac, αγ) and (bd, βδ). If there exists a balanced subgraph H of (G0, ψ)
that satisfies condition (iii) for the pair (ac, αγ), (bd, βδ), then, by the same argument as 
in the paragraph above, H ∩Hab is disconnected, and hence f(H ∪Hab) ≤ 3 +2 −4 = 1. 
But since H ∪Hab contains all four neighbours of v, this contradicts (2, 0)-sparsity. So 
we may assume that condition (ii) in Lemma 3.14 holds for (ac, αγ), (bd, βδ). Without 
loss of generality we may assume that there exists a balanced subgraph Hac of (G0, ψ)
containing a, c but not b, d, v with f(Hac) = 2 and every path from a to c in Hac has 
gain αγ. As in the paragraph above, we see that Hac ∩Hab is disconnected, and hence 
f(Hac ∪Hab) ≤ 2 + 2 − 4 = 0. But since Hac ∪Hab contains three neighbours of v, this 
contradicts (2, 0)-sparsity. �
3.5. Graph contractions

We now consider the existence of suitable triangles or K4’s in order to apply the 
reverse vertex splitting move or the reverse vertex-to-K4 move. After giving conditions 
on when they can be applied we will also prove a couple of technical lemmas needed in 
the next section.

Lemma 3.16. Let (G0, ψ) be a (2, 2, 0)-gain-tight gain graph. Suppose (G0, ψ) contains a 
balanced subgraph K isomorphic to K4 which induces at most one additional edge. Then 
a reverse vertex-to-K4 move at K is admissible unless there is a vertex x and edges 
(xa, α), (xb, α) for some a, b ∈ V (K).

Proof. Let K ′ denote the contraction of the graph K∗ induced by K. (So K ′ is either a 
single vertex or a single vertex with a loop.) Then f(K∗) = f(K ′) and hence the lemma 
follows from a simple counting argument. �
Lemma 3.17. Let (G0, ψ) be a (2, 2, 0)-gain-tight gain graph. Suppose (G0, ψ) contains a 
subgraph K isomorphic to K3 with V (K) = {a, b, c} and with all three edges of K having 
gain 1. Suppose the edge (ab, −1) does not exist in G0. Then a reverse vertex-splitting 
at K contracting the edge (ab, 1) is non-admissible if and only if one of the following 
conditions holds:

(i) there is a subgraph H0 of G0 containing a, b and the edge (ab, 1), but not c, with 
f(H0) = 0;
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(ii) there is a balanced copy of K3 containing a, b and some vertex d 
= c;
(iii) there is a balanced subgraph H0 of G0 containing a, b and the edge (ab, 1) with 

f(H0) = 2, and if H0 contains c then it does not contain the edges (ca, 1) and 
(cb, 1);

(iv) there are loops incident to both a and b, or both edges (ac, −1) and (bc, −1) exist.

Proof. If any one of these conditions holds then it is clear that v is not admissible. 
Conversely, suppose the reverse vertex-splitting at K contracting the edge (ab, 1) is non-
admissible. Let (G′

0, ψ
′) be the gain graph resulting from this reverse vertex-splitting 

move and let a be the vertex of (G′
0, ψ

′) corresponding to the vertex pair a and b in 
(G0, ψ). Then either the covering graph of (G′

0, ψ
′) is not simple, or there is a subgraph H ′

0
of (G′

0, ψ
′) with f(H ′

0) < 0, or there is a balanced subgraph of (G′
0, ψ

′) with f(H ′
0) < 2. 

In the first case (ii) or (iv) holds. In the second case, H ′
0 clearly contains a, but it cannot 

contain c, for otherwise f(H0) = f(H ′
0) < 0 if (ca, 1) ∈ E(H ′

0) or f(H0 ∪ {(ca, 1)}) =
f(H ′

0) < 0 if (ca, 1) /∈ E(H ′
0), where H0 is the subgraph of (G0, ψ) that is obtained from 

H ′
0 by the vertex splitting move at a. Thus, H0 contains a, b and the edge (ab, 1), but 

not c, and satisfies f(H0) = 0. In the third case, the balanced H ′
0 again clearly contains 

a. If it contains c and (ca, 1) then f(H0) = f(H ′
0) < 2, a contradiction. So if H ′

0 contains 
c then it does not contain (ca, 1). Thus, H0 contains a, b and the edge (ab, 1), and if H0
contains c then it does not contain the edges ca and cb. Moreover, H0 is balanced with 
f(H0) = 2. �

We now follow the approach in [12]. Define a triangle sequence T1, T2, . . . , Tn where 
T1 is a triangle on vertices a, b, c and Ti+1 is formed from Ti by adding a vertex of 
degree 2 adjacent to two vertices x, y of Ti such that xy ∈ E(Ti) and x, y are in exactly 
one triangle in Ti. A triangle sequence is balanced if each Ti (or equivalently just Tn) 
is balanced. A maximal balanced triangle sequence is a balanced triangle sequence that 
cannot be extended to a larger balanced triangle sequence. A chord of Tn is an edge in 
the subgraph G0[V (Tn)] of G0 induced by V (Tn) which is not in Tn.

The following lemma is easy to deduce from the definitions.

Lemma 3.18. Let (G0, ψ) be (2, 2, 0)-gain-tight gain graph and let Tn be a balanced triangle 
sequence whose edges all have gain 1. Then f(Tn) = 3 and Tn has at most 3 chords. 
Moreover, if three chords exist, at least two of them have gain −1.

In the next lemma we show that there exists an edge for which conditions (ii) and 
(iv) of Lemma 3.17 do not hold, provided that the maximal balanced triangle sequence 
has enough vertices.

Lemma 3.19. Let (G0, ψ) be (2, 2, 0)-gain-tight and let Tn be a maximal balanced triangle 
sequence. Suppose |V (Tn)| ≥ 6. Then there exists an edge of Tn with the properties that 
it does not have a parallel edge, its end vertices are not both incident to a loop, and it is 
contained in exactly one balanced triangle in (G0, ψ).
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Proof. Since Tn is balanced we may assume that the gain on every edge of Tn is 1. Let 
s1, s2, . . . , sr be the edges of Tn contained in exactly one triangle in Tn.

We first show that the si form a simple cycle spanning V (Tn). This can be verified 
by induction. It clearly holds for n = 1. Suppose it holds for all m < n and consider 
Tn. Let Tn be formed from Tn−1 by adding a triangle on a, b, c such that a, b ∈ V (Tn−1)
and c /∈ V (Tn−1). Then by induction there is a simple spanning cycle C in Tn−1 with 
ab ∈ C. We construct the simple spanning cycle for Tn by removing the edge ab from C
and adding the edges ac, cb to C.

By Lemma 3.18, Tn has at most 3 chords, and at most one them has gain 1. Let C be 
the simple cycle spanning V (Tn) consisting of the edges s1, s2, . . . , sr. Since V (C) has 
at least 6 vertices, C has at least 6 edges. We say that an edge of C is blocked if it has 
a parallel edge, or its endvertices are both incident to a loop, or it is contained in more 
than one balanced triangle in (G0, ψ). We claim that C contains at least one edge that 
is not blocked.

Note that a chord with gain 1 can block at most three edges of C. A chord with gain 
−1 can block at most one edge of C, since it cannot create a balanced triangle on its 
own, but it could be parallel to an edge of C. Further, two non-loop chords with gain 
−1 only create a balanced triangle if they are of the form (cd, −1) and (ce, −1) for some 
c, d, e ∈ V (Tn). In this case at most one edge of C is contained in a triangle with these 
two chords. Thus, two non-loop chords with gain −1 can block at most two edges of 
C. Similarly, three non-loop chords with gain −1 can block at most three edges of C. 
Finally, two chords that are loops can block at most one edge of C, and three chords 
that are loops can block at most two edges of C.

So if at least two of the three chords are loops, then there are at most 4 blocked edges 
in C. So suppose exactly one of the chords is a loop. Since at most one of the remaining 
two chords can have gain 1, it follows that there are again at most 4 blocked edges in 
C. Finally, if none of the chords is a loop, then there are at most 5 blocked edges in C. 
Thus there exists an edge of C that is not blocked, as claimed. �
3.6. The inductive construction

We can now put together our results to prove the desired characterisation of (2, 2, 0)-
gain-tight gain graphs.

Theorem 3.20. Let (G0, ψ) be a gain graph. Then (G0, ψ) is (2, 2, 0)-gain-tight if and 
only if (G0, ψ) can be generated from vertex disjoint copies of graphs in B by applying 
H1, H2, H3, vertex-to-K4 and vertex splitting moves.

Proof. The easy direction is given by Lemma 3.7. For the converse, observe first that 
if (G0, ψ) is disconnected then every connected component of (G0, ψ) is (2, 2, 0)-gain-
tight. So we will prove that an arbitrary connected (2, 2, 0)-gain-tight gain graph has an 
admissible reverse move which results in another (possibly disconnected) (2, 2, 0)-gain-
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tight gain graph with fewer vertices, or is one of the base graphs in B. The theorem then 
follows by induction on |V0|.

So from now on we will assume that (G0, ψ) is connected. Observe that (G0, ψ) is 
either 4-regular or contains a vertex of degree 2 or 3. We consider the following cases.

Case 1. G0 contains a vertex with two incident edges or a degree 3 vertex with exactly 
two neighbours, which is not contained in a subgraph isomorphic to R.

Lemmas 3.8 and 3.10 show that there exists an admissible reverse move.

We can now assume that Case 1 does not hold. In the following, we let K̂4 be the 
(2, 2, 0)-gain-tight gain graph consisting of a balanced K4 as well as one additional vertex 
x and the four edges (xa, 1), (xa, −1), (xb, 1), (xb, −1) where a and b are distinct vertices 
of the K4.

Case 2.a. G0 contains a degree 3 vertex v with exactly 3 neighbours and v is not 
contained in a subgraph isomorphic to K+

4 or K̂4.

Lemma 3.9 implies v is admissible or v is contained in a balanced subgraph K iso-
morphic to K4. By Lemma 2.17 we may assume every edge of K has gain 1. Note that 
K is an induced subgraph of G0. If K is not admissible to contract then Lemma 3.16
implies there is a vertex x and edges (xa, α), (xb, α) for a, b ∈ V (K). We may apply 
Lemma 2.17 again at x to make α = 1. Now we have a balanced K3 on x, a, b. We will 
denote a balanced K3 on vertices r, s, t by K3(r, s, t).

Consider a maximal balanced triangle sequence T1 = K3(v, a, c), T2 = T1 ∪
K3(a, b, c), T3 = T2∪K3(a, b, x), . . . , Tn (where c is the final vertex of K). By Lemma 2.17
we may assume every edge of Tn has gain 1. By Lemma 3.17 an edge (rs, 1) in a K3(r, s, t)
in Tn, with (rs, −1) not an edge of G0, is non-admissible in G0 for a reverse vertex-
splitting move if and only if condition (i), (ii), (iii) or (iv) holds.

We claim that there exists an edge in Tn for which (ii) and (iv) does not hold. This 
follows from Lemma 3.19 if |V (Tn)| ≥ 6. If |V (Tn)| = 5, then Tn is uniquely deter-
mined, and since K is an induced subgraph of G0, and v is not contained in a subgraph 
isomorphic to K̂4, the existence of such an edge in Tn can easily be verified by inspection.

So let (rs, 1) be an edge of Tn for which (ii) and (iv) do not hold. Let t be the 
third vertex of the unique balanced triangle containing (rs, 1). If there is a subgraph 
H0 satisfying (i) then we contradict the (2, 0)-sparsity of G0 as follows. Since t has two 
neighbours (namely r and s) in H0, clearly any other neighbour of t in Tn is not in 
H0. Note that Tn contains a balanced triangle of the form K3(r, t, w) or of the form 
K3(s, t, w′) (or both). Suppose that K3(r, t, w) exists in Tn. Then we may repeat the 
above argument for w and the subgraph H ′

0 which is obtained from H0 by adding t
and the edges (tr, 1) and (ts, 1) to see that any neighbour of w in Tn (other than r and 
t) is not in H ′

0. By iterating this argument we conclude that none of the vertices of 
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V (Tn) \ {r, s} are in H0. It now follows that H0 ∪ Tn ∪ (vb, 1) violates (2, 0)-sparsity. 
Thus, (i) also does not hold for (rs, 1).

Finally, we show that there is no balanced subgraph H0 satisfying (iii) for the edge 
(rs, 1). Suppose to the contrary that there does exist such a subgraph H0.

If t /∈ V (H0) then we claim that none of the neighbours of t in Tn (except for r and s) 
are in H0. To see this, we suppose for a contradiction (with the notation of the previous 
paragraph) that w ∈ V (H0). Then either (wr, 1) ∈ E(H0) or (wr, 1) /∈ E(H0). In the 
first case adding t and its 3 incident edges to H0 contradicts (2, 2, 0)-gain-sparsity, so the 
latter case must hold. In this case, there exists a path from r to w in H0 which has gain 
−1, for otherwise adding the edge (wr, 1) to H0 yields a graph that violates (2, 2, 0)-gain-
sparsity. By the balancedness of H0, all paths from r to w in H0 have gain −1. Since all 
edges of Tn have gain 1, it follows that Tn ∩H0 is disconnected, with r and w being in 
different connected components. If Tn ∩H0 has more than two connected components, 
or if any edge incident to w is in Tn ∩ H0, then, since (rs, 1) ∈ Tn ∩ H0, we have 
f(Tn∩H0) ≥ 3 +3 = 6. In this case we have f(Tn∪H0) ≤ 3 +2 −6 < 0, a contradiction. 
So suppose Tn ∩ H0 has exactly two connected components and one of them consists 
only of w. Then we only have f(Tn ∩H0) ≥ 3 + 2 = 5 and f(Tn ∪H0) ≤ 3 + 2 − 5 = 0. 
We claim that in this case the edge (vb, 1) is not in H0. Suppose to the contrary that 
(vb, 1) ∈ E(H0). Then (rs, 1), v and b must belong to the same connected component 
of Tn ∩ H0, and hence there either exists a vertex y ∈ Tn ∩ H0, y 
= s, w, such that 
(ry, 1) ∈ Tn∩H0, or there exists a vertex z ∈ Tn∩H0, z 
= r, w, such that (sz, 1) ∈ Tn∩H0. 
In the first case, we must have (wy, 1) ∈ Tn \H0, and in the second case we must have 
(tz, 1) ∈ Tn\H0. Thus, by adding the vertex t and the edges (tr, 1), (ts, 1), (wr, 1), (wt, 1)
together with the fifth edge (wy, 1) ((tz, 1), respectively) to H0 we obtain a graph that 
violates (2, 2, 0)-gain-sparsity. Hence (vb, 1) is not in H0 and Tn ∪ H0 ∪ (vb, 1) violates 
(2, 2, 0)-gain-sparsity. Thus, as claimed, any neighbour of t in Tn (other than r and s) is 
not in H0. We may now continue this argument as in the paragraph above to show that 
none of the vertices of V (Tn) \ {r, s} are in H0. It follows that Tn ∪H0 ∪ (vb, 1) violates 
(2, 2, 0)-gain-sparsity.

So we may assume that t ∈ V (H0). Then, by condition (iii), the edges (tr, 1), (ts, 1)
are not in H0. The maximal balanced triangle sequence Tn contains a balanced triangle 
of the form K3(r, t, w) or of the form K3(s, t, w′) (or both). As above, we assume that 
K3(r, t, w) exists. Suppose first that w ∈ V (H0). Then the edges (wt, 1) and (wr, 1) are 
also both in H0. (If not, say (wt, 1) /∈ E(H0), then the graph obtained from H0 by adding 
the edges (tr, 1), (ts, 1), (wt, 1) violates (2, 0)-sparsity.) Since the edges (wt, 1) and (wr, 1)
form a path of gain 1 from r to t in H0, and H0 is balanced, every path from r to t in 
H0 has gain 1. Thus, if we add the edge (tr, 1) to H0, then we obtain a balanced graph 
that violates the (2, 2)-sparsity of G0, a contradiction.

So we may assume that w /∈ V (H0). Let H ′
0 be the graph obtained from H0 by adding 

the edges (tr, 1) and (ts, 1). Then f(H ′
0) = 0. Since w has two neighbours (namely r

and t) in H ′
0, clearly any other neighbour of w in Tn is not in H ′

0. Using again the same 
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Fig. 6. The graph consisting of some k ≥ 2 copies of K4 which all intersect in a single vertex and that 
vertex is incident with one loop. This family of graphs gives the only additional isomorphism classes that 
can occur in the modified list of Wi’s. Gain labels omitted.

iteration argument from above, we conclude that none of the vertices of V (Tn) \ {r, s, t}
are in H ′

0. It now follows that H ′
0 ∪ Tn ∪ (vb, 1) violates (2, 0)-sparsity.

Thus, in Case 2a there exists an admissible reverse move.

Case 2.b. G0 contains a degree 3 vertex, and every degree 3 vertex in G0 is contained 
in an induced subgraph isomorphic to R, K+

4 , K++
4 or K̂4.

Every vertex of degree 3 is contained in an induced subgraph Wi isomorphic to K+
4

or in an induced subgraph Zj isomorphic to either R, K̂4, or a graph K++
4 from Figs. 1

(d)-(g). Since f(K+
4 ) = 1 and f(R) = f(K̂4) = f(K++

4 ) = 0 we say the former are type 
1 and the latter are type 0. Let W1, . . . , Wr′ be all such type 1 induced subgraphs and 
Z1, . . . , Zs′ be all such type 0 induced subgraphs.

Note that for all 1 ≤ i ≤ s′, any proper non-empty subgraph H of Zi has f(H) ≥ 1. 
Now, for any pair of subgraphs Zi, Zj we have that Zi and Zj are necessarily vertex 
disjoint. If not then f(Zi ∩ Zj) > 0 and hence f(Zi ∪ Zj) < 0, which would contradict 
the (2, 2, 0)-sparsity of G0. Next, for all 1 ≤ j ≤ r′, any proper non-empty subgraph 
Y of Wj is either a loop or has f(Y ) ≥ 2. Thus, for any pair of subgraphs Zi, Wj we 
have that either the intersection is a loop, or Zi and Wj are vertex disjoint. If not then 
f(Zi ∩ Wj) ≥ 2 and hence f(Zi ∪ Wj) = 1 − f(Zi ∩ Wj) < 0, contradicting (2, 2, 0)-
sparsity. Lastly, for any pair of subgraphs Wi, Wj with non-empty intersection, we must 
have f(Wi ∩ Wj) ∈ {1, 2}. This implies that Wi ∩ Wj is either empty, a loop, or has 
f(Wi ∩ Wj) = 2. Moreover in the case when f(Wi ∩ Wj) = 2, then Wi ∩ Wj is either 
a double edge or a single vertex. (The case when Wi ∩Wj is a copy of K4 would mean 
either i = j or would contradict the fact that Wi and Wj are induced subgraphs of G0. 
Similarly, the cases when Wi∩Wj is a triangle plus an edge, or an edge plus a loop would 
contradict the (2, 2, 0)-gain sparsity of G0.)

We next modify our lists W1, . . . , Wr and Z1, . . . , Zs until any pair Wi, Wj and any 
pair Zi, Wj are vertex disjoint. First, whenever a pair of Wi and Wj intersect in a double 
edge or a single vertex, then we discard them and add the union of Wi and Wj as a new 
Zm. If this process is iterated, then the new list of Wi’s and Zi’s has the property that 
any two elements in the list either do not intersect or intersect in a loop. Whenever a 
pair of Wi and Wj in the list intersect in a loop, then we discard them and add the union 
of Wi and Wj as a new W�, and whenever a pair of Wi and Zj intersect in a loop then 
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Fig. 7. Additional isomorphism classes that can occur in the first step of the modified list of Zj ’s. Gain 
labels omitted.

−1

−1

−1 −1

−1

−1

−1 −1

Fig. 8. An additional isomorphism class that can occur in the first step of the modified list of Zj ’s and the 
result, R, of a reverse vertex-to-K4 move applied to this graph. Omitted gain labels are equal to 1.

we discard them and add the union of Wi and Zj as a new Zk. This process is iterated 
until the final list of all Wi’s and Zi’s has the desired property that any two elements 
in the list are vertex disjoint. (The additional Wi’s at any step of the process and the 
additional Zi’s from step 1 of this process are as depicted in Figs. 6 and Figs. 7 and 8.)

Let U and F be the sets of vertices and edges of G0 which are in none of the Wi and 
in none of the Zj . Associate with G0 an auxiliary (multi)graph G∗

0 which has a vertex 
for each Wi, a vertex for each Zi and a vertex for U and has an edge corresponding 
to each edge of G0 of the form xixj , where xi, xj are taken from distinct elements of 
V (G∗

0) = {W1, . . . , Wr, Z1, . . . , Zs, U}. Also define G−
0 to be the simple graph which is 

obtained from G∗
0 by removing any parallel edges.

The connectivity of G0 implies that G−
0 is connected. Suppose |V (G−

0 )| = 1. Then 
G0 is a copy of some Zj . If G0 = K̂4 then we may apply a reverse H3d move. If G0 is a 
union of two K+

4 graphs which intersect in a double edge then we may apply a reverse 
vertex-to-K4 move (see Fig. 8). If G0 is not a base graph then by the iteration process 
above, it follows in all remaining cases that G0 contains a cut-vertex that separates an 
induced subgraph isomorphic to K+

4 from the rest of the graph. It is now clear that we 
may use Lemma 3.16 to apply a reverse vertex-to-K4 move to a K+

4 subgraph of G0. 
Thus, we may suppose that |V (G−

0 )| > 1.
Suppose r = 0. Let G0[U ] denote the subgraph of G0 induced by U . Note that since 

f(Zi) = 0 for each i, no two Zi can be adjacent (by the (2, 2, 0)-gain-sparsity of G0). 
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Similarly, there is at most one edge between a Wi and a Zj and at most two edges 
between a Wi and a Wk. Since G−

0 is connected, it follows that G−
0 is the graph K1,s

where s ≥ 1. Moreover, we have

f(G0[U ]) − d(U, V0 − U) =
s∑

i=1
f(Zi) + f(G0[U ]) − d(U, V0 − U) = f(G0) = 0.

Since every vertex in U has degree at least 4 in G0, by Lemma 3.4 we have,

d(U, V0 − U) ≥ 2f(G0[U ]) = 2d(U, V0 − U).

Thus d(U, V0 − U) = 0, a contradiction.
Now suppose r > 0. Recall that each Wi is a K+

4 or is of the form illustrated in Fig. 6. 
Hence, if any Wi is not incident to two parallel edges in G∗

0 then we may contract a copy 
of K+

4 to a loop by Lemma 3.16. So we suppose that every Wi is incident to two parallel 
edges in G∗

0.
We calculate

f(G0) =
r∑

i=1
f(Wi) +

s∑
j=1

f(Zj) + 2|U | − |F |, (4)

which implies that |F | = 2|U | + r.
Suppose first that every Wi and every Zj is incident to at least two edges in F . Since 

each vertex in U has degree at least 4, there are at least 4|U | + 2(r + s) edge/vertex 
incidences in F . This implies |F | ≥ 2|U | + r + s, and hence s = 0. By a similar counting 
argument, if some Wi is incident to more than two edges in F then there are at least 
4|U | +2(r−1) +3 edge/vertex incidences in F . This implies |F | > 2|U | +r, a contradiction. 
Thus each Wi has degree exactly 2 in G∗

0. This implies that either G0 is the disjoint union 
of W1 and W2 with two edges between them, or, G−

0 is the graph K1,r. In the former 
case, there is an admissible reverse vertex-to-K4 move which contracts a copy of K+

4 to 
a loop. So suppose G−

0 is K1,r. In this case, every v ∈ U has degree exactly 4. We may 
assume that every Wi is a copy of K+

4 and that for every Wi there exists a vertex in U
that is joined to two vertices in Wi by edges with identical gains. (Otherwise, there is 
an admissible reverse vertex-to-K4 move.)

Let v ∈ U be adjacent to two vertices in some Wi. Then there is balanced copy of 
K3 containing v and two vertices a, b of Wi. We may assume the gains on this copy of 
K3 are all 1. We now apply Lemma 3.17 to show that there is an admissible reverse 
vertex-splitting move that contracts either (va, 1) or (vb, 1). Since Wi is a copy of K+

4
at most one of a, b can have a loop. We suppose there is no loop on a and consider 
the contraction of (va, 1). It follows from Lemma 3.17 that if (va, 1) is non-admissible 
then there is either a subgraph H0 containing v, a and the edge (va, 1) but not b with 
f(H0) = 0 or a balanced subgraph H0 containing v, a and the edge (va, 1) with f(H0) = 2
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and if H0 contains b then it does not contain the edges (ba, 1) and (vb, 1). In both cases 
it is easy to deduce from the structure of G0 that such an H0 cannot exist.

So we suppose that there is a Zj which is incident to only one edge in F . If a Wi

is joined to another Wk by two edges, then we discard them and add the union of Wi

and Wk together with the two extra edges as a new Zm. Similarly, if a Wi is joined to 
a Zk by one edge, then we discard them and add the union of Wi and Zk together with 
the extra edge as a new Z�. Note that these new Zi cannot be adjacent for the same 
reasons as before. Then the graph G−

0 corresponding to this new underlying structure 
of G0 contains the graph K1,t as a spanning subgraph, where the vertices in the partite 
set of size t = b + c correspond to the graphs W1, . . . , Wb and Z1, . . . , Zc, and the vertex 
in the other partite set corresponds to U . If G−

0 is not equal to K1,t, then the additional 
edges must join vertices corresponding to the Wi, and these edges represent single edges 
among pairs of Wi in G∗

0. We call this set of edges A. Note that in G∗
0, for each Wi there 

are two parallel edges joining Wi to U , and for each Zj there is one edge joining Zj to U . 
There may be additional edges joining a Wi with U or a Zj with U , and we denote this 
set of additional edges by B. Hence we have f(G0[U ]) = b + c + d, where d = |A| + |B|. 
Thus, by Lemma 3.4, we have d(U, V0 − U) ≥ 2(b + c + d). But there are only exactly 
2b + c + d − |A| edges incident to U , so we have |A| = c = d = 0, and c = 0 contradicts 
our assumption that there exists a Zj .

Thus, in Case 2b there exists an admissible reverse move.
Henceforth we may assume that G0 is 4-regular. First let us deal with two special 

possible subgraphs of G0.

Case 3.a. There exists a balanced subgraph isomorphic to either a balanced copy 
of K1,1,3, or, to a balanced copy of K4 which neither induces additional edges nor is 
contained in a copy of K5 − e.

Suppose that G0 contains an induced balanced copy of K4. By switching we may 
assume that all edges of the K4 have gain 1. By Lemma 3.16 and the assumptions of this 
case, if a reverse vertex-to-K4 move is not admissible then there is a vertex s adjacent 
to exactly two of the K4 vertices such that K4 ∪ s is balanced. Consider the vertex 
s in K4 ∪ s. Since G0 is 4-regular and K4 is not contained in K5 − e, s has either a 
neighbour not in the K4 with two parallel edges to s, or two neighbours not in the 
K4, or a loop on s. (These three possibilities are illustrated in Fig. 9(a).) In the first 
case we can use Lemma 3.13 to conclude that s is admissible and in the second case 
we can use Lemma 3.15 to conclude that s is admissible. In the third case we may use 
Lemma 3.17. Let r, t be the neighbours of s in G0. By switching, we may assume that 
(sr, 1) and (st, 1) are edges in G0. Consider the contraction of the edge (sr, 1). Since G0
is 4-regular, conditions (ii) and (iv) of Lemma 3.17 evidently fail. Condition (i) fails by 
Lemma 3.3. Finally, since G0 is 4-regular and any balanced subgraph H0 with f(H0) = 2
cannot have a vertex of degree 1, condition (iii) also fails.

Suppose then that G0 contains a balanced copy of K1,1,3 and does not contain an 
induced balanced copy of K4. By switching, we may assume that all edges of K1,1,3 have 
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s
s

(a)

s

(b)

Fig. 9. (a) The possibilities in Case 3.a when G0 contains an induced balanced copy of K4 and (b) the 
possibilities when G0 contains an induced balanced copy of K1,1,3.

gain 1. Then each degree 2 vertex in the K1,1,3 is either incident to a double edge joining 
it to a third vertex, or to two single edges joining it to a third and fourth vertex, or to 
a loop. (These three possibilities are illustrated in Fig. 9(b).) If there is a vertex of the 
first or the second type, then we may apply Lemma 3.13 or Lemma 3.15, respectively, 
to show that there exists an admissible reverse move. So suppose each of the degree 2 
vertices of K1,1,3 is incident to a loop. Since K1,1,3 with three loops is 4-regular, it must 
be equal to G0. We show there is a contraction using Lemma 3.17. Let r and s be the 
vertices corresponding to the two partite sets of K1,1,3 of size 1, and let t be a vertex 
incident to a loop. We will contract the edge (rt, 1). Lemma 3.3 implies that (i) fails and 
again (ii) and (iv) clearly fail. To see that (iii) fails note simply that every subgraph H
with no loops satisfies f(H) ≥ 3.

Case 3.b. There exists a vertex not contained in a balanced subgraph isomorphic to 
K4 or to K1,1,3.

We consider each of the possibilities for the neighbourhood of a given vertex v in G0
satisfying the hypotheses of this case.

Suppose first that v has exactly one neighbour. Since G0 
= 2K1
2 and G0 is connected, 

Lemma 3.11 implies that v is admissible. Suppose next that v has either exactly three 
or exactly four neighbours. Then Lemmas 3.13 and 3.15 imply that v is admissible.

So we suppose that v has exactly two neighbours. Suppose first that there is no loop 
on v. Let N(v) = {x, y}. Lemma 3.12 implies that if v is not admissible then there is a 
loop at x or at y, say at x. Since G0 is 4-regular we see that x satisfies the condition of 
Lemma 3.11 and hence there is an admissible reverse move.

So suppose that v has exactly two neighbours x, y and a loop on v. By switching, we 
may assume that (vx, 1) and (vy, 1) are the non-loop edges incident to v. We consider a 
possible H2d-reduction at v. If every vertex of G0 is incident with a loop and has two 
neighbours then it is easy to see that G0 is precisely a cycle with one loop on each vertex. 
If the cycle has length 3 then G0 is a base graph. If the cycle has length at least 4 then 
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Fig. 10. Possible structures of G when v has two neighbours and a loop and one of its neighbours has 4 
distinct neighbours.

it is easy to see that there is no balanced subgraph H0 of G0 − v containing x, y with 
f(H0) = 2 such that all walks from x to y have gain 1. Hence v is admissible.

So we may suppose there is some vertex in G0 which is not incident to a loop. By 
4-regularity of G0 and by relabelling if necessary, we may suppose that x is such a vertex. 
Since x is adjacent to v with exactly one edge and x does not have a loop, x may have 
either 3 or 4 neighbours.

If x has 3 neighbours then 4-regularity implies that x is not contained in a K4. Hence 
Lemma 3.13 implies that x, or one of its neighbours, is admissible. So we suppose that 
x has 4 distinct neighbours. If the edge (xy, 1) exists, then we may contract the edge 
vx using Lemma 3.17. (The structure of G0 makes all four conditions in that lemma 
easy to rule out.) So suppose (xy, 1) does not exist. If (xy, −1) exists then we claim that 
x is admissible. If not, then it follows from Lemma 3.15 that x must be in a balanced 
K4. This K4 must consist of the vertices x, y, a, b. By switching we may assume that the 
three edges joining x with a, b and y all have gain −1 and that the remaining edges 
of the K4 have gain 1. Note that every path from x to y within the K4 has gain −1. 
This implies that there is no balanced subgraph Hxy of G0 − v containing x and y with 
f(Hxy) = 2 such that each path from x to y in Hxy has gain 1. Since there is clearly also 
no subgraph H0 of G0 − v containing x and y with f(H0) = 0, this implies that there is 
a H2d-reduction at v, contradicting our assumption that v is non-admissible.

So we may suppose that x is not adjacent to y. By Lemma 3.15 x is either in a 
balanced K1,1,3, which gives an immediate contradiction, or x is in a balanced K4. In 
the latter case, since we are not in Case 3.a, either the K4 induces exactly one additional 
edge and we can apply a reverse vertex-to-K4 move by Lemma 3.16 (since the additional 
edge cannot be a loop, by 4-regularity of G0), or the K4 is contained in a copy of K5−e.

Let the vertices of the K4 be a, b, c, x and suppose all edges of the K4 have gain 1. 
If the final vertex of the K5 − e is y then V (G0) = {v, x, y, a, b, c} (see Fig. 10(a)) and 
we claim that y is admissible. To see this, note that exactly one or exactly two of the 
edges joining y with a, b, c have gain −1, for otherwise K4 together with the three edges 
incident with y would violate (2, 2)-sparsity. Hence in both cases, y is admissible by 
Lemma 3.15.
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So we may assume that the final vertex of the K5 − e is z 
= y. Suppose first that z
is adjacent to y (see Fig. 10(b)). Then we claim that y is still admissible. Clearly y is 
adjacent to v and z. If y is also incident to a loop, then V (G0) = {v, x, y, a, b, c, z} and 
it is easy to see that a H2d-reduction is possible at y. If y is incident to two parallel 
edges joining it with a vertex u 
= v, z then y, or one of its neighbours, is admissible by 
Lemma 3.13 and the 4-regularity of G0. If y is incident to two single edges joining it with 
vertices u and w that are distinct from v and z, then y is admissible by Lemma 3.15 and 
the 4-regularity of G0. So we may suppose that z is not adjacent to y (see Fig. 10(c)). 
Then z is admissible by Lemma 3.15 and the 4-regularity of G0.

Case 3.c. Every vertex is contained in a balanced subgraph isomorphic to K4 plus 
either one or two additional edges or K5 − e.

If G0 contains a K++
4 as a subgraph then G0 = K++

4 , by 4-regularity of G0. In this 
case G0 is the base graph depicted in Fig. 1(h). So we may assume that every vertex of 
G0 is contained in a subgraph isomorphic to K+

4 (which cannot have a loop) or K5 − e. 
Since G0 is 4-regular any pair of copies of K+

4 or K5 − e are vertex disjoint, and each 
copy has exactly two edges incident to it. If G0 contains a copy of K+

4 then we can apply 
a reverse vertex-to-K4 move by Lemma 3.16. (Note that since every vertex is in a K+

4
or a K5 − e, and G0 is 4-regular, there cannot exist a vertex outside of the K+

4 that is 
adjacent to two of the vertices of the K+

4 .) Hence we may suppose that G0 contains no 
copies of K+

4 . Thus we may assume that we have a copy of K5 − e. If G0 = K5 then it 
is elementary to apply Lemma 3.15 to find an admissible reduction. Hence G0 does not 
contain a copy of K5. Suppose e = xy and note that if x (resp. y) is not admissible, then 
by Lemma 3.15 x (resp. y) must be contained in a balanced K4. However, if x and y are 
both contained in balanced K4’s, then the K5−e is the union of two balanced subgraphs 
and is hence balanced by Lemma 3.2, contradicting (2, 2)-sparsity. �
4. Application to C2-symmetric frameworks in the �1 and �∞-plane

Let ‖ · ‖P be a norm on R2 with the property that the closed unit ball P = {x ∈ R2 :
‖x‖P ≤ 1} is a quadrilateral (e.g. the �1 or �∞ norms). We refer to bar-joint frameworks in 
this context as grid-like. In this section, the results of the previous sections are combined 
to obtain geometric and combinatorial characterisations of χ-symmetric isostaticity and 
infinitesimal rigidity for C2-symmetric grid-like frameworks.

4.1. Framework colourings

Let (G, p) be a well-positioned grid-like bar-joint framework and let F ∈ {±F1, ±F2}
be one of the four facets of the quadrilateral P. An edge vw ∈ E is said to have framework 
colour F (equivalently, −F ) if either pv −pw or pw −pv lies in the cone {x ∈ R2 : x

‖x‖P ∈
F}. Recall that, since (G, p) is well-positioned, each edge of G has exactly one framework 
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colour (see [5]). Denote by GF the monochrome subgraph of G spanned by edges with 
framework colour F .

For each facet F there exists a unique extreme point F̂ of the polar set P	 = {y ∈
R2 : x · y ≤ 1, ∀ x ∈ P} such that F = {x ∈ P : x · F̂ = 1}. Define a linear functional 
ϕF : R2 → R by setting ϕ(x) = x · F̂ , for all x ∈ R2. If (G, p) is well-positioned and 
vw ∈ GF then it can be shown (see [5]) that the linear functional ϕv,w described in 
Lemma 2.1 satisfies ϕv,w = ϕF .

If G = (G, p, θ, τ) is a C2-symmetric grid-like bar-joint framework, then each edge 
e ∈ E shares the same framework colour as its image −e. By assigning this common 
framework colour to the edge orbit [e] = {e, −e} we induce a framework colouring on 
the edges of the quotient graph G0. Denote by GF,0 the monochrome subgraph of G0

spanned by edges [e] with framework colour F .

Example 4.1. Consider the �∞ plane. The unit ball P = {x ∈ R2 : ‖x‖∞ ≤ 1} has four 
facets: F1 = {(x1, x2) ∈ P : x1 = 1}, F2 = {(x1, x2) ∈ P : x2 = 1} and their negatives. 
The polar set of P is the �1 unit ball P	 = {x ∈ R2 : ‖x‖1 ≤ 1}, and the extreme 
points of the polar set are F̂1 = (1, 0), F̂2 = (0, 1) and their negatives. Fig. 1 illustrates 
several examples of framework colourings for C2-symmetric bar-joint frameworks in the 
�∞-plane together with the induced framework colourings on their Z2-gain graphs.

A map graph is a graph in which every connected component contains exactly one 
cycle. An unbalanced map graph is a Z2-gain graph (H, ψ) such that H is a map graph 
and every cycle is unbalanced.

Theorem 4.2. Let G = (G, p, θ, τ) be a well-positioned and C2-symmetric bar-joint frame-
work in (R2, ‖ · ‖P).

(A) The following statements are equivalent.
(i) G is χ0-symmetrically isostatic.
(ii) GF1,0 and GF2,0 are edge-disjoint spanning unbalanced map graphs in G0.

(B) The following statements are equivalent.
(i) G is χ1-symmetrically isostatic.
(ii) GF1,0 and GF2,0 are edge-disjoint spanning trees in G0.

(C) The following statements are equivalent.
(i) G is infinitesimally rigid.
(ii) GF1,0 and GF2,0 both contain connected spanning unbalanced map graphs.

Proof. (A) (i) ⇒ (ii) Suppose there exists a vertex [v0] ∈ V0 \ V (GF1,0). Let ṽ0 be the 
representative vertex for [v0] in G. Choose a non-zero vector x ∈ kerϕF2 and for all 
v ∈ V (G) define,



D. Kitson et al. / Linear Algebra and its Applications 607 (2020) 231–285 273
uv =

⎧⎪⎨
⎪⎩

x if v = ṽ0,

−x if v = −ṽ0,

0 otherwise.

Then u is a non-trivial χ0-symmetric infinitesimal flex for (G, p). This is a contradiction 
since (G, p) is χ0-symmetrically isostatic. Thus every vertex of G0 must be incident to 
an edge of GF1,0. By a similar argument every vertex of G0 must be incident to an edge 
of GF2,0.

Suppose GF1,0 has a connected component H0 which is a balanced subgraph of G0. 
Then, by Lemma 2.17, we may assume that each edge of H0 has gain 1. Thus if H is 
the covering graph for H0, then there is no edge vw ∈ E(H) with v ∈ Ṽ0 and w /∈ Ṽ0. 
(Recall Section 2.8 for the definition of Ṽ0.) Choose a non-zero vector x ∈ kerϕF2 and 
for all v ∈ V (G) define,

uv =

⎧⎪⎨
⎪⎩

x if [v] ∈ V (H0) and v ∈ Ṽ0,

−x if [v] ∈ V (H0) and v /∈ Ṽ0,

0 otherwise.

Then u is a non-trivial χ0-symmetric infinitesimal flex for (G, p). This is a contradiction 
and so every connected component of GF1,0 must be an unbalanced subgraph of G0. 
Similarly, each connected component of GF2,0 is an unbalanced subgraph of G0.

By Corollary 2.20, we have |E0| = 2|V0|. Note that each connected component of GF1,0
must contain a cycle (since it is unbalanced) and so if GF1,0 has n connected components, 
H1, H2, . . . , Hn say, then |E(Hj)| ≥ |V (Hj)| for each j and,

|E(GF1,0)| =
n∑

j=1
|E(Hj)| ≥

n∑
j=1

|V (Hj)| = |V0|.

Similarly, |E(GF2,0)| ≥ |V0|. Now |E(GF1,0)| + |E(GF2,0)| = |E0| = 2|V0| and so 
|E(GF1,0)| = |V0| = |E(GF2,0)|. It follows that |E(Hj)| = |V (Hj)| for each j and so 
the connected components of GF1,0 each contain exactly one cycle. By the same argu-
ment, the connected components of GF2,0 each contain exactly one cycle. Thus GF1,0
and GF2,0 are both unbalanced spanning mapping graphs in G0.

(ii) ⇒ (i) Suppose (ii) holds and let u be a χ0-symmetric infinitesimal flex of (G, p). 
Then u−v = −uv for all v ∈ V . Let v0 ∈ V and let H1

0 and H2
0 be the connected 

components of GF1,0 and GF2,0 respectively which contain [v0] ∈ V0. Since Hi
0 contains 

a unique unbalanced cycle, there exists a path in GFi
from v0 to −v0. It follows that 

uv0 − u−v0 ∈ ∩i=1,2 kerϕFi
= {0} and so uv0 = u−v0 = −uv0 . Thus uv0 = 0. Applying 

this argument to all v ∈ V , we have u = 0 and so (G, p, θ, τ) is χ0-symmetrically 
infinitesimally rigid. Note that |E0| = 2|V0| and so G is also χ0-symmetrically isostatic.

(B) (i) ⇒ (ii) Suppose there exists a vertex [v0] ∈ V0 \ V (GF1,0). Choose a non-zero 
vector x ∈ kerϕF2 . For all v ∈ V define,
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uv =
{

x if [v] = [v0],
0 otherwise.

Then u is a non-trivial χ1-symmetric infinitesimal flex for (G, p). This is a contradiction 
and so GF1,0 is a spanning subgraph of G0. Similarly, GF2,0 is a spanning subgraph of 
G0.

Suppose GF1,0 is not connected, and let H0 be a connected component of GF1,0. 
Choose a non-zero vector x ∈ kerϕF2 and for all v ∈ V define,

uv =
{

x if [v] ∈ V (H0),
0 otherwise.

Then u is a non-trivial χ1-symmetric infinitesimal flex for (G, p), which is a contradic-
tion. Thus GF1,0 is a connected spanning subgraph of G0. Similarly, GF2,0 is a connected 
spanning subgraph of G0. By Corollary 2.20, we have |E0| = 2|V0| − 2. Note that 
|E(GF1,0)| ≥ |V0| −1 and |E(GF2,0)| ≥ |V0| −1 and so GF1,0 and GF2,0 are both spanning 
trees in G0.

(ii) ⇒ (i) Suppose (ii) holds and let u be a χ1-symmetric infinitesimal flex for G. 
Then u−v = uv for all v ∈ V . Fix v, w ∈ V . Since GF1,0 is a spanning tree in G0, there 
exists a path in GF1,0 from [v] to [w]. Thus there either exists a path P in GF1 from v to 
w or there exists a path P in GF1 from v to −w. In the former case it follows directly that 
uv − uw ∈ kerϕF1 while in the latter case it follows that uv − uw = uv − u−w ∈ kerϕF1 . 
Similarly, uv − uw ∈ kerϕF2 and so uv = uw for all v, w ∈ V . Thus u is a trivial 
infinitesimal flex and so G is χ1-symmetrically infinitesimally rigid. Since |E0| = 2|V0| −2, 
G is also χ1-symmetrically isostatic.

(C) (i) ⇒ (ii) If (G, p) is infinitesimally rigid then it is both χ0 and χ1-symmetrically 
infinitesimally rigid. By removing edge orbits from G we arrive at a spanning subgraph 
A such that (A, p) is χ0-symmetrically isostatic. By (A), AF1,0 and AF2,0 are unbalanced 
spanning map graphs in G0 and so each contains an unbalanced cycle. Similarly, (G, p)
contains a spanning subgraph B such that (B, p) is χ1-symmetrically isostatic. By (B), 
BF1,0 and BF2,0 are spanning trees in G0. Since BFi,0 is a spanning tree for i = 1, 2, there 
exists a set of edges in BFi,0 which, when added to AFi,0, form a connected unbalanced 
spanning map graph HFi,0 after removing edges to reduce the number of cycles to one. 
This gives the result.

(ii) ⇒ (i) Suppose (ii) holds. Then (G0, ψ) contains a spanning subgraph H0 such 
that the induced monochrome subgraphs HF1,0 and HF2,0 are edge-disjoint connected 
unbalanced spanning map graphs. Let H be the covering graph for H0. By (A), the 
C2-symmetric subframework (H, p) is χ0-symmetrically infinitesimally rigid. Similarly, 
note that HF1,0 and HF2,0 both contain spanning trees in H0 and so by (B), (H, p) is 
χ1-symmetrically infinitesimally rigid. It follows that (H, p), and hence also (G, p), is 
infinitesimally rigid. �
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4.2. Existence of rigid grid-like placements with half-turn symmetry

Recall from Corollary 2.20 that if G = (G, p, θ, τ) is a well-positioned, C2-symmetric 
and χ0-symmetrically isostatic bar-joint framework in (R2, ‖ · ‖P), where P is a quadri-
lateral, then the gain graph (G0, ψ) for (G, θ) is (2, 2, 0)-gain-tight. By Theorem 3.20, 
(G0, ψ) is (2, 2, 0)-gain-tight if it can be generated from vertex-disjoint copies of graphs in 
B by applying H1, H2, H3, vertex-to-K4 and vertex splitting moves. We now show that if 
there exists such a recursive construction sequence, then there exists a half-turn symmet-
ric realisation of G that is well-positioned and χ0-symmetrically isostatic in (R2, ‖ · ‖P). 
Overall, this yields the following main combinatorial result for χ0-symmetrically isostatic 
frameworks with half-turn symmetry in (R2, ‖ · ‖P).

Theorem 4.3. Let ‖ · ‖P be a norm on R2 for which P is a quadrilateral, and let (G, θ) be 
a Z2-symmetric graph. Further, let (G0, ψ) be the gain graph for (G, θ). The following 
are equivalent.

(i) There exists a C2-symmetric realisation G = (G, p, θ, τ) which is well-positioned 
and χ0-symmetrically isostatic in (R2, ‖ · ‖P);

(ii) (G0, ψ) is (2, 2, 0)-gain tight;
(iii) (G0, ψ) can be constructed from disjoint copies of base graphs in Fig. 1 by a sequence 

of H1a,b,c moves, H2a,b,c,d,e moves, H3a,b,c,d moves, vertex-to-K4 moves, and 
vertex splitting moves.

To show that (iii) implies (i), we rely on Theorem 4.2(A). We split the proof into a 
number of geometric lemmas. In these lemmas, we will use the notation of Section 2.8
and write [v] and [e] for a vertex and an edge of the gain graph (G0, ψ) for a Z2-
symmetric graph (G, θ), respectively. Moreover, we let Ṽ0 = {ṽ1, . . . , ̃vn} be a choice of 
representatives for the vertex orbits of (G, θ).

Lemma 4.4. Let (G0, ψ) and (G′
0, ψ

′) be the gain graphs of the Z2-symmetric graphs 
(G, θ) and (G′, θ′), respectively and suppose that (G0, ψ) is obtained from (G′

0, ψ
′) by a 

H1a, H1b or H1c move. If for (G′, θ′) there exists a realisation G = (G′, p′, θ′, τ) which 
is well-positioned, C2-symmetric and χ0-symmetrically isostatic in (R2, ‖ · ‖P), then the 
same is true for (G, θ).

Proof. By Theorem 4.2(A), there exists a well-positioned C2-symmetric realisation p′ of 
(G′, θ′) in (R2, ‖ · ‖P) so that the induced monochrome subgraphs G′

F1,0 and G′
F2,0 of 

(G′
0, ψ

′) are both spanning unbalanced map graphs. By Theorem 4.2(A), it now suffices 
to show that the vertex of G0 \G′

0 can be placed in such a way that the corresponding 
framework (G, p, θ, τ) is C2-symmetric and well-positioned, and the induced monochrome 
subgraphs GF1,0 and GF2,0 are both spanning unbalanced map graphs in (G0, ψ).

We fix two points x1 and x2 in the relative interiors of F1 and F2 respectively.
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Suppose first that (G0, ψ) is obtained from (G′
0, ψ

′) by a H1a move, where [v] ∈ G0\G′
0

is adjacent to the vertices [v1] and [v2] of G′
0 with respective gains γ1 and γ2. Set pw = p′w

for all vertices w of G with [w] 
= [v]. Let a ∈ R2 be the point of intersection of the 
lines L1 = {τ(γ1)pṽ1 + tx1 : t ∈ R} and L2 = {τ(γ2)pṽ2 + tx2 : t ∈ R} and let 
B(a, r) be an open ball with centre a and radius r > 0. Choose pṽ to be any point 
in B(a, r) which is distinct from {pw : w ∈ V (G′)} and which is not fixed by τ(−1). 
Set p−ṽ = τ(−1)pṽ. Then (G, p, θ, τ) is a C2-symmetric bar-joint framework and, by 
applying a small perturbation to pṽ if necessary, we may assume that (G, p, θ, τ) is well-
positioned. If r is sufficiently small then the induced framework colours for [v][v1] and 
[v][v2] are [F1] and [F2] respectively. Thus, the induced monochrome subgraphs of (G0, ψ)
are GF1,0 = G′

F1,0 ∪ {[v][v1]} and GF2,0 = G′
F2,0 ∪ {[v][v2]}. Clearly, GF1,0 and GF2,0 are 

spanning unbalanced map graphs of (G0, ψ).
If (G0, ψ) is obtained from (G′

0, ψ) by a H1b move, then the proof is completely 
analogous to the proof above.

Suppose (G0, ψ) is obtained from (G′
0, ψ

′) by a H1c move, where [v] ∈ G0 \ G′
0 is 

incident to the unbalanced loop [e] and adjacent to the vertex [z] of (G′
0, ψ

′) with gain 
γ. Let a ∈ R2 be the point of intersection of the lines L1 = {τ(γ)pz̃ + tx2 : t ∈ R} and 
L2 = {tx1 : t ∈ R} and let B(a, r) be an open ball with centre a and radius r > 0. 
Choose pṽ to be any point in B(a, r) which is distinct from {pw : w ∈ V (G′)} and which 
is not fixed by τ(−1). Set p−ṽ = τ(−1)pṽ. Then, by applying a small perturbation to pṽ
if necessary, (G, p, θ, τ) is well-positioned and C2-symmetric. Moreover, if r is sufficiently 
small, then the induced monochrome subgraphs of (G0, ψ) are GF1,0 = G′

F1,0 ∪{[e]} and 
GF2,0 = G′

F2,0 ∪ {[v][z]}. Clearly, GF1,0 and GF2,0 are unbalanced spanning map graphs 
of (G0, ψ). �
Lemma 4.5. Let (G0, ψ) and (G′

0, ψ
′) be the gain graphs of the Z2-symmetric graphs (G, θ)

and (G′, θ′), respectively and suppose that (G0, ψ) is obtained from (G′
0, ψ

′) by a H2a, 
H2b, H2c, H2d, or H2e move. If for (G′, θ′) there exists a realisation G = (G′, p′, θ′, τ)
which is well-positioned, C2-symmetric and χ0-symmetrically isostatic in (R2, ‖ · ‖P), 
then the same is true for (G, θ).

Proof. By Theorem 4.2(A), there exists a well-positioned C2-symmetric realisation p′ of 
(G′, θ′) in (R2, ‖ · ‖P) so that the induced monochrome subgraphs G′

F1,0 and G′
F2,0 of 

(G′
0, ψ

′) are both spanning unbalanced map graphs. By Theorem 4.2(A), it now suffices 
to show that the vertex of G0 \G′

0 can be placed in such a way that the corresponding 
framework (G, p, θ, τ) is C2-symmetric and well-positioned, and the induced monochrome 
subgraphs GF1,0 and GF2,0 are both spanning unbalanced map graphs in (G0, ψ).

We fix two points x1 and x2 in the relative interiors of F1 and F2 respectively.
Suppose first that (G0, ψ) is obtained from (G′

0, ψ
′) by a H2a move where [v] ∈ G0\G′

0
subdivides the edge [e] = [v1][v2] into the edges [e1] = [v][v1] and [e2] = [v][v2] with 
respective gains γ1 and γ2, and [v] is also incident to the edge [e3] with end-vertex [z]
and gain γ3. Without loss of generality we may assume that [e] ∈ G′

F ,0. Let a ∈ R2

1
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be the point of intersection of the line L1 which passes through the points τ(γ1)pṽ1 and 
τ(γ2)pṽ2 , and the line L2 = {τ(γ3)pz̃ + tx2 : t ∈ R}. Let B(a, r) be the open ball with 
centre a and radius r > 0 and choose pṽ to be a point in B(a, r) which is distinct from 
{pw : w ∈ G′} and which is not fixed by τ(−1). Set p−ṽ = τ(−1)pṽ. Then (G, p, θ, τ) is 
C2-symmetric and, by applying a small perturbation to pṽ if necessary, we may assume 
it is well-positioned. If r is sufficiently small then [e1] and [e2] have induced framework 
colour [F1] and [e3] has framework colour [F2]. The induced monochrome subgraphs of 
(G0, ψ) are GF1,0 = (G′

F1,0\{[e]}) ∪{[e1], [e2]} and GF2,0 = G′
F2,0 ∪{[e3]}. Clearly, GF1,0

and GF2,0 are spanning unbalanced map graphs of (G0, ψ).
The cases where (G0, ψ) is obtained from (G′

0, ψ
′) by a H2b or a H2c move may be 

proved completely analogously to the case above for the H2a move.
Next, we suppose that (G0, ψ) is obtained from (G′

0, ψ
′) by a H2d move where [v] ∈

G0 \ G′
0 subdivides the edge [e] = [v1][v2] into the edges [e1] = [v][v1] and [e2] = [v][v2]

with respective gains γ1 and γ2, and [v] is also incident to the unbalanced loop [e3]. 
Without loss of generality we may assume that [e] ∈ G′

F1,0. Let a ∈ R2 be the point of 
intersection of the line L1 which passes through the points τ(γ1)pṽ1 and τ(γ2)pṽ2 and 
the line L2 = {tx2 : t ∈ R}, and let B(a, r) be an open ball with centre a and radius 
r > 0. (Note that a could possibly be the centre of the rotation τ(−1), i.e. the origin.) 
Choose pṽ to be a point in B(a, r) which is distinct from {pw : w ∈ G′} and which is 
not fixed by τ(−1). Set p−ṽ = τ(−1)pṽ. Then (G, p, θ, τ) is C2-symmetric and if r is 
sufficiently small then [e1] and [e2] have induced framework colour [F1]. Moreover, by 
applying a perturbation to pṽ within B(a, r) if necessary, we may assume that [e3] has 
framework colour [F2] and that (G, p, θ, τ) is well-positioned. The induced monochrome 
subgraphs of (G0, ψ) are GF1,0 = (G′

F1,0\{[e]}) ∪ {[e1], [e2]} and GF2,0 = G′
F2,0 ∪ {[e3]}. 

Clearly, GF1,0 and GF2,0 are spanning unbalanced map graphs of (G0, ψ).
The case where (G0, ψ) is obtained from (G′

0, ψ
′) by a H2e move may be proved 

completely analogously to the case above for the H2d move. Here B(a, r) is in fact 
centred at the origin. �
Lemma 4.6. Let (G0, ψ) and (G′

0, ψ
′) be the gain graphs of the Z2-symmetric graphs 

(G, θ) and (G′, θ′), respectively and suppose that (G0, ψ) is obtained from (G′
0, ψ

′) by a 
H3a, H3b, H3c, or H3d move. If for (G′, θ′) there exists a realisation G = (G′, p′, θ′, τ)
which is well-positioned, C2-symmetric and χ0-symmetrically isostatic in (R2, ‖ · ‖P), 
then the same is true for (G, θ).

Proof. By Theorem 4.2(A), there exists a well-positioned C2-symmetric realisation p′ of 
(G′, θ′) in (R2, ‖ · ‖P) so that the induced monochrome subgraphs G′

F1,0 and G′
F2,0 of 

(G′
0, ψ

′) are both spanning unbalanced map graphs. By Theorem 4.2(A), it now suffices 
to show that the vertex of G0 \G′

0 can be placed in such a way that the corresponding 
framework (G, p, θ, τ) is C2-symmetric and well-positioned, and the induced monochrome 
subgraphs GF1,0 and GF2,0 are both spanning unbalanced map graphs in (G0, ψ).
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Fig. 11. Illustration of the proof of Claim 4.7.

First we suppose that (G0, ψ) is obtained from (G′
0, ψ

′) by a H3a move where [v] ∈
G0 \G′

0 subdivides the edge [e] = [v1][v2] into the edges [e1] = [v][v1] and [e2] = [v][v2], 
and the edge [f ] = [v3][v4] into the edges [f1] = [v][v3] and [f2] = [v][v4]. By switching 
[v1] and [v3] if necessary, we may assume without loss of generality that [e] and [f ] have 
both gain 1. The edges [e1], [e2], [f1], [f2] will then also be assigned gain 1. (The proof 
for the case where they are all assigned gain −1 is analogous.) We distinguish two cases.

Case A: [e] and [f ] belong to different induced monochrome subgraphs of G′
0, say 

[e] ∈ G′
F1,0 and [f ] ∈ G′

F2,0. Let a ∈ R2 be the point of intersection of the line L1

which passes through the points pṽ1 and pṽ2 , and the line L2 which passes through the 
points pṽ3 and pṽ4 . Let B(a, r) be an open ball with centre a and radius r > 0, and 
choose pṽ to be a point in B(a, r) which is distinct from {pw : w ∈ G′} and which 
is not fixed by τ(−1). Set p−ṽ = τ(−1)pṽ. Then (G, p, θ, τ) is C2-symmetric and, by 
applying a small perturbation to pṽ if necessary, we may assume it is well-positioned. 
If r is sufficiently small then [e1] and [e2] have induced framework colour [F1], and [f1]
and [f2] have framework colour [F2]. The induced monochrome subgraphs of (G0, ψ) are 
GF1,0 = (G′

F1,0\{[e]}) ∪{[e1], [e2]} and GF2,0 = (G′
F2,0\{[f ]}) ∪{[f1], [f2]}. Clearly, GF1,0

and GF2,0 are spanning unbalanced map graphs of (G0, ψ).
Case B: [e] and [f ] belong to the same induced monochrome subgraph of G′

0, say 
[e], [f ] ∈ G′

F1,0. We need the following claim.

Claim 4.7. Let p1, p2, p3, p4 be four distinct points in R2 such that the line segments p1p2

and p3p4 both have framework colour [F1]. Let i ∈ {1, 2, 3, 4}. Then there exists an open 
set N in R2 such that for every point pv ∈ N , the line segment pvpi has framework 
colour [F2] and the three line segments pvpj with j ∈ {1, 2, 3, 4}, j 
= i, have framework 
colour [F1].

Proof. Without loss of generality we may assume that p1 lies to the left of p2, and p3

lies to the left of p4 (see Fig. 11 for an illustration). Moreover we may assume that i = 4.
We need to find an open set N which lies within the two shaded areas in Fig. 11. 

Note that the shaded area on the left hand side of Fig. 11 is connected, and unbounded 
from below and above. The shaded area on the right hand side of Fig. 11 is also con-
nected, and unbounded from the left and right. Since p1, p2, p3, p4 are distinct points, 
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the shaded areas will always have a nontrivial intersection, and we may choose N within 
that intersection. �

Suppose first that [e] and [f ] lie on a common (unbalanced) cycle in G′
F1,0. Without 

loss of generality, we may assume that this cycle consists of a path P1 from [v2] to [v3]
with an odd number of edges with gain −1, and a path P2 from [v1] to [v4] with an even 
number of edges with gain −1. Then we choose pṽ to be a point which is distinct from 
{pw : w ∈ G′}, not fixed by τ(−1), and such that (G, p, θ, τ) is well-positioned and in 
(G0, ψ) the edges [e1], [e2], [f1] have framework colour [F1], and [f2] has framework colour 
[F2]. Such a position for pṽ exists by Claim 4.7. The induced monochrome subgraphs 
of (G0, ψ) are GF1,0 = (G′

F1,0\{[e], [f ]}) ∪ {[e1], [e2], [f1]} and GF2,0 = (G′
F2,0) ∪ {[f2]}. 

Clearly, GF2,0 is a spanning unbalanced map graph of (G0, ψ). As for GF1,0, note that the 
removal of [e] and [f ] from G′

F1,0 breaks the connected component of G′
F1,0 containing [e]

and [f ] into the two disjoint trees. By adding the vertex [v] and the edges [e1], [e2], [f1], 
these two trees are reconnected and a single unbalanced cycle (consisting of P1, [e2] and 
[f1]) is created in this connected component of GF1,0.

If [e] and [f ] do not lie on a common cycle in G′
F1,0, but they are still in the same 

connected component K ′ of G′
F1,0, then we may proceed as above. However, if either [e]

or [f ], say [e], lies on the unique cycle C ′ in K ′, and without loss of generality there 
exists a path in K ′ from a vertex in C ′ to [v4] that does not include [v3], then we need to 
choose pṽ so that [e1] and [e2] both have framework colour [F1], and [f1] and [f2] have 
respective framework colours [F1] and [F2]. This guarantees that the unbalanced cycle 
C = C ′\{[e]} ∪ {[e1], [e2]} in the corresponding component of GF1,0 is unique.

If [e] and [f ] lie in different connected components K ′ and K ′′ of G′
F1,0, then we may 

again proceed as above. However, care needs to be taken in the case where either [e]
or [f ], say [e], lies on the unique cycle C ′ in K ′, and [f ] does not lie on the cycle of 
K ′′. In this case we choose pṽ so that [e1] and [e2] have framework colours [F1] and 
[F2], and [f1] and [f2] both have framework colour [F1], so that GF1,0 will not have a 
connected component with two cycles. Similarly, if neither [e] nor [f ] lie on the cycle in 
their respective connected components, then we need to choose pṽ so that the three new 
edges with framework colour [F1] do not give rise to a connected component of GF1,0
that has two cycles.

Next, we suppose that (G0, ψ) is obtained from (G′
0, ψ

′) by a H3b move where [v] ∈
G0 \ G′

0, and the H3b move deletes the edges [e] = [v1][v2] and [f ] = [v1][v3] and adds 
the edges [e1] = [v][v1] and [e′1] = [v][v1], and the edges [e2] = [v][v2] and [e3] = [v][v3]. 
By switching [v2] and [v3] if necessary, we may assume that [e] and [f ] have gain 1. The 
edges [e1] and [e′1] are assigned the gains 1 and −1, respectively, and the edges [e2], [e3]
are assigned the gains 1 and −1, respectively. We distinguish two cases.

Case A: [e] and [f ] belong to different induced monochrome subgraphs of G′
0, say 

[e] ∈ G′
F1,0 and [f ] ∈ G′

F2,0. Let a ∈ R2 be the point of intersection of the line L1 which 
passes through the points pṽ1 and pṽ2 , and the line L2 which passes through the points 
τ(−1)pṽ1 and τ(−1)pṽ3 . Let B(a, r) be the open ball with centre a and radius r > 0
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and choose pṽ to be a point in B(a, r) which is distinct from {pw : w ∈ G′} and which 
is not fixed by τ(−1). Set p−ṽ = τ(−1)pṽ. Then (G, p, θ, τ) is C2-symmetric and, by 
applying a small perturbation to pṽ if necessary, we may assume it is well-positioned. 
If r is sufficiently small then [e1] and [e2] have induced framework colour [F1], and [e′1]
and [e3] have framework colour [F2]. The induced monochrome subgraphs of (G0, ψ) are 
GF1,0 = (G′

F1,0\{[e]}) ∪{[e1], [e2]} and GF2,0 = (G′
F2,0\{[f ]}) ∪{[e′1], [e3]}. Clearly, GF1,0

and GF2,0 are spanning unbalanced map graphs of (G0, ψ).
Case B: [e] and [f ] belong to the same induced monochrome subgraph of G′

0, say 
[e], [f ] ∈ G′

F1,0.
Suppose first that [e] and [f ] lie on a common cycle in G′

F1,0. Then we may apply 
Claim 4.7 to the points pṽ1 , τ(−1)pṽ1 , pṽ2 , τ(−1)pṽ3 to find a position for pṽ so that 
it is distinct from {pw : w ∈ G′}, not fixed by τ(−1), and such that (G, p, θ, τ) is 
well-positioned and in (G0, ψ) the edges [e1], [e′1] and [e2] have framework colour [F1], 
and [e3] has framework colour [F2]. The induced monochrome subgraphs of (G0, ψ) are 
GF1,0 = (G′

F1,0\{[e], [f ]}) ∪{[e1], [e′1], [e2]} and GF2,0 = G′
F2,0∪{[e3]}. Clearly, GF1,0 and 

GF2,0 are spanning unbalanced map graphs of (G0, ψ).
Suppose next that [e] and [f ] do not lie on a common cycle in G′

F1,0. If either [e] or 
[f ], say [e], lies on a cycle in G′

F1,0, then we proceed as above, but we need to choose pṽ
so that the edges [e1], [e′1] and [e3] have framework colour [F1], and [e2] has framework 
colour [F2] to guarantee that GF1,0 is a spanning unbalanced map graph of (G0, ψ). If 
neither [e] nor [f ] lie on a cycle in G′

F1,0, then we need to distinguish two cases. Let C
be the cycle in the connected component of G′

F1,0 containing the edges [e], [f ]. If there 
exists a path in G′

F1,0 from a vertex in C to [v2] or [v3] that does not include [v1], then we 
may again proceed as above. Otherwise we choose a position for pṽ so that it is distinct 
from {pw : w ∈ G′}, not fixed by τ(−1), and such that (G, p, θ, τ) is well-positioned and 
in (G0, ψ) the edges [e1] and [e′1] have respective framework colours [F1] and [F2], and 
[e2] and [e3] both have framework colour [F1].

Suppose next that (G0, ψ) is obtained from (G′
0, ψ

′) by a H3c move where [v] ∈ G0\G′
0, 

and the H3c move deletes the unbalanced loop [e] = [v1][v1] and the edge [f ] = [v2][v3]
and adds the edges [e1] = [v][v1] and [e′1] = [v][v1] with respective gains γ1 = 1 
= −1 =
γ′
1, and the edges [e2] = [v][v2] and [e3] = [v][v3] with respective gains γ2 and γ3. This 

case is completely analogous to the H3a case. If [e] and [f ] belong to different induced 
monochrome subgraphs of G′

0, say [e] ∈ G′
F1,0 and [f ] ∈ G′

F2,0, then we may choose pṽ
so that [e1] and [e′1] have induced framework colour [F1], and [e2] and [e3] have induced 
framework colour [F2]. If [e] and [f ] belong to the same induced monochrome subgraph 
of G′

0, say [e], [f ] ∈ G′
F1,0, then Claim 4.7 applies, and we may choose pṽ so that [e1]

and [e′1] have induced framework colour [F1], and [e2] and [e3] have respective framework 
colours [F1] and [F2], so that GF1,0 and GF2,0 are spanning unbalanced map graphs of 
(G0, ψ).

If (G0, ψ) is obtained from (G′
0, ψ

′) by a H3d move, then we may again proceed 
analogously to the H3a (or H3c) case. Note that if the loops [e] and [f ] that are deleted 
in the H3d move are both in the same induced monochrome subgraph of G′

0, say [e], [f ] ∈
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G′
F1,0, then they must lie in separate connected components of G′

F1,0 (since they are both 
unbalanced cycles). So their removal results in two disjoint trees. With the addition of 
the vertex [v] and the edges [e1], [e′1], [e2], these two trees are connected and a single 
(unbalanced) cycle is created in this connected component of GF1,0. �
Lemma 4.8. Let (G0, ψ) and (G′

0, ψ
′) be the gain graphs of the Z2-symmetric graphs (G, θ)

and (G′, θ′), respectively and suppose that (G0, ψ) is obtained from (G′
0, ψ

′) by a vertex-
to-K4 or vertex splitting move. If for (G′, θ′) there exists a realisation G = (G′, p′, θ′, τ)
which is well-positioned, C2-symmetric and χ0-symmetrically isostatic in (R2, ‖ · ‖P), 
then the same is true for (G, θ).

Proof. By Theorem 4.2(A), there exists a well-positioned C2-symmetric realisation p′ of 
(G′, θ′) in (R2, ‖ · ‖P) so that the induced monochrome subgraphs G′

F1,0 and G′
F2,0 of 

(G′
0, ψ

′) are both spanning unbalanced map graphs. By Theorem 4.2(A), it now suffices 
to show that the vertex (or vertices) of G0 \ G′

0 can be placed in such a way that 
the corresponding framework (G, p, θ, τ) is C2-symmetric and well-positioned, and the 
induced monochrome subgraphs GF1,0 and GF2,0 are both spanning unbalanced map 
graphs in (G0, ψ).

We fix two points x1 and x2 in the relative interiors of F1 and F2 respectively.
First we suppose that (G0, ψ) is obtained from (G′

0, ψ
′) by a vertex-to-K4-move, where 

the vertex [v] of (G′
0, ψ

′) (which may be incident to an unbalanced loop [e]) is replaced 
by a copy of K4 with a trivial gain labelling (and [e] is replaced by the edge [f ] with 
gain −1). Suppose without loss of generality that the loop [e] (if present) has framework 
colour [F2]. As shown in Fig. 1, K4 has a well-positioned placement in (R2, ‖ · ‖P) where 
the two monochrome subgraphs are both trees. Moreover, we may scale this realisation 
so that all of the vertices of the K4 lie in a ball of arbitrarily small radius. Let B(pṽ, r) be 
the open ball with centre pṽ and radius r > 0. Choose a placement of the representative 
vertices of the new K4 to lie within B(pṽ, r) such that the vertices are distinct from 
{pw : w ∈ V (G′)\{ṽ}}, none of the vertex placements are fixed by τ(−1) and the 
resulting placement of the new K4 is such that the monochrome subgraphs are both 
trees. If r is sufficiently small then the edge [f ] (if present) has the induced framework 
colour [F2] and all original edges retain their original colour. It can be assumed that the 
corresponding C2-symmetric placement of G is well-positioned. Moreover, the induced 
monochrome subgraphs GF1,0 and GF2,0 of G0 are clearly spanning unbalanced map 
graphs of (G0, ψ).

Finally, we suppose that (G0, ψ) is obtained from (G′
0, ψ

′) by a vertex split, where 
the vertex [v] of (G′

0, ψ
′) (which is replaced by the vertices [v0] and [v1]) is incident to 

the edge [v][u] with trivial gain and the edges [v][ui], i = 1, . . . , t, in G′
0. Without loss 

of generality we may assume that [v][u] ∈ G′
F1,0. If we choose pṽ0 = pṽ and pṽ1 to be a 

point on the line L = {pṽ + tx2 : t ∈ R} which is sufficiently close to pṽ, then the induced 
framework colour for [v0][v1] is [F2] and the induced framework colour for [v0][u] and 
[v1][u] is [F1]. (Again we may assume the framework is well-positioned.) Moreover, all 
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other edges of (G′
0, ψ

′) which have been replaced by new edges in (G0, ψ) clearly retain 
their induced framework colouring if pṽ1 is chosen sufficiently close to pṽ. It is now easy to 
see that for such a placement of ṽ0 and ṽ1, both GF1,0 and GF2,0 are spanning unbalanced 
map graphs of (G0, ψ). �

We are now ready to prove Theorem 4.3.

Proof. As mentioned earlier, (i) ⇒ (ii) follows from Corollary 2.20, and (ii) ⇒ (iii) follows 
from Theorem 3.20.

(iii) ⇒ (i): We employ induction on the number of vertices of G0. By Theorem 4.2(A), 
for each of the base gain graphs there exists a representation τ : Z2 → Isom(R2, ‖ · ‖∞)
and a realisation p such that G = (G, p, θ, τ) is well-positioned, C2-symmetric and χ0-
symmetrically isostatic in (R2, ‖ · ‖∞), as indicated in Fig. 1. (The two induced spanning 
map graphs GF1,0 and GF2,0 are shown in gray and black colour, respectively.) Since 
(R2, ‖ · ‖P) is isometrically isomorphic to (R2, ‖ · ‖∞), there also exists a well-positioned, 
C2-symmetric and χ0-symmetrically isostatic realisation for each of the base graphs in 
(R2, ‖ · ‖P).

Let n ≥ 5 and suppose (i) holds for all gain graphs satisfying (iii) with at most n − 1
vertices. Let (G0, ψ) have n vertices, and let (G′

0, ψ
′) be the penultimate graph in the 

construction sequence of (G0, ψ). By the induction hypothesis, there exists a realisation 
p′ of the covering graph G′ of (G′

0, ψ
′) in (R2, ‖ ·‖P) so that (G′, p′, θ′, τ) is well-positioned, 

C2-symmetric and χ0-symmetrically isostatic in (R2, ‖ · ‖P).
If (G0, ψ) is obtained from (G′

0, ψ
′) by a H1a, H1b, or H1c move, then the result 

follows from Lemma 4.4. If (G0, ψ) is obtained from (G′
0, ψ

′) by a H2a, H2b, H2c, H2d 
or H2e move, then the result follows from Lemma 4.5. If (G0, ψ) is obtained from (G′

0, ψ
′)

by a H3a, H3b, H3c, or H3d move, then the result follows from Lemma 4.6. Finally, if 
(G0, ψ) is obtained from (G′

0, ψ
′) by a vertex-to-K4 or vertex splitting move, then the 

result follows from Lemma 4.8. �
Next we establish the χ1-symmetric counterpart to Theorem 4.3. The proof of this 

result is much simpler than the proof of Theorem 4.3 since the characterisation of (2, 2, 2)-
gain-tight gain graphs in terms of a recursive construction sequence is significantly less 
complex than the one for (2, 2, 0)-gain-tight gain graphs.

Theorem 4.9. Let ‖ · ‖P be a norm on R2 for which P is a quadrilateral, and let (G, θ) be 
a Z2-symmetric graph. Further, let (G0, ψ) be the gain graph for (G, θ). The following 
are equivalent.

(i) There exists a C2-symmetric realisation G = (G, p, θ, τ) which is well-positioned 
and χ1-symmetrically isostatic in (R2, ‖ · ‖P);

(ii) (G0, ψ) is (2, 2, 2)-gain tight;
(iii) (G0, ψ) can be constructed from K1 by a sequence of H1a,b moves, H2a,b moves, 

vertex-to-K4 moves, and vertex splitting moves.
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Proof. (i) ⇒ (ii): This follows again from Corollary 2.20.
(ii) ⇒ (iii): The proof proceeds by induction. Since (G0, ψ) is (2, 2, 2)-gain-tight, it 

has no loops. If G0 has a vertex [v] of degree 2, then it is clearly admissible (via an 
inverse H1a or H1b move). So suppose G0 has no degree 2 vertices. By (2, 2, 2)-gain-
tightness, G0 has a vertex [v] of degree 3 with at least two neighbours. If [v] has exactly 
two neighbours, then it is admissible (via an inverse H2b move, see also Lemma 3.10). 
Thus we may assume that every degree 3 vertex [v] of G0 has exactly three neighbours. 
It is easy to see that [v] is admissible (via an inverse H2a move) unless it is contained 
in a balanced copy of K4. (See also Lemma 3.9.) The vertices of this K4 cannot induce 
any additional edges since (G0, ψ) is (2, 2, 2)-gain-tight. Denote this copy of K4 as K. 
We may apply an inverse vertex-to-K4 move unless there is a vertex [x] /∈ K and edges 
[x][a] and [x][b] with equal gains, where [a], [b] ∈ K. By switching, we may assume that 
both gains are 1. We may now apply an inverse vertex splitting move, contracting either 
[x][a] and [x][b], unless there exist vertices [y] and [z] that are distinct from the vertices 
of K and [x] so that [y][x] and [y][a] are edges in (G0, ψ) with the same gain, and [z][x]
and [z][b] are edges in (G0, ψ) with the same gain. By switching, we may again assume 
that the gains of these edges are all 1. We continue in this fashion, thereby constructing 
an increasing chain of subgraphs of (G0, ψ) which are all (2, 2, 2)-gain tight and whose 
edges have all gain 1. (Note that at each step a new vertex is introduced for otherwise 
(2, 2, 2)-gain-sparsity is violated.) This sequence terminates after finitely many steps at 
which point there will be an admissible inverse vertex splitting move.

(iii) ⇒ (i): Using Theorem 4.2(B), this result may be proved completely analogously 
to Theorem 4.3 (iii) ⇒ (i). �
5. Concluding remarks

One may be tempted to try to combine Theorems 4.3 and 4.9 to combinatorially char-
acterise infinitesimal rigidity for half-turn symmetric frameworks. However this seems to 
be non-trivial. In particular, given a gain graph which contains a spanning (2, 2, 2)-
gain-tight subgraph and a spanning (2, 2, 0)-gain-tight subgraph it is not clear that a 
placement exists that preserves both the colourings needed to apply Theorem 4.2(C).

It is also natural to try to extend Theorems 4.3 and 4.9 to higher-order groups, such 
as the cyclic group C4 generated by a 4-fold rotation in the �1- or �∞-plane. In this case, 
Corollary 2.20 provides necessary gain-sparsity conditions for χ-symmetric infinitesimal 
rigidity. However, we are currently lacking analogues of Theorems 4.2(A) and 4.2(B) to 
prove the sufficiency of these counts.

There is a second form of vertex splitting, known as the vertex-to-4-cycle move [10,14], 
which one may use instead of vertex splitting to give analogous inductive constructions 
to Theorem 3.20 and Theorem 4.9 (ii) ⇔ (iii). In fact, in the case of (2, 2, 0)-gain-tight 
gain graphs, this alternative gives a non-trivial simplification to the proof, replacing 
the maximal balanced triangle sequence considerations with a direct counting argument. 
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However in both the symmetric and anti-symmetric contexts this construction operation 
does not seem to be amenable to finding appropriate rigid placements.

In [15] symmetric rigidity is considered for frameworks in Euclidean space that are re-
stricted to move on a fixed surface. In particular the matroidal classes of (2, 2, 2), (2, 2, 1)
and (2, 2, 0)-gain-tight gain graphs are the relevant sparsity types for frameworks re-
stricted to an infinite circular cylinder. Hence our recursive construction of (2, 2, 0)-gain-
tight gain graphs may be useful in establishing an analogue of Theorem 4.3 for the 
appropriate symmetry group, that is for half-turn symmetric frameworks on the cylinder 
with rotation axis perpendicular to the axis of the cylinder.
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