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A rigidity theory is developed for bar-joint frameworks in linear matrix spaces 
endowed with a unitarily invariant matrix norm. Analogues of Maxwell’s counting 
criteria are obtained and minimally rigid matrix frameworks are shown to belong 
to the matroidal class of (k, l)-sparse graphs for suitable k and l. An edge-colouring 
technique is developed to characterise infinitesimal rigidity for product norms and 
then applied to show that the graph of a minimally rigid bar-joint framework in 
the space of 2 × 2 symmetric (respectively, hermitian) matrices with the trace 
norm admits an edge-disjoint packing consisting of a (Euclidean) rigid graph and a 
spanning tree.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article 
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1. Introduction

A bar-joint framework is a pair (G, p) consisting of a simple undirected graph G = (V, E) and a mapping 
of its vertices p : V → X into a linear space X, with p(v) and p(w) distinct for each edge vw ∈ E. Given 
such a framework, and a norm on X, one may ask whether it is possible to perturb the elements of p(V )
without altering distances between adjacent vertices, and without simply applying an isometry of X to p(V ). 
This generalises to the setting of normed linear spaces a central problem in structural rigidity for Euclidean 
bar-joint frameworks; a topic with roots in works of Cauchy [5] and Maxwell [20] and a broad spectrum 
of applications (see for example [26,10]). In 1864, Maxwell observed that the underlying graph G of a 
rigid framework in Euclidean space necessarily satisfies certain counting conditions. In modern terminology, 
Maxwell’s criterion says that the graph of a generic minimally rigid framework in d-dimensional Euclidean 
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space is (d, d(d + 1)/2)-tight. Much later, in 1970, Laman [14] applied a constructive method to prove 
that in the Euclidean plane Maxwell’s counting conditions are also sufficient, thus providing a complete 
combinatorial characterisation in dimension 2. In fact, Laman’s characterisation had been established many 
years earlier by Pollaczek-Geiringer in the much overlooked paper [22]. The analogous problem in Euclidean 
3-space is much more difficult; simple examples show that Maxwell’s criterion is no longer sufficient and 
there is currently no known combinatorial characterisation of generic rigidity. For a general introduction to 
graph rigidity in Euclidean space we refer the reader to [2,3,8,25,29].

In recent work, geometric and combinatorial aspects of graph rigidity have been developed in general 
normed space settings with particular emphasis on applications to polyhedral and �p norms (see for example 
[11–13]). Such contexts raise new geometric and combinatorial problems which are interesting in their own 
right and could suggest new techniques which shed light on the Euclidean context. With this motivation, 
in this article we extend the development of infinitesimal (first-order) graph rigidity to linear matrix spaces 
with distance constraints determined by a unitarily invariant norm, obtaining some surprisingly tractable 
combinatorial conditions and suggesting a 3-dimensional rigidity characterisation for cylindrical normed 
spaces.

In Section 2 we identify rigid motions for a class of admissible matrix spaces. This class includes the spaces 
of all n ×n real and complex matrices, the n ×n symmetric matrices and the n ×n hermitian matrices. We then 
characterise the infinitesimal rigid motions for these spaces (Theorem 13) and, in Section 3, present a rank 
formula which characterises infinitesimal rigidity for certain matrix frameworks which we call full (including 
those with full affine span). We then provide analogues of the Maxwell counting criteria for Euclidean bar-
joint frameworks (Theorem 32) and show that the graphs of minimally rigid matrix frameworks belong to 
the matroidal class of (k, l)-sparse graphs for suitable values of k and l (Theorem 33). Such graphs satisfy a 
counting rule which is verifiable by existing polynomial-time pebble game algorithms. Interactions between 
the algebraic structure of these matrix spaces and the accompanying rigidity theory emerge both in the 
determination of rigid motions and in the identification of infinitesimal flexes for matrix frameworks.

In Section 4 we consider infinitesimal rigidity in the natural setting of a product norm; providing charac-
terisations of rigid motions and infinitesimal flexes, and developing an edge-colouring technique to completely 
characterise infinitesimal rigidity in terms of the rigidity of projected monochrome subframeworks (Theo-
rem 47). These results, which may be of independent interest, are applied in Section 5, where we exploit 
the cylindrical nature of the trace norm on the space of 2 × 2 symmetric matrices, to show that the graph 
of a minimally rigid matrix framework is expressible as an edge-disjoint union of a spanning tree and a 
spanning Laman graph (Theorem 52). We then exhibit a minimally rigid matrix framework for the smallest 
such graph, the complete graph K6 with an edge removed, and show that a complete graph Km admits 
a placement as a rigid matrix framework if and only if m ≥ 6. Analogous results are obtained for the 
space of 2 × 2 hermitian matrices. In the final section, we discuss sufficient conditions for the existence of 
a minimally rigid placement in an admissible matrix space and pose some conjectures on connectivity and 
packing criteria, based on recent work of Cheriyan et al. [6] and Gu [9].

1.1. Preliminaries

We now recall a few standard definitions and fix some notation. If A and B are sets, then AB denotes 
the set of all functions from A to B; when A has the structure of a vector space, AB inherits a vector 
space structure via pointwise operations. Throughout, we let n ∈ N with n ≥ 2. Let F be either R or 
C and let Mn(F) denote the associative algebra of n × n matrices over F . As usual, we write a∗ for the 
conjugate transpose, or adjoint, of a matrix a ∈Mn(F) (which is simply the transpose in the real case). Let 
Un(F), Hn(F) and Skewn(F) denote respectively the sets of unitary, hermitian and skew-hermitian matrices 
in Mn(F) (which in the real case are simply the orthogonal, symmetric and skew-symmetric matrices). 
We also write Skew0

n(F) for the set of skew-hermitian matrices with a zero in the (1, 1) entry; note that 
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Skew0
n(R) = Skewn(R) and Skew0

n(C) � Skewn(C). Recall that the commutant S′ of a set S ⊆ Mn(F) is 
the unital algebra

S′ = {y ∈Mn(F) : ∀x ∈ S, xy = yx}.

For x, y ∈ Mn(F), the commutator of x and y is [x, y] = xy − yx. If x = (x1, . . . , xn) ∈ Fn then diag(x)
denotes the diagonal matrix in Mn(F) whose ith diagonal entry is xi.

A norm ‖ · ‖ on Mn(F) is unitarily invariant if

‖a‖ = ‖uaw‖ ∀ a ∈Mn(F), ∀u,w ∈ Un(F).

A norm ‖ · ‖s on Rn is symmetric if ‖(x1, . . . , xn)‖s = ‖(|xπ(1)|, . . . , |xπ(n)|)‖s for all (x1, . . . , xn) ∈ Rn and 
all permutations π ∈ S(n). Von Neumann [27] characterised unitarily invariant matrix norms on Mn(F) as 
those obtained by applying a symmetric norm ‖ · ‖s to the vector

σ(a) = (σ1(a), . . . , σn(a)),

where σi(a) is the ith largest singular value of the matrix a ∈Mn(F). The correspondence is given by

‖a‖ := ‖σ(a)‖s, ‖x‖s := ‖ diag(x)‖.

Standard examples of unitarily invariant norms are provided by the Schatten p-norms

‖a‖cp := ‖σ(a)‖�p , ∀ 1 ≤ p ≤ ∞,

and the Ky-Fan k-norms

‖a‖k :=
k∑

i=1
σi(a), ∀ 1 ≤ k ≤ n.

The Schatten 1-norm, 2-norm and ∞-norm are known as the trace norm, the Frobenius norm and the 
spectral norm, respectively. The Frobenius norm is Euclidean in the sense that it is derived from an inner 
product. The spectral norm is an operator norm with matrices viewed as linear operators on Fn with the 
usual Euclidean norm.

2. Rigid motions for admissible matrix spaces

The aim of this section is to describe the linear space of infinitesimal rigid motions for a rich class of 
normed matrix spaces. Explicit characterisations are obtained for suitable norms in the cases of Mn(F) and 
Hn(F).

2.1. Admissible matrix spaces

Let Γ be a finite set of real-linear maps Mn(F) →Mn(F) which contains the identity map id, and has 
the property that γ(I) = I for all γ ∈ Γ; we call such a set Γ a test set on Mn(F). Let X be a real-linear 
subspace of Mn(F). If γ ∈ Γ, then the γ-commutant of X is the real-linear subspace

Xγ = {y ∈Mn(F) : ∀x ∈ X, xy = yγ(x)},
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and we define

XΓ =
⋃
γ∈Γ

Xγ .

Note that XΓ decreases as X increases, and

XΓ ⊇ X id = X ′ ⊇ FI = {λI : λ ∈ F}.

Definition 1. If I ∈ X and XΓ = FI is as small as possible, then we say that X is Γ-large in Mn(F).

Remark 2. Let Fix(X; Γ) be the set of matrices in X fixed by a test set Γ:

Fix(X; Γ) = {x ∈ X : ∀ γ ∈ Γ, γ(x) = x}.

Plainly, XΓ ⊆ Fix(X; Γ)′. In particular, if eij denotes the (i, j) matrix unit in Mn(F) and

S := {eij + eji : 1 ≤ i ≤ j ≤ n} ⊆ Fix(X; Γ),

then XΓ ⊆ S′ = FI, so X is Γ-large in Mn(F).

Example 3. Consider

ΓR = {identity, transpose} and ΓC = ΓR ∪ {adjoint, conjugation}.

Plainly, ΓF is then a test set on Mn(F). It is easy to check using Remark 2 that the real-linear spaces 
Hn(R), Hn(C) and Mn(R) are ΓR-large, and Mn(C) is ΓC-large, in the corresponding Mn(F).

Definition 4.

1. Let Γ be a test set onMn(F) and let ‖ · ‖ be a unitarily invariant norm on Mn(F). A real-linear subspace 
(X, ‖ · ‖) of Mn(F) has the Γ-isometry property if every real-linear isometry A : X → X is of the form

A(x) = u γ(x)w, x ∈ X

for some u, w ∈ Un(F), and some γ ∈ Γ.
2. Given a real-linear space X ⊆ Mn(F) and a unitarily invariant norm ‖ · ‖ on Mn(F), we call (X, ‖ · ‖)

an admissible matrix space (in Mn(F)) if

(a) there exists a test set Γ such that X is Γ-large in Mn(F) and (X, ‖ · ‖) has the Γ-isometry property; 
and

(b) there exist scalars λi ∈ F for 1 ≤ i ≤ n so that eii ∈ X and e1i + λiei1 ∈ X; and
(c) for every x ∈ X, we also have x∗ ∈ X.

We will also say that (X, ‖ · ‖) is admissible with respect to Γ.
3. We say that a (unitarily invariant) norm ‖ · ‖ on Mn(F) is admissible if (Mn(F), ‖ · ‖) is admissible 

in Mn(F).

Example 5 (Mn(F)). Let ‖ · ‖ be a unitarily invariant norm on Mn(F) which is not a multiple of the 
Frobenius norm and, in the case (F , n) = (R, 4), is not the Ky-Fan 2-norm. The ΓF -isometry property holds 
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by [17, Theorem 4.1] and [24] in the real and complex cases, respectively. Thus (Mn(F), ‖ ·‖) is an admissible 
matrix space.

Example 6 (Hn(R)). Let ‖ · ‖ be a unitarily invariant norm on Mn(R) which is not a multiple of the 
Frobenius norm. Suppose one of the following conditions holds:

(a) n �= 4, or,
(b) ‖x‖ �= ‖1

2 (trace(x))I − x‖ for some x ∈ Hn(R).

Then the subspace (Hn(R), ‖ · ‖) has the ΓR-isometry property by [19, Theorem 6.3] and so (Hn(R), ‖ · ‖)
is an admissible matrix space in Mn(R).

Example 7 (Hn(C)). Let ‖ · ‖ be a unitarily invariant norm on Mn(C) which is not induced by an inner 
product. Suppose the following conditions hold:

(a) There does not exist f : R2 → R such that ‖x‖ = f(| trace(x)|, trace(x2)) for all x ∈ Hn(C); and
(b) ‖x‖ �= ‖ 2

n (trace(x))I − x‖ for some x ∈ Hn(C).

Then the subspace (Hn(C), ‖ · ‖) has the ΓR-isometry property by [18, Theorem 2] and so (Hn(C), ‖ · ‖) is 
an admissible matrix space in Mn(C).

In particular, (Hn(C), ‖ · ‖cp) is admissible in Mn(C) for n ≥ 3 and 1 ≤ p ≤ ∞ with p �= 2; to verify 

condition (a), consider x1 =
[

1 1 0
1 0 1
0 1 1

]
⊕ 0 and x2 =

[
2 1 0
1 0 0
0 0 0

]
⊕ 0.

Example 8 ((H2(C), ‖ · ‖cp)). Consider H2(C) with the Schatten p-norm where p �= 2. Condition (a) in 
Example 7 fails, since in the 2 ×2 case the two singular values (and hence also the cp-norm) of any symmetric 
2 ×2 matrix x ∈ H2(C) are determined by | trace(x)| and trace(x2). Following [18, Theorem 2(c)], in addition 
to the isometries arising from ΓR and multiplication by unitary matrices, we must also consider isometries 
A : H2(C) → H2(C) which preserve the bilinear form (x, y) �→ trace(xy) on H2(C) × H2(C) and have 
A(I) = ±I. We claim that any such A must be of the form A(x) = ±u γ(x) u∗ for some u ∈ U2(C) and γ ∈
ΓR, so we do indeed have the ΓR-isometry property. To see this, we may first negate A if necessary to ensure 
that A(I) = I. Note that trace(A(x)2) = trace(x2) and | trace(A(x))| = | trace(A(x)A(I))| = | trace(xI)| =
| trace(x)|. Hence A preserves singular values, and moreover if trace(x) = 0, then trace(A(x)) = 0. Consider 
x =

[
1 0
0 −1

]
. The singular values of x, and hence also A(x), are (1, 1). Composing A with a suitable unitary 

conjugation, we can arrange that A(x) is diagonal with monotonically decreasing diagonal entries; since 
A(x) has trace 0, we have A(x) = x. The subspace spanned by I and x is D, the space of diagonal 
matrices in H2(C), and we have shown that A acts trivially on D. Hence the subspace E = D⊥ spanned 

by y =
[ 0 1

1 0

]
and z =

[
0 i
−i 0

]
must have A(E) = E. We have A(y) =

[ 0 α
α 0

]
for some α ∈ T , and 

trace(A(y)A(z)) = trace(yz) = 0, so it follows that A(z) =
[

0 β

β 0

]
where β ∈ {iα, −iα}. Conjugating by 

the diagonal unitary 
[ 1 0

0 α

]
, we may assume that A fixes I, x and y, and A(z) = ±z. So either A(z) or 

A(zᵀ) = −A(z) is equal to z. Precomposing with the transpose if necessary, we reduce A to the identity 
map, verifying the claim above. Hence (H2(C), ‖ · ‖cp) is admissible in M2(C) provided p �= 2.

Remark 9. These examples show that in particular, Hn(F) and Mn(F) are admissible inMn(F) with respect 
to the Schatten p-norm for any n ≥ 2 and 1 ≤ p ≤ ∞ with p �= 2. Note that the Schatten 2-norm is not 
admissible; however, it arises from an inner product and so the accompanying graph rigidity follows that of 
the Euclidean norm.
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2.2. Rigid motions

Recall [12,13] that a rigid motion of a normed space (X, ‖ · ‖) is a collection of continuous paths α =
{αx : [−1, 1] → X}x∈X , with the following properties:

(a) αx(0) = x for all x ∈ X;
(b) αx(t) is differentiable at t = 0 for all x ∈ X; and
(c) ‖αx(t) − αy(t)‖ = ‖x − y‖ for all x, y ∈ X and for all t ∈ [−1, 1].

Note that formally, α is a map α : X × [−1, 1] → X, α(x, t) = αx(t) which satisfies these conditions; we will 
routinely interchange the notation α(x, t) with αx(t) where it eases the exposition. We write R(X, ‖ · ‖) for 
the set of all rigid motions of (X, ‖ · ‖). As we will shortly see, in admissible matrix spaces a rigid motion 
always has a particularly nice form near t = 0.

Lemma 10. Let (X, ‖ · ‖) be a normed space and let α ∈ R(X, ‖ · ‖). Then,

(i) for each t ∈ [−1, 1] there exists a real-linear isometry At : X → X and a vector c(t) ∈ X such that

αx(t) = At(x) + c(t), ∀x ∈ X,

(ii) the map c : [−1, 1] → X is continuous on [−1, 1] and differentiable at t = 0,
(iii) for every x ∈ X, the map A∗(x) : [−1, 1] → X, t �→ At(x), is continuous on [−1, 1] and differentiable 

at t = 0, and,
(iv) A0 = I and c(0) = 0.

Proof. By property (c) of the rigid motion α, for every fixed t ∈ [−1, 1], the map x �→ αx(t) is an isometry of 
(X, ‖ · ‖). Since X is finite dimensional, this isometry is necessarily surjective (see for example [4, p. 500]) so 
this is a real-affine map by the Mazur-Ulam theorem. Hence there exists a real-linear isometry At : X → X

and c(t) ∈ X such that

αx(t) = At(x) + c(t), ∀x ∈ X.

Note that c(t) = α0(t) is a continuous function of t (and is differentiable at t = 0), so At(x) = αx(t) − c(t)
is also a continuous function of t (and is differentiable at t = 0), for every x ∈ X. Finally, c(0) = α0(0) = 0
and A0(x) = αx(0) = x for every x ∈ X. �

In the proof of the following proposition, for X ⊆Mn(F) we say that a map A : X → X is implemented 
by unitaries if there exist r, s ∈ Un(F) so that A(x) = rxs for every x ∈ X.

Proposition 11. Let (X, ‖ · ‖) be an admissible matrix space in Mn(F). For any α ∈ R(X, ‖ · ‖), there is a 
neighbourhood T of 0 in [−1, 1], and matrices ut, wt ∈ Un(F) and c(t) ∈ X for each t ∈ T , so that

(i) αx(t) = utxwt + c(t), ∀ x ∈ X, t ∈ T ;
(ii) c(0) = 0 and u0 = w0 = I;
(iii) the maps t �→ c(t) and t �→ utxwt are both differentiable at t = 0, for any x ∈ X; and
(iv) the maps t �→ ut and t �→ wt are continuous at t = 0.

Proof. Let α ∈ R(X, ‖ · ‖). Then for each t ∈ [−1, 1] there exists a real-linear isometry At : X → X and 
vector c(t) ∈ X as in Lemma 10. Consider the set
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T = {t ∈ [−1, 1] : At is implemented by unitaries}.

Note that 0 ∈ T since A0 is the identity map on X. Let Γ be a test set with respect to which (X, ‖ · ‖) is 
admissible. By the Γ-isometry property, for every t ∈ [−1, 1], there exist rt, st ∈ Un(F) and γt ∈ Γ so that

At(x) = rt γt(x) st, ∀x ∈ X, (1)

and for t ∈ T we may insist that γt = id. We can also take r0 = s0 = I.
For t ∈ [−1, 1], let θt = arg(trace(rt)), and define ut, wt by

ut = e−iθtrt, wt = eiθtst.

Note that trace(ut) ≥ 0 for all t ∈ [−1, 1], and u0 = v0 = I. Moreover, for each x ∈ X, we have At(x) =
ut γt(x) wt. In particular, αx(t) = utxvt + c(t) for every x ∈ X and t ∈ T .

If ut is not continuous at t = 0, then there exist ε > 0 and a sequence tn → 0 so that ‖utn − I‖ ≥ ε

for all n ∈ N. Since Un(F) is compact, there is a subsequence (tnk
) such that (utnk

) and (wtnk
) are both 

convergent, say to u and w, respectively. Then u, w ∈ Un(F) and since γt(I) = I for every t, we have

I = A0(I) = lim
k→∞

Atnk
(I) = lim

k→∞
utnk

γtnk
(I)wtnk

= uw,

so w = u∗. Since the test set Γ is finite, passing to a further subsequence if necessary, we can arrange that 
γtnk

is independent of k, say γtnk
= γ for all k ≥ 1. For every x ∈ X, we have

x = A0(x) = lim
k→∞

Atnk
(x) = lim

k→∞
utnk

γtnk
(x)wtnk

= u γ(x)u∗,

so xu = uγ(x), hence u ∈ XΓ = FI since X is Γ-large. Now trace(u) = limk→∞ trace(utnk
) ≥ 0, so u = I

and

0 = ‖u− I‖ = lim
k→∞

‖utnk
− I‖ ≥ ε > 0,

a contradiction. Hence t �→ ut is continuous at t = 0, so t �→ wt = u∗
tAt(I) is also continuous at t = 0.

Finally, if T is not a neighbourhood of 0, then there is sequence tn → 0 with tn ∈ [−1, 1] \T for all n ≥ 1. 
Passing to an infinite subsequence on which γt is constant, we may assume that γtn = γ does not depend 
on n. Let x ∈ X. Since t �→ At(x) is continuous at t = 0 and we know that utn → I and wtn → I as n → ∞, 
we have

x = lim
n→∞

Atn(x) = lim
n→∞

utn γ(x)wtn = γ(x),

so x = γ(x) for all x ∈ X. In particular, setting t = t1 ∈ [−1, 1] \ T , we have At(x) = ut γ(x) wt = ut x wt

for all x ∈ X, so t ∈ T , a contradiction. �
2.3. Infinitesimal rigid motions

A vector field η : X → X of the form η(x) = α′
x(0) where α ∈ R(X, ‖ · ‖) is referred to as an infinitesimal 

rigid motion of (X, ‖ ·‖). We also say that η is induced by the rigid motion α. The collection of all infinitesimal 
rigid motions of a normed space (X, ‖ · ‖) is a real-linear subspace of XX , denoted T (X, ‖ · ‖).

Lemma 12. If (X, ‖ · ‖) is a normed space, then every η ∈ T (X, ‖ · ‖) is an affine map.
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Proof. Suppose η is induced by α ∈ R(X, ‖ · ‖). For x ∈ X and t ∈ [−1, 1], write αx(t) = At(x) + c(t) where 
the real-linear maps At : X → X and vectors c(t) ∈ X are as in Lemma 10. Then η(x) = α′

x(0) = B(x) +c′(0)
where B : X → X is the real-linear map given by B(x) = d

dtAt(x)|t=0. �
From the viewpoint of infinitesimal rigidity theory, which we consider in Section 3, infinitesimal rigid 

motions yield trivial deformations of a framework since they arise from a global deformation of X. We will 
now identify these in our context.

Theorem 13. Let ‖ · ‖ be a unitarily invariant norm on Mn(F), and suppose that (X, ‖ · ‖) is an admissible 
matrix space. If η ∈ T (X, ‖ · ‖), then there exist unique matrices a, b, c ∈ Mn(F) with a ∈ Skewn(F), 
b ∈ Skew0

n(F) and c ∈ X so that

η(x) = ax + xb + c, ∀x ∈ X.

Proof. Choose some α ∈ R(X, ‖ · ‖) which induces η and consider a neighbourhood T of 0 and maps 
u, w : T → Un(F), u(t) = ut and w(t) = wt and c : T → X as in Proposition 11. Note in particular that 
these maps are continuous at t = 0, with u0 = w0 = I and c(0) = 0, and for all x ∈ X, the restriction of αx

to T is given by

αx(t) = utxwt + c(t)

and this restriction is differentiable at t = 0.
Suppose first that c(t) = 0 for all t ∈ T .
Consider the map

δr : X →Mn(F), δr(x) = α′
x(0) − α′

I(0)x.

Note that for each x ∈ X, we have

δr(x) = lim
t→0

utxwt − x− (utwt − I)x
t

= lim
t→0

1
tut[x,wt].

Since u∗
t → I as t → 0, we have

δr(x) = lim
t→0

1
tu

∗
tut[x,wt] = lim

t→0
1
t [x,wt].

Observe that if s ∈Mn(F) has s11 = 0, then for any λ ∈ F and 1 ≤ i, j ≤ n, the (i, j) entry of s is given by

sij =
{

[eii, s]ij if i �= j,

[e1i + λei1, s]1i if i = j.

For 0 �= t ∈ T , let bt = t−1(wt − (wt)11I), so that δr(x) = limt→0[x, bt] for x ∈ X and the (1, 1) entry of bt
is 0. Since X is admissible, the preceding observation shows that bt is entrywise convergent, say bt → b as 
t → 0, hence δr(x) = [x, b] for each x ∈ X. Note that the (1, 1) entry of b is 0. Let a = α′

I(0) − b; then

α′
x(0) = α′

I(0)x + δr(x) = ax + xb, x ∈ X.

For each x ∈ X, consider the map

βx : T →Mn(F), βx(t) = wtxut.
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For t ∈ T , we have

βx(t) − βx(0) = wtxut − x = wt(x− w∗
t xu

∗
t )ut = wt(x∗ − utx

∗wt)∗ut,

so by the continuity of ut and wt at t = 0, we have

β′
x(0) = lim

t→0

βx(t) − βx(0)
t

= lim
t→0

wt

(
x∗ − utx

∗wt

t

)∗
ut

= −α′
x∗(0)∗ = −b∗x− xa∗.

Now

xb− bx = δr(x) = lim
t→0

1
t [x,wt] = lim

t→0
1
t [x,wt]ut

= lim
t→0

1
t (xwt − wtx)ut = lim

t→0
1
tx(wtut − I) − 1

t (wtxut − x)

= xβ′
I(0) − β′

x(0) = −x(a∗ + b∗) + (b∗x + xa∗)

= b∗x− xb∗,

so x(b + b∗) = (b + b∗)x for all x ∈ X, so b + b∗ ∈ X ′ = FI. Since b11 = 0, we have b + b∗ = 0.
Define δ�(x) = α′

x(0) − xα′
I(0). We know that α′

x(0) = ax + xb, so δ�(x) = ax + xb − x(a + b) = [a, x]. A 
similar computation to the one above for δr yields δ�(x) = β′

I(0)x − β′
x(0). It follows that a + a∗ ∈ FI, and 

hence that a + a∗ = λI for some λ ∈ R.
Now consider the maps ϕ+, ϕ− : Mn(F) → R given by the one-sided limits

ϕ±(x) = lim
t→0±

‖I + tx‖ − ‖I‖
t

, x ∈ X.

These limits are well defined (see, for example, [23, Theorem 23.1]); moreover, ϕ+ is sub-additive and ϕ−
is super-additive, and ϕ±(αI) = α‖I‖ for any α ∈ R. Note that

α′
I(0) = a + b and ‖I‖ = ‖αI(t)‖ for any t ∈ R.

It follows that ϕ±(a + b) = 0, since
∣∣∣∣‖I + t(a + b)‖ − ‖I‖

t

∣∣∣∣ =
∣∣∣∣‖αI(0) + tα′

I(0)‖ − ‖αI(t)‖
t

∣∣∣∣
≤

∥∥∥∥αI(t) − αI(0)
t

− α′
I(0)

∥∥∥∥ → 0 as t → 0.

The conjugate transpose is isometric for the unitarily invariant norm ‖ ·‖, so ϕ±(x∗) = ϕ±(x) for any x ∈ X. 
Hence ϕ±(a∗ + b∗) = 0. Since b + b∗ = 0, we have

λI = a + a∗ = a + b + a∗ + b∗.

Applying ϕ+ and using sub-additivity, we obtain

λ‖I‖ = ϕ+(a + b + a∗ + b∗) ≤ ϕ+(a + b) + ϕ+(a∗ + b∗) = 0.

Applying ϕ− similarly, we obtain the converse inequality, so λ = 0. Thus a and b are skew-hermitian, with 
b ∈ Skew0

n(F).
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For uniqueness, if (a′, b′) ∈ Skewn(F) × Skew0
n(F) with ax + xb = a′x + xb′ for every x ∈ X, then 

a′′x + xb′′ = 0 where a′′ = a − a′ and b′′ = b − b′. Setting x = I gives b′′ = −a′′, so b′′ ∈ Skew0
n(F) ∩X ′ =

Skew0
n(F) ∩ FI = {0}, so a′′ = b′′ = 0.

Finally, if c(t) is not identically zero then applying the above argument to the rigid motion obtained 
by replacing αx(t) with αx(t) − c(t) for each x ∈ X, we obtain α′

x(0) = ax + xb + c for some unique 
(a, b) ∈ Skewn(F) × Skew0

n(F) and where c = c′(0) ∈ X. �
In the case of admissible spaces of the form (Hn(F), ‖ ·‖) we obtain the following refinement of Theorem 13.

Corollary 14. Let ‖ · ‖ be a unitarily invariant norm on Mn(F). If (Hn(F), ‖ · ‖) is admissible and η ∈
T (Hn(F), ‖ · ‖), then there exist unique matrices a ∈ Skew0

n(F) and c ∈ Hn(F) so that

α′
x(0) = ax− xa + c, ∀x ∈ Hn(F).

Proof. Applying Theorem 13 with X = Hn(F) to obtain a ∈ Skewn(F), b ∈ Skew0
n(F) and c ∈ Hn(F), we 

observe that

α′
I(0) − c = a + b ∈ Hn(F) ∩ Skewn(F) = {0},

so b = −a. �
2.4. The dimension of T (X, ‖ · ‖)

Let (X, ‖ · ‖) be an admissible matrix space. By Theorem 13, there is a well-defined map

ΨX : T (X, ‖ · ‖) → Skewn(F) ⊕ Skew0
n(F) ⊕Mn(F),

with the property that ΨX(η) = (a, b, c) if and only if η(x) = ax + xb + c for all x ∈ X.

Lemma 15. The map ΨX is injective and linear. Moreover, if X =Mn(F) then ΨX is a linear isomorphism.

Proof. That ΨX is injective and linear is a routine verification. Suppose X =Mn(F). Then it only remains 
to prove surjectivity. Let (a, b, c) be in the codomain of Ψ, and for each x ∈Mn(F) define

αx : [−1, 1] →Mn(F), αx(t) = etaxetb + tc.

Since a and b are skew-hermitian, eta and etb are unitary for every t ∈ R, so the collection of maps 
{αx : [−1, 1] →Mn(F)}x∈Mn(F) is a rigid motion of (Mn(F), ‖ · ‖). Differentiating, we see that the induced 
infinitesimal rigid motion is the vector field

η : X → X, x �→ ax + xb + c.

Thus Ψ(η) = (a, b, c) and so Ψ is surjective. �
Here and below, we write dimZ for the real-linear dimension of a real-linear vector space Z.

Proposition 16. If (Mn(F), ‖ · ‖) is an admissible matrix space, then

dimT (Mn(F), ‖ · ‖) =
{

2n2 − n if F = R,
4n2 − 1 if F = C.
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Proof. By Lemma 15, ΨMn(F) is a linear isomorphism. If F = R, then

dimT (Mn(R), ‖ · ‖) = dim(Skewn(R) ⊕ Skewn(R) ⊕Mn(R))

= n(n− 1)
2 + n(n− 1)

2 + n2

= 2n2 − n.

If F = C, then

dimT (Mn(C), ‖ · ‖) = dim(Skewn(C) ⊕ Skew0
n(C) ⊕Mn(C))

= n2 − 1 + n2 + 2n2

= 4n2 − 1. �
We now compute the dimension of the space of infinitesimal rigid motions for admissible matrix spaces 

of the form (Hn(F), ‖ · ‖).

Lemma 17. The range of ΨHn(F) is

ran ΨHn(F) = {(a,−a, c) : (a, c) ∈ Skew0
n(F) ⊕Hn(F)}.

Proof. By Corollary 14, if (a, b, c) is an element of the range of ΨHn(F) then b = −a and c ∈ Hn(F). For 
the reverse inclusion, let a ∈ Skew0

n(F), let c ∈ Hn(F), and for each x ∈ Hn(F) define

αx : [−1, 1] → Hn(F), αx(t) = etaxe−ta + tc.

Then {αx : [−1, 1] → Hn(F)}x∈Hn(F) is a rigid motion of (Hn(F), ‖ · ‖). The induced infinitesimal rigid 
motion is the vector field

η : Hn(F) → Hn(F), x �→ ax− xa + c.

Thus ΨHn(F)(η) = (a, −a, c) and so (a, −a, c) is contained in the range of ΨHn(F). �
Proposition 18. If (Hn(F), ‖ · ‖) is an admissible matrix space, then

dimT (Hn(F), ‖ · ‖) =
{
n2 if F = R,
2n2 − 1 if F = C.

Proof. By Lemma 15, ΨHn(F) is a linear isomorphism onto its range. Thus by Lemma 17 we have 
dim(T (Hn(F), ‖ · ‖)) = dim(Skew0

n(F) ⊕Hn(F)), which gives the advertised values. �
3. Infinitesimal rigidity for admissible matrix spaces

In this section we develop infinitesimal rigidity theory for admissible matrix spaces. Our primary goal 
is to obtain necessary counting conditions for graphs which admit an infinitesimally rigid placement in a 
given admissible matrix space. This is achieved in Theorem 32, where we provide analogues of the Maxwell 
counting criteria for Euclidean bar-joint frameworks [20], and in Theorem 33, where we show that minimally 
rigid graphs belong to the matroidal class of (k, l)-sparse graphs for suitable k and l (see [16]).
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Throughout this section X will be a finite dimensional real linear space and G = (V, E) will be a finite 
simple graph. A bar-joint framework in X is a pair (G, p) consisting of a graph G and a map p : V → X, 
v �→ pv, called a placement of G in X, with the property that pv �= pw for all vw ∈ E. A subframework of 
(G, p) is a bar-joint framework (H, pH) with H = (V (H), E(H)) a subgraph of G and pH(v) = p(v) for all 
v ∈ V (H).

3.1. Support functionals

Recall that if ‖ ·‖ is a norm on X, then a support functional for a unit vector x0 ∈ X is a linear functional 
f : X → R with ‖f‖ := sup{|f(x)| : x ∈ X, ‖x‖ = 1} ≤ 1, and f(x0) = 1. The norm ‖ · ‖ is said to be smooth
at x ∈ X \ {0} if there exists exactly one support functional at x

‖x‖ , and we say that ‖ · ‖ is smooth if it is 
smooth at every x ∈ X \ {0}.

We will require the following facts (for details see [13, Section 2]).

Lemma 19. Let (G, p) be a bar-joint framework in a normed linear space (X, ‖ · ‖), let vw ∈ E and let 
p0 = pv−pw

‖pv−pw‖ .

(i) The norm ‖ · ‖ is smooth at pv − pw if and only if the limit

ϕv,w(x) := lim
t→0

1
t
(‖p0 + tx‖ − ‖p0‖) (2)

exists for all x ∈ X.
(ii) If the norm is smooth at pv − pw, then the map ϕv,w : X → R is the unique support functional for p0.

Recall from the introduction that every unitarily invariant norm on Mn(F) arises from a symmetric norm 
on Rn and that σ(x) ∈ Rn denotes the vector of singular values, arranged in decreasing order, for a matrix 
x ∈Mn(F).

Lemma 20. Let ‖ · ‖ be a unitarily invariant norm on Mn(F), with corresponding symmetric norm ‖ · ‖s
on Rn, and let x ∈Mn(F). Then ‖ · ‖ is smooth at x if and only if ‖ · ‖s is smooth at σ(x).

Proof. The result follows from [28, Theorem 2]. �
Support functionals for the Schatten p-norms are described in [1]. We apply these results below to 

characterise the support functionals ϕv,w.

Example 21. Let 1 ≤ q ≤ ∞ and let (G, p) be a bar-joint framework in (Mn(F), ‖ ·‖cq). Let vw ∈ E, suppose 
the norm is smooth at pv − pw and let p0 = pv−pw

‖pv−pw‖cq
.

(a) If q < ∞, then for all x ∈Mn(F),

ϕv,w(x) = trace(x|p0|q−1u∗)

where p0 = u|p0| is the polar decomposition of p0.
(b) If q = ∞, then by Lemma 20, the largest singular value of the matrix p0 has multiplicity one. Thus p0

attains its norm at a unit vector ζ ∈ Fn which is unique (up to scalar multiples). It follows that for all 
x ∈Mn(F), we have

ϕv,w(x) = 〈xζ, p0ζ〉
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where 〈·, ·〉 is the usual Euclidean inner product on Fn.

3.2. Well-positioned frameworks

A bar-joint framework (G, p) is said to be well-positioned in (X, ‖ ·‖) if the norm ‖ ·‖ is smooth at pv−pw
for every edge vw ∈ E.

The following criteria apply to well-positioned bar-joint frameworks in the case of Schatten p-norms.

Proposition 22. Let 1 ≤ q ≤ ∞ with q �= 2, and suppose that (X, ‖ · ‖cq ) is an admissible matrix space 
in Mn(F). Let (G, p) be a bar-joint framework in (X, ‖ · ‖cq ).

(i) If q /∈ {1, ∞}, then (G, p) is well-positioned.
(ii) If q = 1 and pv − pw is invertible for all vw ∈ E, then (G, p) is well-positioned. For X =Mn(F), the 

converse also holds.
(iii) If q = ∞ and σ1(pv−pw) > σ2(pv−pw) for all vw ∈ E, then (G, p) is well-positioned. For X =Mn(F), 

the converse also holds.

Proof. Observe first that if (G, p) is well-positioned in (Mn(F), ‖ · ‖cq ), then (G, p) is necessarily well-
positioned in (X, ‖ · ‖cq ). Hence it suffices to give a proof in the case X =Mn(F). Recall that the �q norm 
on Rn is smooth at the following vectors:

(i) at every non-zero vector in Rn if q /∈ {1, ∞};
(ii) at every vector with every entry non-zero if q = 1; and
(iii) at every vector σ = (σ1, . . . , σn) so that max1≤i≤n |σi| is attained at precisely one i ∈ {1, 2, . . . , n}, if 

q = ∞.

It now suffices to apply Lemma 20. �
3.3. The rigidity map

As in [13], we consider the rigidity map fG, given by

fG : XV → RE , (xv)v∈V �→ (‖xv − xw‖)vw∈E .

If the rigidity map is differentiable at p ∈ XV , then

dfG(p) : XV → RE ,

is the differential of fG at p. Here we equip XV with the norm topology.
We will require the following results.

Lemma 23. [13, Proposition 6] Let (G, p) be a bar-joint framework in a normed linear space (X, ‖ · ‖).

(i) (G, p) is well-positioned in (X, ‖ · ‖) if and only if the rigidity map fG is differentiable at p.
(ii) If (G, p) is well-positioned in (X, ‖ · ‖) then the differential of the rigidity map is given by

dfG(p) : XV → RE , (zv)v∈V �→ (ϕv,w(zv − zw))vw∈E .
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An infinitesimal flex of a bar-joint framework (G, p) is a vector z ∈ XV such that

lim
t→0

1
t
(fG(p + tz) − fG(p)) = 0.

The collection of all infinitesimal flexes of (G, p) is denoted F (G, p). Note that, by Lemma 23, if (G, p) is 
well-positioned then F (G, p) = ker dfG(p).

3.4. Full sets

Given a normed space (X, ‖ · ‖), and a non-empty subset S ⊆ X, consider the restriction map,

ρS : T (X, ‖ · ‖) → XS , η �→ (η(x))x∈S .

Definition 24. A non-empty subset S ⊆ X is full in (X, ‖ · ‖) if the restriction map ρS is injective; that is, 
if S is a separating set for T (X, ‖ · ‖).

Recall that S is said to have full affine span in X if [S] = X, where [S] is the affine span of S, namely 
the translation by s0 of the linear span of {s − s0 : s ∈ S}, where s0 is any fixed vector in S. (Note that [S]
is independent of the choice of s0.)

Lemma 25. Let (X, ‖ · ‖) be a normed space and let ∅ �= S ⊆ X. If S has full affine span in X, then S is 
full in (X, ‖ · ‖).

Proof. Let η ∈ T (X, ‖ · ‖) and suppose ρS(η) = 0. By Lemma 12, η is an affine map and so η(X) = η([S]) =
0. �
Remark 26. Note that full affine span is not strictly necessary for S to be full in a normed space (X, ‖ · ‖). 
For example, if [S] is the set of upper triangular n × n matrices then it is not difficult to see that S is full 
in (Mn(F), ‖ · ‖) for any admissible norm.

Definition 27. We say that a bar-joint framework (G, p) in a normed space (X, ‖ · ‖) is,

(a) full if {pv : v ∈ V } is full in (X, ‖ · ‖).
(b) completely full if (G, p), and every subframework (H, pH) of (G, p) with |V (H)| ≥ 2 dim(X), is full in 

(X, ‖ · ‖).

Remark 28. We remark that the property of being completely full, which will be required in Theorem 33, is 
satisfied by almost all bar-joint frameworks. Indeed, if (G, p) is a bar-joint framework in X and S = {pv :
v ∈ V } is in general position in X, then every subset of S containing at least dim(X) + 1 points has full 
affine span in X. Thus, by Lemma 25, (G, p) is completely full in (X, ‖ · ‖), for all norms on X.

3.5. k(X) and l(X) values

For X ∈ {Mn(F), Hn(F)}, we define natural numbers k(X) and l(X) according to the formulae in 
Table 1. Note that k(X) = dimX and by Propositions 16 and 18, we have l(X) = dim(T (X, ‖ · ‖)) for any 
admissible norm ‖ · ‖ on X. For ease of reference, the cases n = 2 and n = 3 are listed in Table 2.

We will require the following result. As usual, we take n ∈ N with n ≥ 2, and for m ∈ N we write Km

for the complete graph on m vertices.



D. Kitson, R.H. Levene / J. Math. Anal. Appl. 491 (2020) 124353 15
Table 1
k and l values for admissible matrix 
spaces.
X k(X) l(X)
Hn(R) 1

2n(n + 1) n2

Mn(R) n2 2n2 − n
Hn(C) n2 2n2 − 1
Mn(C) 2n2 4n2 − 1

Table 2
k and l values for admissible matrix spaces when n = 2 and n = 3.
X k(X) l(X)
H2(R) 3 4
M2(R) 4 6
H2(C) 4 7
M2(C) 8 15

X k(X) l(X)
H3(R) 6 9
M3(R) 9 15
H3(C) 9 17
M3(C) 18 35

Lemma 29. Let X ∈ {Mn(F), Hn(F)}, let (k, l) = (k(X), l(X)). Consider m ∈ N.

(i) |E(Km)| ≤ km − l if and only if m ∈ {2, . . . , 2k − 1}.
(ii) |E(Km)| = km − l if and only if F = C and m ∈ {2, 2k − 1}.

Proof. Consider the quadratic function f : R → R given by

f(t) = 1
2(t2 − (2k + 1)t + 2l).

It is easy to see that f(m) = |E(Km)| − (km − l), and f(1) = f(2k) = l − k > 0. Moreover,

f(2) = f(2k − 1) = l + 1 − 2k =
{
−(n− 1) if F = R,
0 if F = C

so f(2) = f(2k − 1) ≤ 0, with equality if and only if F = C. The claims follow immediately. �
3.6. Trivial infinitesimal flexes

Given a bar-joint framework (G, p), we define

T (G, p) = {ζ : V → X | ζ = η ◦ p for some η ∈ T (X, ‖ · ‖)} ⊆ XV .

Note that T (G, p) is a subspace of F (G, p), the space of infinitesimal flexes of (G, p) (see [12, Lemma 2.3]). 
The elements of T (G, p) are referred to as the trivial infinitesimal flexes of (G, p).

Example 30. Suppose (G, p) is a bar-joint framework in an admissible matrix space (X, ‖ ·‖). If X =Mn(F), 
then by Lemma 15 we have

T (G, p) = {(apv + pvb + c)v∈V : a ∈ Skewn(F), b ∈ Skew0
n(F), c ∈Mn(F)},

and if X = Hn(F), then by Lemma 17 we have

T (G, p) = {(apv − pva + c)v∈V : a ∈ Skew0
n(F), c ∈ Hn(F)}.
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Lemma 31. If (G, p) is a full bar-joint framework in a normed linear space (X, ‖ · ‖), then

dimT (G, p) = dimT (X, ‖ · ‖).

In particular, if X ∈ {Mn(F), Hn(F)} and (X, ‖ ·‖) is an admissible matrix space, then dimT (G, p) = l(X).

Proof. Observe that the linear map

ρ(G,p) : T (X, ‖ · ‖) → XV , η �→ (η(pv))v∈V ,

has range T (G, p). Since {pv : v ∈ V } is full in (X, ‖ · ‖), ρ(G,p) is also injective. Thus, dimT (G, p) =
dimT (X, ‖ · ‖). �
3.7. Infinitesimal rigidity

A bar-joint framework (G, p) is infinitesimally rigid if every infinitesimal flex of (G, p) is trivial (i.e., if 
F (G, p) = T (G, p)); otherwise, we say that (G, p) is infinitesimally flexible. A framework (G, p) is said to be 
minimally infinitesimally rigid if it is infinitesimally rigid and every subframework obtained by removing 
an edge from G is infinitesimally flexible.

The following results are analogous to Maxwell’s counting criteria for bar-joint frameworks in Euclidean 
space [20].

Theorem 32. Let (G, p) be a full and well-positioned bar-joint framework in an admissible matrix space 
(X, ‖ · ‖), where X ∈ {Mn(F), Hn(F)}, and let (k, l) = (k(X), l(X)).

(i) If (G, p) is infinitesimally rigid, then |E| ≥ k|V | − l.
(ii) If (G, p) is minimally infinitesimally rigid, then |E| = k|V | − l.
(iii) If (G, p) is minimally infinitesimally rigid and (H, pH) is a full subframework of (G, p), then |E(H)| ≤

k|V (H)| − l.

Proof. Apply [13, Theorem 10] and Lemma 31. �
Let k, l ∈ N with l ∈ {0, . . . , 2k− 1}. As is standard in combinatorial rigidity theory, a graph G = (V, E)

is said to be (k, l)-sparse if every subgraph H = (V (H), E(H)) with |V (H)| ≥ 2 has at most k|V (H)| − l

edges. If in addition |E| = k|V | − l, then G is said to be (k, l)-tight.

Theorem 33. Let ‖ · ‖ be an admissible norm on X ∈ {Mn(F), Hn(F)}, and let (k, l) = (k(X), l(X)). 
Let (G, p) be a completely full and well-positioned bar-joint framework in (X, ‖ · ‖). If (G, p) is minimally 
infinitesimally rigid, then G is (k, l)-tight.

Proof. By Theorem 32(ii), |E| = k|V | − l. Let H be a subgraph of G with m ≥ 2 vertices. If m ≥ 2k then, 
since (G, p) is completely full, the subframework (H, pH) is full in (X, ‖ · ‖). Thus, by Theorem 32(iii), 
|E(H)| ≤ k|V (H)| − l. If 2 ≤ m ≤ 2k− 1, then by Lemma 29, |E(H)| ≤ |E(Km)| ≤ k|V (H)| − l. Thus G is 
(k, l)-tight. �
Remark 34. The (k, l)-sparsity of a multi-graph can be determined for the range l ∈ {0, . . . , 2k − 1} by a 
polynomial time algorithm known as a pebble game [16]. As such, the (k, l)-tight conditions obtained above 
can be verified in O(|V |2) time.



D. Kitson, R.H. Levene / J. Math. Anal. Appl. 491 (2020) 124353 17
In the case of admissible norms on H2(R), the following additional graph properties are necessary for 
minimal infinitesimal rigidity. Here we regard the simple graph G as a member of the wider class of multi-
graphs with no loops. We also recall that a subgraph H of G is said to be spanning if every vertex of G is 
the endpoint of some edge of H.

Corollary 35. Let ‖ · ‖ be an admissible norm on H2(R) and let (G, p) be a completely full, well-positioned 
and minimally infinitesimally rigid bar-joint framework in (H2(R), ‖ · ‖).

(i) G can be constructed from a single vertex using a sequence of graph moves of the following form:
• Adjoin a new vertex v which is incident with at most three new edges, at most two of which are 

parallel.
• Remove a set E′ of i edges, where i ∈ {1, 2}, and let V ′ be the set of vertices for edges in E′. Adjoin 

a new vertex v which is incident with each vertex in V ′. Adjoin 3 − i additional edges which are 
each incident with v and a vertex not in V ′, such that no three edges in the resulting multi-graph 
are parallel.

(ii) If a single edge is added to G then the resulting multi-graph is an edge disjoint union of three spanning 
trees.

Proof. By Theorem 33, G is (3, 4)-tight and so (i) is an application of [7, Theorem 1.9] whereas (ii) follows 
by an argument of Nash-Williams [21] applied to (3, 3)-tight graphs. �

For G = Km, it follows from the Maxwell counting criteria (Theorem 32) and Lemma 29 that a full and 
well-positioned bar-joint framework (Km, p) in an admissible matrix space (X, ‖ · ‖) is not infinitesimally 
rigid in the following cases:

(i) X =Mn(R) or Hn(R), k = dimX and m ∈ {2, . . . , 2k − 1}.
(ii) X =Mn(C) or Hn(C), k = dimX and m ∈ {2, . . . , 2k − 2}.

We make the following conjectures for larger values of m.

Conjecture 36. Let ‖ · ‖ be an admissible norm on X ∈ {Mn(F), Hn(F)} and let k = dimX.

(i) If F = R, then there exists p ∈ XV such that (Km, p) is full, well-positioned and infinitesimally rigid 
in (X, ‖ · ‖) for all m ≥ 2k.

(ii) If F = C, then there exists p ∈ XV such that (Km, p) is full, well-positioned and infinitesimally rigid 
in (X, ‖ · ‖) for all m ≥ 2k − 1.

In Section 5 we will show that these conjectures hold when X = H2(F) and the admissible norm is the 
trace norm. Namely, we show that there exists p ∈ H2(R)V such that (Km, p) is full, well-positioned and 
infinitesimally rigid in (H2(R), ‖ · ‖c1) for all m ≥ 6, and, that there exists p ∈ H2(C)V such that (Km, p)
is full, well-positioned and infinitesimally rigid in (H2(C), ‖ · ‖c1) for all m ≥ 7.

4. Product norms

In this section we extend to the setting of product norms a framework colouring technique which was 
introduced in [12] to characterise rigidity in (Rd, ‖ · ‖∞). Our main result is Theorem 47, in which we 
characterise infinitesimal rigidity with respect to a product norm in terms of projected monochrome sub-
frameworks. We will apply the results of this section to the admissible matrix space (H2(F), ‖ · ‖c1) in 
Section 5.
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Let (X1, ‖ · ‖1), . . . , (Xn, ‖ · ‖n) be a finite collection of finite dimensional real normed linear spaces and 
let X = X1 × · · · ×Xn be the product space. The product norm ‖ · ‖π on X is defined by

‖x‖π = max
j=1,2,...,n

‖xj‖j ,

for all x = (x1, . . . , xn) ∈ X. For each j = 1, . . . , n, denote by Pj the projection onto Xj given by

Pj : X → Xj , (x1, . . . , xn) �→ xj ,

and denote by P ∗
j the embedding of Xj into X given by

P ∗
j : Xj → X, y �→ (0, . . . , j

th

y , . . . , 0).

Clearly, P ∗
j is an isometry and ‖Pj‖ := sup{‖Pj(x)‖j : x ∈ X, ‖x‖π ≤ 1} = 1. Moreover, 

∑n
j=1 P

∗
j Pj and 

PiP
∗
i are the identity maps on X and Xi, respectively (where, as usual, we write AB for the composition 

of two linear maps A and B), and PjP
∗
i = 0 if i �= j.

Lemma 37. Let x ∈ X with ‖x‖π = ‖Pj(x)‖j = 1. If ϕj is a support functional for Pj(x) in (Xj , ‖ · ‖j), then 
ϕ = ϕj ◦ Pj is a support functional for x in (X, ‖ · ‖π).

Proof. We have ‖ϕ‖ ≤ ‖ϕj‖ ‖Pj‖ = ‖ϕj‖ ≤ 1 and ϕ(x) = 1. �
4.1. Framework colours

For x = (x1, . . . , xn) ∈ X, we write

κ(x) =
{
j ∈ {1, 2, . . . , n} : ‖x‖π = ‖xj‖j

}
.

We think of the non-empty set κ(x) as a set of colours assigned to x by the product norm ‖ · ‖π.
We leave the proof of the following elementary lemma to the reader.

Lemma 38. If x is a unit vector in X and κ(x) = {j} is a singleton, then there exists δ > 0 so that 
κ(x + y) = {j} whenever y ∈ X with ‖y‖π ≤ δ.

Let (G, p) be a bar-joint framework in (X, ‖ · ‖π). There is a natural edge-labelling κp where for each edge 
vw ∈ E, we define κp(vw) = κ(pv − pw). An edge vw ∈ E is said to have framework colour j if j ∈ κp(vw). 
The set of all edges in G which have framework colour j is denoted Ej , and we have E = E1 ∪ · · · ∪En.

Let Gj = (V, Ej) denote the subgraph of G with the same vertex set as G and edge set Ej consisting 
of all edges with framework colour j. We refer to Gj as a monochrome subgraph of G. Note that Gj may 
contain vertices of degree 0 (even if G does not). The pair (Gj , p) is a bar-joint framework in X and is 
referred to as the monochrome subframework of (G, p) with framework colour j.

For each j = 1, . . . , n, we write pj = Pj ◦ p. If vw ∈ Ej , then

‖pj(v) − pj(w)‖j = ‖p(v) − p(w)‖π �= 0,

so (Gj , pj) is a bar-joint framework in Xj . We call (Gj , pj) the projected monochrome subframework with 
framework colour j.

If (Gj , pj) is well-positioned in (Xj , ‖ · ‖j) and vw ∈ Ej , then we write ϕj
v,w for the support functional 

at the unit vector Pj(p0) in Xj , where p0 = pv−pw .
‖pv−pw‖π
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Proposition 39. A framework (G, p) in (X, ‖ · ‖π) is well-positioned in (X, ‖ · ‖π) if and only if

(i) each edge vw ∈ E has exactly one framework colour, and
(ii) (Gj , pj) is well-positioned in (Xj , ‖ · ‖j) for each j = 1, 2, . . . , n.

Moreover, in this case we have ϕv,w = ϕj
v,w ◦ Pj for every edge vw ∈ Ej.

Proof. Let vw ∈ E and write p0 = pv−pw

‖pv−pw‖π
. If (G, p) is well-positioned in (X, ‖ · ‖π) then by Lemma 23, 

the product norm is smooth at p0 and so p0 has exactly one support functional. Suppose i and j are 
two distinct framework colours for vw. Then ‖pv − pw‖π = ‖Pi(pv − pw)‖i = ‖Pj(pv − pw)‖j and so 
1 = ‖p0‖π = ‖Pi(p0)‖i = ‖Pj(p0)‖j . Choose support functionals ϕi and ϕj for Pi(p0) and Pj(p0) in 
(Xi, ‖ · ‖i) and (Xj , ‖ · ‖j) respectively. By Lemma 37, both ϕi ◦ Pi and ϕj ◦ Pj are support functionals for 
p0, so by smoothness, ϕi ◦ Pi = ϕj ◦ Pj . Now ϕi = ϕi ◦ Pi ◦ P ∗

i = ϕj ◦ Pj ◦ P ∗
i = 0. This is a contradiction 

since ϕi(Pi(p0)) = 1 and so (i) holds.
Suppose vw ∈ Ej . By Lemma 37, if ψ1 and ψ2 are two support functionals for Pj(p0), then ψ1 ◦ Pj and 

ψ2 ◦ Pj are both support functionals for p0, hence are equal. Now ψ1 = ψ1 ◦ Pj ◦ P ∗
j = ψ2 ◦ Pj ◦ P ∗

j = ψ2
and so Pj(p0) has exactly one support functional. Thus the norm ‖ · ‖j is smooth at Pj(p0) and so (Gj , pj)
is well-positioned in (Xj , ‖ · ‖j) by Lemma 23. This proves (ii).

For the converse, if (i) and (ii) hold then consider an edge vw ∈ E and again write p0 = pv−pw

‖pv−pw‖π
. By 

(i), vw has a unique framework colour, say j. By Lemma 38, for any z ∈ X we have

lim
t→0

1
t
(‖p0 + tz‖π − ‖p0‖π) = lim

t→0

1
t
(‖Pj(p0) + tPj(z)‖j − ‖Pj(p0)‖j),

where, by (ii) and Lemma 23, the latter limit exists (and is in fact equal to ϕj
v,w(Pj(p0))). Thus the product 

norm is smooth at p0 and so (G, p) is well-positioned in (X, ‖ · ‖π).
The final claim follows directly from Lemma 37 and the uniqueness of the support functional ϕv,w. �
If z : V → X, then we write zj : V → Xj , v �→ Pj(z(v)), and define the linear isomorphism

ΦV : XV →
n⊕

j=1
XV

j , z �→ (z1, . . . , zn).

By Proposition 39, the monochrome edge sets E1, . . . , En arising from a well-positioned bar-joint framework 
(G, p) partition E. Hence, writing λj : Ej → R for the restriction to Ej of a map λ : E → R, we have a 
linear isomorphism

ΦE : RE →
n⊕

j=1
REj , λ �→ (λ1, . . . , λn).

Corollary 40. If (G, p) is well-positioned in (X, ‖ · ‖π), then

dfG(p) = Φ−1
E ◦ (dfG1(p1) ⊕ · · · ⊕ dfGn

(pn)) ◦ ΦV .

Proof. Apply Lemma 23 and Proposition 39. �
Corollary 41. Let (G, p) be a well-positioned framework in (X, ‖ · ‖π).

(i) z ∈ F (G, p) if and only if zj ∈ F (Gj , pj) for each j = 1, . . . , n.
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(ii) The map

Φ(G,p) : F (G, p) →
n⊕

j=1
F (Gj , pj), z �→ (z1, . . . , zn),

is a linear isomorphism.
(iii) dimF (G, p) =

∑n
j=1 dimF (Gj , pj).

Proof. The statements follow immediately from Corollary 40 and the observation that Φ(G,p) is the restric-
tion of ΦV to the kernel of dfG(p). �
4.2. Rigid motions of product spaces

We will now see that the infinitesimal rigid motions of (X, ‖ ·‖π) coincide with direct sums of infinitesimal 
rigid motions of the factor spaces (Xj , ‖ · ‖j).

Given αj ∈ R(Xj , ‖ · ‖j) and ηj ∈ T (Xj , ‖ · ‖j) for j = 1, . . . , n, let us define

n⊕
j=1

αj : X × [−1, 1] → X, (x, t) �→
n∑

j=1
P ∗
j αj(Pj(x), t)

and

n⊕
j=1

ηj : X → X, x �→
n∑

j=1
P ∗
j ηj(Pj(x)).

Lemma 42. For j = 1, . . . , n, let αj ∈ R(Xj , ‖ · ‖j) and let ηj ∈ T (Xj , ‖ · ‖j) be the infinitesimal rigid motion 
induced by αj, and consider α =

⊕n
j=1 αj. We have

(i) α ∈ R(X, ‖ · ‖π); and
(ii) the infinitesimal rigid motion induced by α is η :=

⊕n
j=1 ηj; and

(iii) ηj = Pj ◦ η ◦ P ∗
j for each j = 1, . . . , n.

Proof. It is clear that αx : [−1, 1] → X is continuous for each x ∈ X and

αx(0) =
n∑

j=1
P ∗
j αj(Pj(x), 0) =

n∑
j=1

P ∗
j Pj(x) = x.

Also, for any x, y ∈ X and t ∈ [−1, 1],

‖αx(t) − αy(t)‖π = ‖
n∑

j=1
P ∗
j αj(Pj(x), t) −

n∑
j=1

P ∗
j αj(Pj(y), t)‖π

= max
j=1,...,n

‖αj(Pj(x), t) − αj(Pj(y), t)‖j

= max
j=1,...,n

‖Pj(x) − Pj(y)‖j

= ‖x− y‖π.

Note that for each x ∈ X,
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α′
x(0) =

n∑
j=1

P ∗
j ((αj)Pj(x))′(0) =

n∑
j=1

P ∗
j ηj(Pj(x)).

Thus α ∈ R(X, ‖ · ‖π) and η =
∑n

j=1 P
∗
j ◦ ηj ◦ Pj is its induced infinitesimal rigid motion. Finally, for each 

j = 1, . . . , n,

Pj ◦ η ◦ P ∗
j =

n∑
k=1

(PjP
∗
k ) ◦ ηk ◦ (PkP

∗
j ) = ηj . �

For a finite dimensional normed vector space Y , we write Isom(Y ) for the set of linear isometries of Y , 
equipped with the norm topology.

Proposition 43. If A : [−1, 1] → Isom(X) is continuous and A(0) = IX , then there exists δ > 0 so that 
A(t) ∈

⊕n
i=1 Isom(Xi) for every t ∈ [−δ, δ].

Proof. To simplify notation, we consider the case n = 2; the general case is similar. Write

A(t) =
[
A11(t) A12(t)
A21(t) A22(t)

]

where each Aij(t) is a linear map from Xj to Xi. It is then easy to see that ‖Aij(t)‖ ≤ ‖A(t)‖ = 1 for 
every i, j and t. We first claim that Ajj(t) ∈ Isom(Xj) for j = 1, 2 and |t| sufficiently small. If not, taking 
j = 1 without loss of generality, there exist tn → 0 and xn ∈ X1 with ‖xn‖1 = 1 so that ‖A11(tn)xn‖1 < 1
for every n ∈ N. Now

1 =
∥∥∥∥A(tn)

[
xn

0

]∥∥∥∥
π

=
∥∥∥∥
[
A11(tn)xn

A21(tn)xn

]∥∥∥∥
π

= max{‖A11(tn)xn‖1, ‖A21(tn)xn‖2}

so we necessarily have ‖A21(tn)xn‖2 = 1 for every n. However,

‖A21(tn)xn‖2 ≤ ‖A21(tn)‖ → 0 as n → ∞,

a contradiction which establishes the claim.
Hence there exists δ > 0 so that Ajj(t) ∈ Isom(Xj) for j = 1, 2 and |t| ≤ δ. We now claim that Aij(t) = 0

for |t| ≤ δ and i �= j. We show this for (i, j) = (1, 2), and the other case follows by symmetry. Suppose 
instead that this claim fails at some t ∈ [−δ, δ], and write A = A(t) and Aij = Aij(t). Since A12 �= 0, we can 
find a unit vector y ∈ X2 with A12y �= 0. Since A11 is an isometry, it is invertible; let x = ‖A12y‖−1

1 A−1
11 A12y. 

Since A11 is an isometry, we have ‖x‖1 = 1, so
∥∥∥∥A

[
x
y

]∥∥∥∥
π

=
∥∥∥∥
[
x
y

]∥∥∥∥
π

= max{‖x‖1, ‖y‖2} = 1.

On the other hand, ∥∥∥∥A
[
x
y

]∥∥∥∥
π

=
∥∥∥∥
[
(‖A12y‖−1

1 + 1)A12y
∗

]∥∥∥∥
π

≥ ‖(‖A12y‖−1
1 + 1)A12y‖1

= 1 + ‖A12y‖1 > 1

where ∗ denotes an unimportant matrix entry. This contradiction shows that A12 = 0. Hence A(t) =
A11(t) ⊕A22(t) for |t| ≤ δ, as desired. �
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Theorem 44. T (X, ‖ · ‖π) =
⊕n

i=1 T (Xi, ‖ · ‖i).

Proof. The inclusion “⊇” follows from Lemma 42. For the reverse inclusion, let η ∈ T (X, ‖ · ‖π) and choose 
α ∈ R(X, ‖ · ‖π) which induces η. By the Mazur-Ulam theorem, we may write

α(x, t) = A(t)x + c(t)

where c : [−1, 1] → X and A : [−1, 1] → Isom(X) are continuous and differentiable at t = 0 with c(0) = 0 and 
A(0) = IX . Choose δ > 0 by Proposition 43, so that A(t) =

⊕n
i=1 Ai(t) for t ∈ [−δ, δ] where Ai : [−δ, δ] →

Isom(Xi) are continuous and differentiable at t = 0. Consider the map

αi : Xi × [−1, 1] → Xi, αi(y, t) = Piα(P ∗
i y, τ) where τ = min{δ, t}.

This map is plainly continuous in t and differentiable at t = 0, and it is isometric in y since

‖αi(y, t) − αi(z, t)‖i = ‖Ai(τ)y + Pic(τ) − (Ai(τ)z + Pic(τ))‖i
= ‖Ai(y − z)‖i = ‖y − z‖i.

Hence αi ∈ R(Xi, ‖ · ‖i). Moreover, for |t| ≤ δ and x ∈ X, we have

n∑
j=1

P ∗
j αj(Pj(x), t) =

n∑
j=1

P ∗
j Pjα(P ∗

j Pjx, t) =
n∑

j=1
P ∗
j (Aj(t)Pjx + Pjc(t))

= A(t)x + c(t) = αx(t).

This shows that on a neighbourhood of t = 0, the rigid motion α coincides with
⊕n

j=1 αj . Hence α
and

⊕n
j=1 αj induce the same infinitesimal rigid motion, namely η. Hence η ∈

⊕n
j=1 T (Xj , ‖ · ‖j) by 

Lemma 42. �
As a corollary we obtain the following characterisation for full sets in product spaces.

Corollary 45. A set S ⊂ X is full in (X, ‖ ·‖π) if and only if Pj(S) is full in (Xj , ‖ ·‖j) for each j = 1, . . . , n.

4.3. Trivial infinitesimal flexes of frameworks

Let (G, p) be a bar-joint framework in (X, ‖ · ‖π). For j = 1, . . . , n and z ∈ T (G, p) (so that z : V → X), 
we define (as before) zj = Pj ◦ z : V → Xj .

Proposition 46. Let (G, p) be a bar-joint framework in (X, ‖ · ‖π).

(i) If z ∈ T (G, p), then zj ∈ T (Gj , pj) for each j = 1, . . . , n.
(ii) The map

Φ̃(G,p) : T (G, p) →
n⊕

j=1
T (Gj , pj), z �→ (z1, . . . , zn)

is a linear isomorphism.
(iii) dimT (G, p) =

∑n dimT (Gj , pj).
j=1
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Proof. (i) Since z ∈ T (G, p), there exists an infinitesimal rigid motion η ∈ T (X, ‖ · ‖π) with z(v) = η(pv)
for each v ∈ V . By Theorem 44, η =

⊕n
i=1 ηi where ηi ∈ T (Xi, ‖ · ‖i) for i = 1, . . . , n, so

zj(v) = Pj

(
n⊕

i=1
ηi

)
(pv) = ηj(Pj(pv)) = ηj(pj(v)).

Thus zj is the trivial infinitesimal flex of (Gj , pj) induced by the infinitesimal rigid motion ηj, so zj ∈
T (Gj , pj).

(ii) By (i) this map is well defined, and it is easily seen to be linear. Since z =
∑n

j=1 P
∗
j ◦ Pj ◦ z =∑n

j=1 P
∗
j ◦ zj for any z ∈ T (G, p), we see immediately that Φ̃(G,p) is injective. For surjectivity, observe that 

if w = (w1, . . . , wn) ∈ ⊕n
j=1T (Gj , pj), then wj = ηj ◦ pj for some ηj ∈ T (Xj , ‖ · ‖j), hence wj = ηj ◦ Pj ◦ p. 

We have η :=
⊕n

j=1 ηj ∈ T (X, ‖ · ‖π) by Theorem 44, so η ◦ p ∈ T (G, p). Let j ∈ {1, . . . , n}. We have 
Pj ◦η = ηj ◦Pj , so the jth component of Φ̃(G,p)(η ◦p) is Pj ◦η ◦p = ηj ◦Pj ◦p = wj , hence Φ̃(G,p)(η ◦p) = w. 
Assertion (iii) follows immediately. �
4.4. A characterisation of infinitesimal rigidity

We can now characterise infinitesimal rigidity for well-positioned bar-joint frameworks in terms of their 
projected monochrome subframeworks.

Theorem 47. If (G, p) is a well-positioned bar-joint framework in (X, ‖ · ‖π), then the following statements 
are equivalent.

(i) (G, p) is (minimally) infinitesimally rigid in (X, ‖ · ‖π).
(ii) The projected monochrome subframeworks (Gj, pj) are (minimally) infinitesimally rigid in (Xj , ‖ · ‖j)

for each j = 1, 2, . . . , n.

Proof. The statement follows from Corollary 41 and Proposition 46. Indeed, if (G, p) is infinitesimally rigid 
then

n∑
j=1

dimF (Gj , pj) = dimF (G, p) = dimT (G, p) =
n∑

j=1
dimT (Gj , pj)

and, since T (Gj , pj) is a subspace of F (Gj , pj) for each j, condition (ii) follows. Conversely, if (ii) holds 
then

dimF (G, p) =
n∑

j=1
dimF (Gj , pj) =

n∑
j=1

dimT (Gj , pj) = dimT (G, p)

and so condition (i) follows. �
The following result was obtained by different methods in [12].

Corollary 48. Let (G, p) be a well-positioned framework in (Rd, ‖ · ‖∞). The following statements are equiv-
alent.

(i) (G, p) is minimally infinitesimally rigid in (Rd, ‖ · ‖∞).
(ii) The monochrome subgraphs G1, . . . , Gd are spanning trees in G.



24 D. Kitson, R.H. Levene / J. Math. Anal. Appl. 491 (2020) 124353
Proof. By Theorem 47, (G, p) is infinitesimally rigid if and only if each (Gj, pj) is infinitesimally rigid. The 
result now follows from the observation that a framework in R is (minimally) infinitesimally rigid if and 
only if the underlying graph is connected (respectively, a tree). �
5. Application to (H2(F), ‖ · ‖c1)

In this section we apply Theorem 47 to characterise infinitesimal rigidity in the matrix space H2(F)
endowed with the trace norm, for both F = R and F = C. These normed spaces can be identified, under 
a suitable isometric isomorphism, with a product norm on R3 or R4 respectively. We also show how to 
construct an infinitesimally rigid placement of the complete graph Km in (H2(F), ‖ · ‖c1) for sufficiently 
large values of m. Recall that in Euclidean space Rd, the set of infinitesimally rigid placements for a graph 
G = (V, E) is either empty, or, an open and dense subset of (Rd)V . This is no longer true in general normed 
spaces and so the construction of infinitesimally rigid placements is a non-trivial problem, even for complete 
graphs.

5.1. Symmetric matrices

Denote by ‖ · ‖cyl the product norm on R3 = X1 ×X2, where X1 = R2 and X2 = R, given by

‖(x, y, z)‖cyl = max{
√
x2 + y2, |z|}.

Note that the closed unit ball in (R3, ‖ · ‖cyl) is a cylinder D× [−1, 1] where D is the closed unit disk in the 
Euclidean plane. We refer to a normed linear space which is isometrically isomorphic to (R3, ‖ · ‖cyl) as a 
cylindrical normed space.

Lemma 49.

(i) (H2(R), ‖ · ‖c1) is a cylindrical normed space.
(ii) Every cylindrical normed space (X, ‖ · ‖) satisfies dimT (X, ‖ · ‖) = 4.
(iii) A bar-joint framework in (R3, ‖ · ‖cyl) is full if and only if its projection onto X1 = R2 contains at 

least two distinct points.

Proof. The map

Ψ : (R3, ‖ · ‖cyl) → (H2(R), ‖ · ‖c1), (x, y, z) �→ 1
2

(
z + y x

x z − y

)

is an isometric isomorphism. Indeed, the eigenvalues of Ψ(x, y, z) are λ± = 1
2 (z ±

√
x2 + y2), hence 

‖Ψ(x, y, z)‖c1 = |λ+| + |λ−| = ‖(x, y, z)‖cyl. Statement (ii) follows from the corresponding property of 
(H2(R), ‖ · ‖c1), established in Proposition 18. Statement (iii) follows from Corollary 45 and the easily 
verified fact that every bar-joint framework in the Euclidean plane containing two distinct points, and every 
bar-joint framework in R, is full. �
Lemma 50. Let (G, p) be a bar-joint framework in (R3, ‖ · ‖cyl).

(i) For pv − pw = (x, y, z) where vw ∈ E, we have 1 ∈ κp(vw) if and only if x2 + y2 ≥ z2, and 2 ∈ κp(vw)
if and only if x2 + y2 ≤ z2.

(ii) (G, p) is well-positioned in (R3, ‖ · ‖cyl) if and only if pv − pw does not lie in the cone C = {(x, y, z) ∈
R3 : x2 + y2 = z2} for each edge vw ∈ E.
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Proof. Part (i) follows immediately from the definitions in Section 4.1. Since the Euclidean norm is smooth, 
every bar-joint framework in the Euclidean plane and every bar-joint framework in R is well-positioned. 
Also note that an edge vw ∈ E has exactly one framework colour if and only if pv − pw /∈ C. Thus (ii)
follows from Proposition 39. �

Let ω = ω(G, X, ‖ · ‖) ⊂ XV denote the set of all well-positioned placements of a graph G in a normed 
space (X, ‖ · ‖). A placement p ∈ ω is said to be regular if the function,

ω → {1, . . . , |E|}, x �→ rank dfG(x),

achieves its maximum value at p.

Remark 51. The set ω(G, Rd, ‖ · ‖2) of regular placements for a graph G = (V, E) in Euclidean space is an 
open and dense subset of (Rd)V . Moreover, if G admits an infinitesimally rigid placement in (Rd, ‖ · ‖2)
then all regular placements of G in (Rd, ‖ · ‖2) are infinitesimally rigid. (See [2, p. 283 and Corollary 2] for 
example.) In this case, G is said to be generically rigid in (Rd, ‖ · ‖2).

A graph is said to be a Laman graph if it is (2, 3)-tight.

Theorem 52. Let (G, p) be a well-positioned bar-joint framework in the cylindrical normed space (R3, ‖ ·‖cyl). 
The following statements are equivalent.

(i) (G, p) is minimally infinitesimally rigid in (R3, ‖ · ‖cyl).
(ii) The projected monochrome subframeworks (G1, p1) and (G2, p2) are minimally infinitesimally rigid in 

the Euclidean plane and the real line respectively.
(iii) The monochrome subgraphs G1 and G2 are respectively a Laman graph and a tree, and p1 is a regular 

placement of G1 in the Euclidean plane.

Proof. Theorem 47 shows that (i) and (ii) are equivalent. The equivalence of (ii) and (iii) is an application 
of standard results on infinitesimal rigidity for bar-joint frameworks in Euclidean space. See for example [2, 
§3-4], Laman [14, Theorem 6.5] and [29, Propositions 2.4 and 2.5]. �

The following theorem shows that K6 − e, the complete graph K6 with a single edge removed, is the 
smallest graph which admits a well-positioned and minimally infinitesimally rigid bar-joint framework in a 
cylindrical normed space.

Theorem 53. Let (X, ‖ · ‖) be a cylindrical normed space.

(i) If (G, p) is a full, well-positioned and minimally infinitesimally rigid bar-joint framework in the space 
(X, ‖ · ‖), then either G = K6 − e or |V (G)| ≥ 7.

(ii) There is a placement p of K6 − e in X so that (K6 − e, p) is full, well-positioned and minimally 
infinitesimally rigid in (X, ‖ · ‖).

Proof. (i) We may assume, without loss of generality, that (X, ‖ · ‖) = (H2(R), ‖ · ‖c1). By the Maxwell 
condition for (H2(R), ‖ · ‖c1) given in Theorem 32(ii), we have |E| = 3|V | − 4. If |V | ∈ {2, 3, 4, 5} then, 
by Lemma 29, |E| < 3|V | − 4. Thus |V | ≥ 6. If |V | = 6 then |E| = 3|V | − 4 = 14 =

(6
2
)
− 1 edges. Thus 

G = K6 − e.
(ii) It is sufficient to construct such a placement of K6 − e in (R3, ‖ · ‖cyl). Let V = {vi : 1 ≤ i ≤ 6} be 

the vertex set of G = K6 − e where e = v5v6. Let ε, δ ∈ (0, 1 ) and consider the placement p : V → R3 with
2
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K6 − e

v1

v3

v4

v2

v5

v6

G1

v5

v6v1
v2

v3
v4

G2

v5

v6

v1

v2

v3

v4

Fig. 1. The framework colouring of K6 − e in the proof of Theorem 53 with monochrome subgraphs G1 and G2 indicated in grey
and black respectively. The monochrome subgraphs G1 and G2 are respectively a Laman graph and a tree.

v1 �→ (0,−1,−1), v2 �→ (0, 1,−1)

v3 �→ (0, 1, 1 + 2ε), v4 �→ (0,−1, 1 − 2ε)

v5 �→ (2δ, 1,−1), v6 �→ (2δ,−1, 1 − 2ε).

By Lemma 49(iii), (G, p) is full in (R3, ‖ · ‖cyl). A calculation using Lemma 50 shows that (G, p) is a 
well-positioned bar-joint framework, with monochrome subgraphs G1 = κ−1

p ({1}) and G2 = κ−1
p ({2}) as 

indicated in Fig. 1. Note that G1 is a Laman graph and G2 is a tree. We claim that p1 is a regular placement 
of G1 in the Euclidean plane. This is an exercise in elementary planar rigidity. The rank of the differential 
dfG1(p1) may be computed as the rank of an associated (Euclidean) rigidity matrix R(G1, p1) with rows 
indexed by E(G1) and block columns indexed by V . The (vivj , vi)-entry, for each edge vivj , is the row vector 
(p1(vi) − p1(vj))t. All remaining entries are zero. (See [8, Chapter 2].) In this case, ordering the edges of G1
as (15, 45, 25, 12, 46, 26, 24, 34, 36) we obtain

R(G1, p1) = 2

⎡
⎢⎢⎢⎢⎢⎢⎣

−δ −1 0 0 0 0 0 0 δ 1 0 0
0 0 0 0 0 0 −δ −1 δ 1 0 0
0 0 −δ 0 0 0 0 0 δ 0 0 0
0 −1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −δ 0 0 0 δ 0
0 0 −δ 1 0 0 0 0 0 0 δ −1
0 0 0 1 0 0 0 −1 0 0 0 0
0 0 0 0 0 1 0 −1 0 0 0 0
0 0 0 0 −δ 1 0 0 0 0 δ −1

⎤
⎥⎥⎥⎥⎥⎥⎦

Note that each row contains a nonzero entry with only zeros below. Hence, the rows of R(G1, p1) are linearly 
independent and the rank of the differential dfG1(x) at p1 is maximal. Thus p1 is a regular placement of G1
and so, by Theorem 52, (G, p) is minimally infinitesimally rigid in (R3, ‖ · ‖cyl). �
Remark 54. Applying the isometric isomorphism Ψ from the proof of Lemma 49 to the framework con-
structed in Theorem 53, we obtain the following matrices which, for ε, δ ∈ (0, 12 ) form a minimally 
infinitesimally rigid framework (K6 − e, p) in (H2(R), ‖ · ‖c1), where e = v5v6.

pv1 =
(
−1 0
0 0

)
, pv2 =

(
0 0
0 −1

)
,

pv3 =
(

1 + ε 0
0 ε

)
, pv4 =

(
−ε 0
0 1 − ε

)
,

pv5 =
(

0 δ

δ −1

)
, pv6 =

(
−ε δ

δ 1 − ε

)
.
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Theorem 55. Let (X, ‖ · ‖) be a cylindrical normed space. If m ≥ 6, then there is a placement p of the 
complete graph Km in X so that (Km, p) is full, well-positioned and infinitesimally rigid in (X, ‖ · ‖).

Proof. Again, it is sufficient to construct such a placement of Km in (R3, ‖ · ‖cyl). Consider the full, well-
positioned and minimally infinitesimally rigid framework (K6 − e, p) constructed in Theorem 53, with 
corresponding induced monochrome subgraphs G1 and G2 of G = K6−e. Since p(v5) �= p(v6), the placement 
p also yields a bar-joint framework (K6, p), with respect to which κp(v5v6) = {1}. Thus (K6, p) is full, well-
positioned and infinitesimally rigid in (R3, ‖ · ‖cyl).

Now consider the complete graph K7 obtained by adjoining a vertex v7 to K6. We will show that we can 
extend p to a suitable placement of K7 by choosing p(v7) to be a small perturbation of p(v5). By Lemma 50, 
there is an open neighbourhood U of p(v5) which does not contain p(vi) for 1 ≤ i ≤ 6 with i �= 5, such 
that for any choice of p(v7) in U \ {p(v5)}, the extended bar-joint framework (K7, p) is well-positioned and 
satisfies κp(viv7) = κp(viv5) for i = 1, 2, 3, 4, 6. Let G′

1 and G′
2 be the induced monochrome subgraphs of K7

with framework colours 1 and 2 respectively. Note that G′
2 contains a spanning tree obtained by adjoining 

the vertex v7 and the edge v3v7 to G2. Also observe that G′
1 has a spanning subgraph, obtained by adjoining 

the vertex v7 and the edges v1v7, v2v7 to G1, which is also a Laman graph, hence is minimally infinitesimally 
rigid in (R2, ‖ · ‖2). By Remark 51, every regular placement of G′

1 in (R2, ‖ · ‖2) is infinitesimally rigid and 
the set of regular placements for G′

1 is dense in (R2)V , so we may choose p(v7) in U \{p(v5)} such that p1 is 
a regular placement of G′

1. Thus, by Theorem 52, (K7, p) has a minimally infinitesimally rigid subframework 
and so is itself infinitesimally rigid.

We can now apply this method iteratively to obtain a full, well-positioned and infinitesimally rigid 
placement of Km for any m > 6. �
5.2. Hermitian matrices

Similar methods may be applied in the case of (H2(C), ‖ · ‖c1). Denote by ‖ · ‖hcyl the product norm on 
R4 = R3 ×R given by

‖(w, x, y, z)‖hcyl = max{
√
w2 + x2 + y2, |z|}.

A normed space which is isometrically isomorphic to (R4, ‖ · ‖hcyl) will be referred to as a hyper-cylindrical 
normed space.

Lemma 56.

(i) (H2(C), ‖ · ‖c1) is a hyper-cylindrical normed space.
(ii) Every hyper-cylindrical normed space (X, ‖ · ‖) satisfies dimT (X, ‖ · ‖) = 7.

Proof. The map

Ψ : (R4, ‖ · ‖hcyl) → (H2(C), ‖ · ‖c1), (w, x, y, z) �→ 1
2

(
z + y x− wi

x + wi z − y

)

is an isometric isomorphism. Statement (ii) now follows from the corresponding property of (H2(C), ‖ · ‖c1), 
established in Proposition 18. �
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Fig. 2. The monochrome subgraphs G1 and G2 of K7 constructed in Theorem 58 are respectively a spanning (3, 6)-tight, generically 
3-rigid, block-and-hole graph and a spanning tree.

Lemma 57. Let (G, p) be a bar-joint framework in (R4, ‖ · ‖hcyl).

(i) For pv − pw = (u, x, y, z) where vw ∈ E, we have 1 ∈ κp(vw) if and only if u2 + x2 + y2 ≥ z2, and 
2 ∈ κp(vw) if and only if u2 + x2 + y2 ≤ z2.

(ii) (G, p) is well-positioned in (R4, ‖ ·‖hcyl) if and only if pv−pw does not lie in the cone C = {(u, x, y, z) ∈
R4 : u2 + x2 + y2 = z2} for each edge vw ∈ E.

Proof. The proof is analogous to Lemma 50. �
We can now show that K7 is the smallest graph which admits a full, well-positioned rigid and infinitesi-

mally rigid bar-joint framework in hyper-cylindrical normed spaces.

Theorem 58. Let (X, ‖ · ‖) be a hyper-cylindrical normed space.

(i) If (G, p) is a full, well-positioned and infinitesimally rigid bar-joint framework in (X, ‖ · ‖), then either 
G = K7 or |V | ≥ 8.

(ii) For every G ∈ {Km : m ≥ 7}, there is a placement p in X so that (G, p) is full, well-positioned and 
infinitesimally rigid in (X, ‖ · ‖).

Proof. (i) By Lemma 56, we may assume, without loss of generality, that (X, ‖ ·‖) = (H2(C), ‖ ·‖c1). By the 
Maxwell condition for (H2(C), ‖ · ‖c1) given in Theorem 32(ii), we have |E| = 4|V | − 7. If |V | ∈ {3, 4, 5, 6}
then, by Lemma 29, |E| < 4|V | − 7. The complete graph K2 does not admit a full bar-joint framework in a 
hyper-cylindrical space. Thus |V | ≥ 7. If |V | = 7 then |E| = 4|V | − 7 = 21 =

(7
2
)

edges and so G = K7.
(ii) It is again sufficient to construct a suitable placement of Km in (R4, ‖ · ‖hcyl). First consider the case 

m = 7. Let δ ∈ (1, 65 ) and ε ∈ ( δ3 , 1 − δ
2 ), and consider the placement p : V → R4 with

v1 �→ (0,−1,−1, 0), v2 �→ (0, 1,−1, 0)

v3 �→ (0, 1, 1, 2ε), v4 �→ (0,−1, 1,−δ)

v5 �→ (0,−1, 1, 2 + ε), v6 �→ (0, 1,−1,−2 + 3ε)

v7 �→ (0, 1, 1, δ).

A calculation using Lemma 57 shows that (G, p) is a well-positioned bar-joint framework, with monochrome 
subgraphs G1 = κ−1

p ({1}) and G2 = κ−1
p ({2}) as indicated in Fig. 2. The graph G1 is an example of a block-

and-hole graph, with one quadrilateral block and one quadrilateral hole and it follows from [30, Theorem 4.1]
that G1 is generically minimally rigid in (R3, ‖ · ‖2). Alternatively, note that G1 can be constructed from K4
by successively adjoining vertices of degree three. It is a standard result that K4 is generically minimally 
rigid in (R3, ‖ · ‖2) (see for example [29, Theorem 3.1]), and that the graph operation of adjoining degree 
three vertices preserves generic minimal rigidity in (R3, ‖ · ‖2) ([29, Corollary 2.2]). Also note that the
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Fig. 3. A (3, 4)-tight graph which does not admit an edge-disjoint packing consisting of a spanning Laman graph and a spanning 
tree and hence does not admit an infinitesimally rigid placement in the cylindrical normed space (H2(R), ‖ · ‖c1 ).

monochrome subgraph G2 is a spanning tree. By perturbing the vertices of G, we may assume that the 
projected monochrome subframework (G1, p1) is regular, and hence minimally infinitesimally rigid, and also 
that (G, p) is full. By Theorem 47, (G, p) is minimally infinitesimally rigid. The argument from the proof 
of Theorem 55 can now be adapted to show that Km admits a full, well-positioned and infinitesimally rigid 
placement in (R4, ‖ · ‖hcyl) for any m > 7. �
6. Remarks on sufficient conditions

The (k, l)-sparsity conditions obtained in Theorem 33 are in general not sufficient for the existence of an 
infinitesimally rigid placement in an admissible matrix space. An example of this, due to Shin-ichi Tanigawa, 
is the (3, 4)-tight graph G in Fig. 3. Note that G is composed of four copies of K6 − e. This graph satisfies 
the necessary Maxwell count for (H2(R), ‖ · ‖c1) but fails to admit an edge-disjoint packing consisting of a 
spanning Laman graph and a spanning tree. Thus, by Theorem 52, G does not have an infinitesimally rigid 
placement in the cylindrical normed space (H2(R), ‖ · ‖c1).

As with Euclidean 3-space, characterising 3-dimensional rigidity in cylindrical normed spaces is likely 
to be difficult. We conjecture below, in part (a), that every graph which admits an edge-disjoint packing 
consisting of a spanning Laman graph and a spanning tree can be realised as an infinitesimally rigid bar-joint 
framework in a cylindrical normed space. This result, if proven, and Theorem 52 would together provide a 
complete combinatorial characterisation of rigidity for cylindrical norms. One possible line of attack is to 
use a multigraph construction scheme, based on the graph moves described in Corollary 35(i), and with 
K6−e as the base graph. With this approach it is sufficient to show that each multigraph in the construction 
admits a placement with a framework colouring that induces the required packing property. However, it is 
not currently known whether such placements exist.

In 1982, Lovász and Yemini [15] proved that every 6-vertex-connected graph is generically rigid in the 
Euclidean plane and conjectured that every 12-vertex-connected graph is generically rigid in Euclidean 3-
space. This conjecture is still open. Sufficient connectivity conditions for graphs which contain a packing 
consisting of spanning Laman graphs and spanning trees have recently been considered by Cheriyan et 
al. [6] and by Gu [9]. Their results suggest the analogous connectivity conjectures (b) and (c) below for 
3-dimensional cylindrical normed spaces.

Conjecture 59. Let (X, ‖ · ‖) be a cylindrical normed space and let G be a simple graph which has one of the 
following properties.

(a) G admits an edge-disjoint packing consisting of a spanning Laman graph and a spanning tree.
(b) G is (8, 2)-connected in the sense of [6].
(c) G is 6-edge-connected and essentially 8-edge-connected in the sense of [9].

Then G admits an infinitesimally rigid placement in (X, ‖ · ‖).
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