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Abstract

In this thesis we give a complete description of the Bridgeland sta-
bility space for the bounded derived category of holomorphic triples
over a smooth projective curve of genus one as a connected, four di-
mensional complex manifold.

We will then prove a number of helpful facts that characterise the
bounded derived category of holomorphic triples and will subsequently
generalise some of the results on the stability space of the bounded
derived category of holomorphic triples to that of holomorphic chains.
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1 Introduction

This thesis attempts to contribute to the research on stability spaces of a
given derived category. The derived category to be investigated is that of
holomorphic triples on an elliptic curve.

Bridgeland introduced stability conditions on triangulated categories in
[18], formalising ideas from physics by Douglas (see [25] and [26]). As main
result of [18], Bridgeland asserted that the set of stability conditions has
the structure of a complex manifold, usually referred to as a stability space.
These have several applications in algebraic geometry. They serve for ex-
ample as an important invariant of and are therefore essential for the un-
derstanding of derived categories. There are – moreover – applications in
birational geometry as well ([35], [6]).

Describing stability spaces of a certain derived category is generally not
an easy endeavour and hence not many examples of derived categories are
known where the entire stability space has been computed. Bridgeland gave
a complete description of the stability manifold of non-singular projective
curves of genus one that was subsequently generalised by Burban and Kreus-
sler to singular irreducible projective curves of genus one in [20]. On the
other hand, Macŕı generalised the smooth case to higher genus in [45] while
Okada found the stability manifold for P1 in [53]. In general, not as much
is known and one has to settle for less comprehensive results such as the
computation of a connected component as it was done in [51], [17], [61], [8]
and in [7]. In other cases, the results are even weaker, such as whether the
stability space is non-empty or stability conditions are simply used in other
applications (for example in birational geometry) without even the attempt
to compute the stability space.

However, assuming C to be a complex projective non-singular curve of
genus 1, we will provide a complete description of the stability space of the
bounded derived category of the (abelian) category of holomorphic triples,
sometimes denoted Db(T Coh(C)). The concept of a holomorphic triple was
introduced by Bradlow and Garćıa-Prada in [14] and [15]. A holomorphic
triple consists of coherent sheaves E1, E2 on C and a morphism ϕ : E1 →
E2. We will subsequently discuss what of these results can be generalised
to holomorphic chains and also investigate related questions that aim at
understanding the category Db(T Coh(C)) better.

As far as the organisation of this thesis is concerned, we will proceed
as follows. Section 2 will present the underlying basic notation and briefly
discuss the categories involved. Subsequently, an introduction to the theory
of stability spaces will be provided.

In section 3, we will discuss a technique which we call CP-gluing, that was
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introduced by Collins and Polishchuk in [21] and that uses semiorthogonal
decompositions to generate the hearts of t-structures – as a key-ingredient
of a stability condition – on the generalised version of the derived category
of holomorphic triples from those of the derived category of the underlying
abelian category. This technique is in a very basic way quite broadly appli-
cable and we obtain some preliminarily results (theorems 3.2.34 and 3.2.39)
without imposing any restrictions on the abelian category that we start with.

In section 4, we impose the extra condition on the abelian category we
are starting with, that its derived category should have a Serre functor –
and for extensive parts even that it should be equal to the (abelian) category
of coherent sheaves on an elliptic curve – meaning the genus of the curve
should be 1. The condition of the existence of a Serre functor immediately
unlocks a variety of new possibilities since it provides us with new functors
and therefore with more semiorthogonal decompositions than in the more ba-
sic situation of section 3. Additionally it is now possible to apply an (older)
technique from which CP-gluing derives and that is known as recollement.
This technique which was introduced by Beilinson, Bernstein and Deligne
in [10] allows one to compute more t-structures than the CP-gluing tech-
nique provided that one has enough functors available. Hence, we will apply
recollement to our situation, however, will obtain the following important
theorem, clarifying the situation between CP-gluing and recollement in the
situation we are in (theorem 4.4.6).

Theorem 1 (Jealousy Lemma). If Hi,α,β for i ∈ {1, 2, 3} is the heart of a t-
structure as in definition 4.4.1 that is not obtained by CP-gluing via either of
the three semiorthogonal decompositions 〈D1,D2〉, 〈D3,D1〉 or 〈D2,D3〉 then
there is no stability condition with heart Hi,α,β.

We then continue by developing the theory of the stability space and have
the following – crucial – theorem that provides the first characterisation on
the stability space as a whole (theorem 4.5.29).

Theorem 2. Assume that D is the derived category of Coh(C), where C is
an elliptic curve, then

pre Stab(D↑) = Θ12 ∪Θ31 ∪Θ23.

with Θij like in definition 4.5.27.

Note that pre Stab(D↑) are stability conditions that do not necessarily
fulfil a condition added later which is that they need to satisfy what is called
the support property – however, we obtain the analogous result as a direct
implication anyway (corollary 4.5.30).
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Corollary 3. Let Θ′ij be like Θij where now we assume σ ∈ Stab(D↑) instead
of pre Stab(D↑), then we have

Stab(D↑) = Θ′12 ∪Θ′31 ∪Θ′23.

Prior to continuing with our investigation of the stability space we are now
also able to provide a description of the Serre functor on the level of objects
(theorem 4.6.4). We conjecture that the derived category of holomorphic
triples is fractional Calabi-Yau with the fraction in question being 3

4
.

After this, we introduce another technique named tilting (see [1] for de-
tails) and use it to complete the picture of the stability space from a con-
structive point of view. We have the following (theorem 4.8.36).

Theorem 4. Let A = Coh(C). We have

pre Stab(D↑) = Θ1 ∪Θ2 ∪Θ3 ∪ Γ.

where Θi are stability conditions that are up to the G̃L
+

2 (R)-action (lemma
2.5.50 and definition 2.5.47) obtained by CP-gluing and Γ stability conditions

that are up to the G̃L
+

2 (R)-action obtained by tilting (see definition 4.8.20).

Finally, we investigate the support property mentioned above by distin-
guishing between different cases of possible discriminants of matrices given
as part of the data of a stability condition, which gives pre Stab(D↑) =
Stab(D↑) (theorem 4.9.37). We are then able to investigate the topology of
Stab(D↑) and to provide a description given by the main theorem (4.10.31)
on Stab(D↑).

Theorem 5. The space of stability conditions of the derived category of holo-
morphic triples on an elliptic curve is a connected, four dimensional complex
manifold.

Both sections 3 and 4 are joint work with Eva Mart́ınez and Alejandra
Rincón. The results in it appear in [49].

As part of the investigation of the stability space – that is after all first and
foremost a tool to understand its associated derived category better – cer-
tain questions have come up which are worth considering in order to achieve
a better understanding of the derived category of holomorphic triples and
that will be dealt with in section 5. The investigation of recollement in sec-
tion 4 provides the question of the shape of a t-structure that is obtained
by recollement and that usually looks a lot more complicated then one ob-
tained by CP-gluing, be it part of a stability condition or not. Since this
is a rather constructive approach we will provide a manifold of examples to
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illustrate our findings (theorems 5.1.18 and 5.1.23). Section 5 additionally
investigates certain connecting-homomorphisms which are a key-feature for
the understanding of the derived category of holomorphic triples. We have
the following (theorem 5.2.8).

Theorem 6. Let X = (A
ϕ→ B). The connecting morphism

+→ of the exact
triangle

i2(ρ2(X))→ X → i1(λ1(X))
+→

is – up to isomorphisms – given by the chain-complex homomorphism ϕ via
the roof

A

idA
vv &&

iA

��

A

ϕ

��

idA // A

iB◦ϕ

��

0

��

Cone(idA)

(ϕ[1],ϕ)ww

ϕ[1]◦pA[1]

%%

B
iB // Cone(idB) B[1].

Finally we conclude section 5 and therefore our investigation of the de-
rived category of holomorphic triples by altering our perspective to a situation
where we have an exceptional collection available – which allows us to apply
theory by Macŕı developed in [45] to obtain results on the stability space.
The most obvious example one would have in mind in this regard is that of
coherent sheaves on PN . As well as the more general proposition 5.3.11, we
obtain the following result (corollary 5.3.13).

Corollary 7. There is an open, connected and also simply connected N-
dimensional submanifold ΘE ⊂ pre Stab(Db((PN)↑)).

Section 6 is dedicated to the generalisation of findings from section 4
on the stability space of the derived category of holomorphic triples. We
generalise to holomorphic chains of length two initially and subsequently of
length n. For the case of n = 2, we will provide the basic data involved
by giving a description of the semiorthogonal decompositions that generalise
those of the n = 1 case and also describe the resulting recollement data.
We will demonstrate that stability conditions exist in this case (proposition
6.1.24). After providing a generalisation of the Jealousy Lemma (6.2.5), we
will give a short description of what the basic data should look like in the
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case of a holomorphic chain of length n. In this case we too will demonstrate
how to obtain a stability condition (proposition 6.3.7).

Section 4 is heavily based on the availability of a Serre functor on the
derived category of holomorphic triples and its existence is provided by the
fact that the derived category of coherent sheaves on a smooth projective
curve is equipped with one. We achieve this implication from a theorem of
Bondal and Kapranov ([12, Proposition 3.8]) who also provide a short proof.
Because of the importance of [12, Proposition 3.8] we provide a detailed proof
of it in the appendix (section A).

This thesis can be seen as a continuation of [22] on the research-level.
Therefore, the reader unfamiliar with the general concepts discussed here is
recommended to read [22] in addition to the standard literature.

2 Basics: notation and framework

This chapter is deemed to provide a common ground on which the findings
that this thesis discusses can be presented. We will therefore provide the
crucial notation and framework of stability conditions as it was introduced
by Bridgeland in [18].

2.1 Notation

This very brief subsection introduces the notation and explains the basic
concepts that we will use. We will, throughout this thesis, assume familiarity
with triangulated, and in particular with derived categories – we refer to [32]
for the definition and for basic properties of triangulated and to [58] for basic
properties of derived categories.

Since the motivating examples for our involved categories are those of
coherent sheaves over a variety we will start with the following.

Definition 2.1.1. We assume all varieties (hence in particular curves) to be
defined over C.

The following assumption is a condition for theorem 2.5.51 to hold.

Definition 2.1.2. A smooth projective curve C will always be assumed to
have genus ≥ 1 throughout this thesis.

Definition 2.1.3. Let T R denote an arbitrary triangulated category.

Remark 2.1.4. Note that for F,E ∈ T R, one defines

Homn(E,F ) = Hom(E,F [n]).
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Accordingly Hom<0(E,F ) =
⊕

n<0 Hom(E,F [n]) and analogously to that,
the sets Hom>0(E,F ), Hom≤0(E,F ) and Hom≥0(E,F ) are defined.

Definition 2.1.5. Let B be a subcategory of a category B. We say that ”B”
is strictly full if B is full and closed under isomorphisms.

Definition 2.1.6. We say that a triangulated category T R has a semiorthog-
onal decomposition T R = 〈i1(T R1), i2(T R2)〉, if

• T R1 and T R2 are triangulated categories and i1, i2 strictly full em-
beddings of T R1, T R2 respectively into T R that commute with the
shift-functor and send exact triangles to exact triangles,

• we have that Hom(i2(E2), i1(E1)) = 0 for every E1 ∈ T R1 and E2 ∈
T R2,

• for every E ∈ T R there is an exact triangle

i2(E2)→ E → i1(E1)
+→

with E1 ∈ T R1 and E2 ∈ T R2.

Remark 2.1.7. Note that definition 2.1.6 is often given more generally for
n embedded subcategories that generate T R by extensions and for which
Hom(io(T Ro), ip(T Rp)) = 0 if 1 ≤ p < o ≤ n. However we will – for the
most part – not require this level of generality.

Definition 2.1.8. Define

1. • λ1(E) = E1 for an object E ∈ T R and E1 the corresponding
object of definition 2.1.6,

• λ1(f) = f1 for a morphism f ∈ T R, where f1 ∈ T R1 is the
morphism on E1 induced by f ,

2. • ρ2(E) = E2 for an object E ∈ T R and E2 the corresponding
object of definition 2.1.6,

• ρ2(f) = f2 for a morphism f ∈ T R, where f2 ∈ T R2 is the
morphism on E2 induced by f .

Notation 2.1.9. Let A denote an arbitrary abelian category. In the case
that A has the additional property that its bounded derived category exists,
we denote the bounded derived category of A (usually denoted by Db(A))
by D.
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Remark 2.1.10. Although familiarity with derived categories will generally
assumed throughout this thesis, we include this quick reminder for the pur-
pose of convenience. The derived category of an abelian category A has
(bounded) chain-complexes of objects in A as objects – for more details on
the category C(A) of (bounded) chain-complexes see for example [62] or [55]
(or many other sources). The objects of C(A) also form the objects of the
homotopy category K(A). The morphisms in K(A) are those of C(A) modulo
an equivalence relation called homotopy equivalence – again we refer to [62],
[55] or other suitable literature for more details. The morphisms of Db(A)
are defined as the localisation of K(A) with regard to quasi-isomorphisms.
These are elements in mor(K(A)) that induce isomorphisms on the cohomol-
ogy objects of the objects. A morphism in Db(A) hence is usually denoted
as a ”roof”:

B

quis
xx

f

&&
A C

where quis denotes a quasi-isomorphism. This, on the other hand, implies

that any (E
f→ F ) ∈ mor(K(A)) can be considered a morphism in Db(A),

simply by denoting it as E
=← E

f→ F , since the identity induces the identity
mapping on the cohomology objects, which, in particular, is an isomorphism.

It is now time to define the important concept of the arrow category,
which if defined over an abelian category is also abelian. We include a short
outline of the proof of this fact as part of the next subsection.

Definition 2.1.11. Let In, n ∈ N≥1 be the category given by the graph

· → · · · → ·︸ ︷︷ ︸
n−arrows

with n + 1 dots and n arrows. Define An↑ := Func(In,A) for an abelian
category A.

We will express this concept in a less theoretical language. The following
definition coincides with the previous for n = 1.

Definition 2.1.12. For an abelian category A denote by A↑ the category
for which obj(A↑) is the set of all arrows

A→ B
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between objects A,B ∈ A. For (A
f→ B), (A′

f ′→ B′) ∈ obj(A↑) denote by

Hom((A
f→ B), (A′

f ′→ B′)) the set of all pairs (φ, φ′) of arrows such that the
diagram

A
φ−−−→ A′yf yf ′

B
φ′−−−→ B′

commutes.

The following example is that of ”holomorphic triples” introduced by
Bradlow and Garćıa-Prada (see [14], [15] and [27]). We replace ”holomorphic
vector bundles” in the original definition by coherent sheaves since however
unnecessary at this stage, we want to work with an abelian category in the
long run.

Example 2.1.13. Let C be a smooth projective curve and let A be the cate-
gory of coherent sheaves on C. Then A↑ is called the category of ”holomor-
phic triples” over C.

Remark 2.1.14. Note that we could make definition 2.1.12 for any category,
abelian or else – the reason for us not to do so is that we want to use the
notation D↑ in a different sense, as expressed by 2.2.4.

Notation 2.1.15. For functors L,R we write

L a R

if L is left adjoint to R (and hence R right adjoint to L).

2.2 First properties of A↑ and D↑

This thesis is based on the theory of ”Bridgeland stability”, a concept that
was introduced by Bridgeland in [18]. The concepts, which Bridgeland es-
tablishes in [18] and that will be discussed throughout the thesis will now be
introduced throughout this and the following subsections.

The first question that arises from the previous chapter is, if the nice
property of being abelian transfers fromA toA↑. This – seen by the following
proposition that can already be found in [22, Proposition 5.3.1] – is indeed
the case.

Proposition 2.2.1. If A is abelian, A↑ is also abelian.
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Proof. The proof of this is a lengthy yet straightforward exercise in such a
way that as a key point of the proof, the existence of all required concepts
in A↑ extends from that in A. The requirement of a kernel in A↑ for any
morphism (β, β′) ∈ A↑ as in 2.1.12 for example, is met in the obvious way

– one simply takes the kernels of β and β′ in A and uses the morphism f̃ ,
induced by f as the connecting arrow:

K(β)
f̃−−−→ K(β′)yker(β)

yker(β′)

B
f−−−→ B′yβ yβ′

C
g−−−→ C ′

To prove this one needs to verify at first that there is an f̃ that does indeed
make the upper square commutative. We have β′ ◦ f ◦ker(β) = g ◦β ◦ker(β)
since the lower square in the above diagram is a morphism in A↑ and hence
commutes. But β ◦ker(β) = 0 and we obtain β′ ◦f ◦ker(β) = g ◦β ◦ker(β) =
g ◦ 0 = 0, which means – due to the universal property of the kernel (of β′)

– that there is a unique f̃ such that f ◦ ker(β) = ker(β′) ◦ f̃ .

We now have to prove that ker(β)
f̃→ ker(β′) fulfils the universal prop-

erty by which kernels in abelian categories are defined. Assume that for a
morphism (α, α′) ∈ A↑,

A e //

α

��

A′

α′

��

B
f

// B′

we have that the composition
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A
e //

α

��

A′

α′

��

B
f

//

β

��

B′

β′

��

C
g

// C ′

equals to the zero-morphism in A↑. Since A is abelian, we obtain unique
morphisms i and i′ such that the diagram

A

i

  
α

��

A′

i′

}}

α′

��

K(β)
f̃

//

ker(β)

��

K(β′)

ker(β′)

��

B
f

//

β

��

B′

β′

��

C
g

// C ′

commutes. We hence need to show that the diagram

A
e−−−→ A′

i

y i′

y
K(β)

f̃−−−→ K(β′)

commutes, in order to prove that it defines a morphism from the object

A
e→ A′ to the object K(β)

f̃→ K(β′) (Note that the uniqueness of this
morphism is due to the uniqueness of the morphisms i and i′ in A). We
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observe that β′ ◦ f ◦ ker(β) ◦ i = g ◦β ◦ ker(β) ◦ i = g ◦ 0 ◦ i = 0 which, by the
universal property of a kernel in the (abelian) category A, implies that there
is a unique morphism m from A to ker(β′) such that f◦ker(β)◦i = ker(β′)◦m.
We have – on the other hand – that ker(β′)◦i′◦e = α′◦e = f ◦α = f ◦ker(β)◦i
which implies m = i′ ◦ e and hence we obtain that the diagram

A e //

i

  
α

��

A′

i′

}}

α′

��

K(β)
f̃

//

ker(β)

��

K(β′)

ker(β′)

��

B
f

//

β

��

B′

β′

��

C
g

// C ′

commutes, which finishes our proof. Similarly one extends the other parts
of the definition from A to A↑ in order to prove that the latter is indeed an
abelian category – the cokernel of (β, β′) in

B
f−−−→ B′yβ yβ′

C
g−−−→ C ′

for instance is – in analogy to the concept of the kernel – given by the arrow

C(β)
g̃→ C(β′), completing the previous diagram to

B
f−−−→ B′yβ yβ′

C
g−−−→ C ′ycoker(β)

ycoker(β′)

C(β)
g̃−−−→ C(β′).
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Before we continue with the – particularly important – implication of the
previous, we will take the opportunity to introduce another nice property
that A↑ inherits from A.

Lemma 2.2.2. If A is noetherian then so is A↑.

Proof. Assume A noetherian and consider a chain

A1
i1−−−→ A2

i2−−−→ . . .y y
B1

j1−−−→ B2
j2−−−→ . . .

(2.1)

of embeddings (ix, jx), x ∈ Z in A↑. Then both

A1
i1
↪→ A2

i1
↪→ . . . and B1

j1
↪→ B2

j2
↪→ . . .

are chains of embeddings in A and – therefore – become stationary after finite
numbers of steps. Denote these by n,m respectively. Let d = max{n,m},
then (2.1) becomes stationary after d steps, which finishes the proof.

We now continue with the implication that proposition 2.2.1 provides.

Corollary 2.2.3. The category Db(A↑) exists.

Proof. We work with the – common – notion of a derived category being
obtained from an abelian category. Since the derived category can be defined
for any given abelian category, proposition 2.2.1 does indeed guarantee that
Db(A↑) is a derived category. Note that it is possible to define a derived
category also when relaxing certain conditions on A.

Notation 2.2.4. Let D↑ = Db(A↑).

The important difference of the previous definition to 2.1.12 is that D↑ 6=
(Db(A))↑. Here, (Db(A))↑ is defined in analogy to definition 2.1.12 for a
derived category.

Remark 2.2.5. Note that by 2.1.9 we require A↑ to be abelian in order for
2.2.4 to make sense – this is guaranteed by corollary 2.2.3.

The following definition will naturally integrate itself into language that
will be introduced later.
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Definition 2.2.6. For (X → Y ) ∈ obj(C(A↑)) and (f, g) ∈ mor(C(A↑)),
define functors λ

C(A)
1 and ρ

C(A)
2 by

•

λ
C(A)
1 (X → Y ) = X

λ
C(A)
1 (f, g) = f

and

•

ρ
C(A)
2 (X → Y ) = Y

ρ
C(A)
2 (f, g) = g.

Corollary 2.2.7. Let (X → Y ) ∈ C(A↑) then (X → Y ) is an exact complex

if and only if λ
C(A)
1 (X → Y ) and ρ

C(A)
2 (X → Y ) are exact complexes.

Proof. Since exactness depends on taking kernels and images and, as seen
in the proof of proposition 2.2.1, both operations commute with λ

C(A)
1 and

ρ
C(A)
2 , the proof is finished.

Corollary 2.2.8. Let A
f→ B ∈ D↑ and Hn

D↑(A
f→ B) ∈ A↑ be the cohomol-

ogy object of A
f→ B at position n. Let Hn

D(A) denote the cohomology object
of A ∈ D and Hn

D(f) be the morphism on the cohomology object at position
n induced by f . Then

Hn
D↑(A

f→ B) = Hn
D(A)

Hn
D(f)
→ Hn

D(B).

Proof. This is an implication of the proof of proposition 2.2.1. Since kernels
(and similarly images) are being taken componentwise, so is cohomology.

One might – somewhat intuitively assume – that the category D↑ should
be naturally related to the category (Db(A))↑. The following shows that
there is no reason to assume equivalence of both categories. Since this is
a crucial fact we will borrow theory from section 3 to illustrate our point
better.

Definition 2.2.9. Define a functor T : Db(A↑)→ (Db(A))↑ by T (A→ B) =

(A
id← A → B) for objects in Db(A↑). The functor T acts on morphisms by

T (f) = (λ1(f), ρ2(f)) with λ1, ρ2 as in lemma 3.2.8.
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Remark 2.2.10. One easily checks that T is – indeed – a functor.

Lemma 2.2.11. There exists no triangulated structure on (Db(A))↑ such
that T is an exact functor.

Proof. Assume for a contradiction that (Db(A))↑ does carry the triangulated
structure induced by T . Then let A ∈ A and observe that the short exact
sequence

0 −−−→ 0 −−−→ A −−−→ A −−−→ 0y idA

y y
0 −−−→ A −−−→ A −−−→ 0 −−−→ 0

(2.2)

in C(A↑) induces exact triangles

(0→ A)→ (A
idA→ A)

f→ (A→ 0)
+→ (2.3)

and
(A

idA→ A)→ (A→ 0)
g−→ (0→ A[1])

+→ (2.4)

in D↑ and by our assumption hence also in (Db(A))↑. Therefore we obtain
from the axioms of triangulated categories that Cone(f) = (0 → A[1]),
making the morphism + in (2.3) a pair (g1, g2) ∈ (Db(A))↑ for which g1 ∈
HomD(A, 0) = 0 and g2 ∈ HomD(0, A) = 0. We have (g1, g2) = (0, 0) which
is the 0-morphism in (Db(A))↑. By [59, Tag 05QT] we obtain from (2.3) that

(A
idA→ A) = (A→ 0)⊕ (0→ A). (2.5)

Observe now that Hom(Db(A))↑((A
idA→ A), (0 → A)) = 0 by commutativity

(see definition 2.1.12). Combining this with (2.5) this provides us with

0 = Hom(Db(A))↑((A
idA→ A), (0→ A)) =

Hom(Db(A))↑((A→ 0), (0→ A))⊕ Hom(Db(A))↑((0→ A), (0→ A)) 6= 0

whenever A 6= 0 since that implies Hom(Db(A))↑((0→ A), (0→ A)) = 0. This
is the contradiction we wanted and therefore the proof is finished.

Similarly we prove another enlightening result on (Db(A))↑.

Lemma 2.2.12. The functor T is not an equivalence of categories.

Proof. Since D↑ is triangulated and (2.2) an exact sequence in C(A↑), (2.3)

is an exact triangle – and hence
+−→ non-zero in general. Therefore, g of (2.4),

which equals to
+−→ is generally non-zero. However,

T (g) ∈ Hom(Db(A))↑(A→ 0, 0→ A[1]) = 0

by commutativity in (Db(A))↑ and therefore T is not faithful.
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Remark 2.2.13. Note that the finding of lemmas 2.2.11 and 2.2.12 are based
on the exactness of the triangle

0 −−−→ 0 −−−→ A −−−→ A −−−→ 0y idA

y y
0 −−−→ A −−−→ A −−−→ 0 −−−→ 0.

which is via that onD↑ essentially inherited from the triangulated structure of
D. Therefore, one might generalise lemma 2.2.11 to the analogous statement
for a triangulated category in general – leading us to the conjecture that
taking the arrow category of a given triangulated category will generally not
give a triangulated category back.

2.3 Motivation

The motivation to introduce stability spaces is based on the theory of sta-
bility of vector bundles and, more general, coherent sheaves. The idea is
to compare the sheaf to its subsheaves in terms of the invariants rank and
degree. Classically this was only done for vector bundles (note that on a
smooth projective curve any torsion-free sheaf is a vector bundle), for rea-
sons that will become obvious with the definition of µ in 2.3.2. Note also
that there are concepts available that generalise this definition to all non-zero
objects in the yet to be defined category C. We will however omit this theory
altogether.

Notation 2.3.1. Let C = Coh(C) denote the (abelian) category of coherent
sheaves on a smooth projective curve C.

Definition 2.3.2. Let E ∈ C be non-zero torsion-free and deg(E) and
rank(E) denote degree and rank of E. We define µ(E) = deg(E)/ rank(E).

Definition 2.3.3. A torsion-free sheaf F ∈ C is called ”µ-stable” if for any
non-zero subsheaf E of F with E 6= F ,

µ(E) < µ(F ).

Analogously µ-semistability is defined as

Definition 2.3.4. A torsion-free sheaf F ∈ C is called ”µ-semistable” if for
any non-zero subsheaf E of F

µ(E) ≤ µ(F ).
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Definition 2.3.5. Let E ∈ C be non-zero and torsion-free. A filtration:

0 = E0 ⊂ E1 ⊂ · · · ⊂ En−1 ⊂ En = E, n ∈ N

where all Fi = Ei/Ei−1 are µ-semistable objects of C and µ(F1) > µ(F2) >
· · · > µ(Fn) is called a ”Harder-Narashiman filtration”.

Theorem 2.3.6. There is a unique Harder-Narashiman filtration for any
non-zero torsion-free F ∈ C.

Proof. [42, Proposition 5.4.2] We will prove the existence of the filtration first.
For F µ-semistable the result is trivial. Hence we assume F not µ-semistable
which implies the existence of subsheaves of higher µ. Consider the subset
of subsheaves among these which have maximal µ. This is possible as both
rank and degree are bounded above. These subsheaves are µ-semistable, as
by assumption they cannot have a subsheaf of higher µ. We narrow this set
down further by choosing those subsheaves amongst them that have maximal
rank and choose a subsheaf F1 of this set of subsheaves with maximal µ and
rank. This F1 is the first non-zero object of the required chain. If we now
consider the quotient F/F1, we obtain a non-zero torsion-free sheaf that is
either µ-semistable or has – by the same construction we used above – a
semistable subsheaf of maximal rank and µ. We denote this subsheaf by
F2/F1 which we can do, since F1 ⊂ F2. Repeating this procedure with F2

now assuming the place of F1, we obtain an ascending chain of subobjects
0 = F0 ⊂ F1 ⊂ . . . with µ-semistable quotients Fi/Fi−1.

If we now consider quotients Fd−1/Fd−2 ⊂ F/Fd−2 and Fd/Fd−2 ⊂ F/Fd−2

for d ∈ N≥2 with all Fi taken from this filtration, we observe that since
without loss of generality Fd/Fd−1 6= 0 can be assumed, we also obtain
Fd−1/Fd−2 ( Fd/Fd−2. This means on the other hand that µ(Fd−1/Fd−2) <
µ(Fd/Fd−2) because Fd−1/Fd−2 was chosen to be the maximal rank subsheaf
of F/Fd−2. If we now consider the exact sequence

0→ Fd−1/Fd−2 → Fd/Fd−2 → Fd/Fd−1 → 0,

we obtain µ(Fd−1/Fd−2) > µ(Fd/Fd−2) > µ(Fd/Fd−1), which implies that
µ(Fd−1/Fd−2) > µ(Fd/Fd−1). This is the required condition on the quotients.
Moreover, it implies the (also required) finiteness as – due to the fact that
rank and degree of the sheaves are bounded – the set of potential µs is finite.
Hence, the sequence µ(F1) > µ(F2/F1) > . . . must eventually stabilise and
therefore with it the sequence 0 = F0 ⊂ F1 ⊂ . . . which finishes the existence-
proof.

To prove the uniqueness of the Harder-Narashiman filtration for a non-
zero torsion-free F ∈ C we start with the observation that if 0 = F0 ⊂
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F1 ⊂ · · · ⊂ Fn = F is a Harder-Narashiman filtration of F and F ′ ⊂ F a
subbundle, then µ(F ′) ≤ µ(F1) with F ′ = F1 if equality holds. To prove
this we define a filtration of F ′ setting F ′i = F ′ ∩ Fi for i ∈ {1, . . . , n},
which implies F ′i+1/F

′
i ⊂ Fi+1/Fi. It follows from the semistability of Fi+1/Fi

that, provided that F ′i+1/F
′
i is not zero, µ(F ′i+1/F

′
i ≤ µ(Fi+1/Fi). From the

canonical exact sequence 0→ Fi → Fi+1 → Fi+1/Fi → 0 we obtain µ(Fi+1) ≤
µ(Fi+1/Fi). Hence µ(F ′) ≤ µ(F ′1) = µ(F ′1/F

′
0) ≤ µ(F1/F0) = µ(F1) which

means that µ(F ′) ≤ µ(F1). If, on the other hand, equality holds in this
equation, this would also imply µ(F ′) = µ(F ′1) and all quotients hence had
to be 0. In other words, F = F ′1 ⊂ F1, proving that F ⊂ F1 if µ(F ) = µ(F ′).

We can now set up a classic uniqueness-proof. Assume we have two
Harder-Narashiman filtrations Ei, i ∈ {1, . . . , n} and Fi, i ∈ {1, . . . ,m} of a
non-zero torsion-free F ∈ C. Defining F ′ from above as F ′ = F1 we obtain
µ(F1) ≤ µ(E1) when similarly letting F ′ = E1 provides µ(E1) ≤ µ(F1)
resulting in µ(E1) = µ(F1). This results in E1 ⊂ F1 and at the same time
F1 ⊂ E1 giving E1 = F1. Repeating the procedure with F/F1 and F/E1 we
obtain the required equality.

2.4 Stability functions

The Grothendieck group is one of the key tools in defining stability condi-
tions.

Definition 2.4.1. For an abelian category A let G be the free abelian group
that is generated by isomorphism classes of objects in A. Let E1, E2, E3 ∈ A
and let G̃ be the subgroup generated by all elements of the form E1−E2−E3

and there exists an exact sequence 0→ E2 → E1 → E3 → 0. We define the
”Grothendieck group” K(A) of A as the quotient G/G̃.

The motivation of Bridgeland stability is based on the concept of µ-
stability as defined in 2.3.3. To be able to define Bridgeland stability it
is hence very important to generalise this concept – in [18], Bridgeland does
this by introducing the notion of a stability function Z. The role that µ had
to play in the previous will now be assumed by this Z. To introduce it we
need the notion of the strict upper half plane.

Definition 2.4.2. We define

• The ”upper half plane” H0 is defined as

H0 = {r exp(iπφ) | 0 < φ ≤ 1, r ≥ 0} ⊂ C.
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• The ”strict upper half plane” H is defined as

H = {r exp(iπφ) | 0 < φ ≤ 1, r > 0} ⊂ C.

Definition 2.4.3. A ”weak stability function” on an abelian category A is
a group homomorphism Z : K(A) → C such that for any E ∈ A, we have
Z(E) ∈ H0.

Definition 2.4.4. A ”stability function” is a weak stability function such
that for any E ∈ A6=0, we have Z(E) ∈ H.

Example 2.4.5. Related to the concept that was described in definition 2.3.2
we can, for example, define a stability function Z on K(C) as Z(E) =
− deg(E) + i rank(E). One could think of µ(E) = deg(E)/ rank(E) as the
function that sends Z(E), regarded as a vector in the complex plane to it’s
slope.

More generally we define

Definition 2.4.6. Let Z : K(A) → C be a stability function. The ”phase”
of a non-zero object E ∈ A is defined to be

φ(E) = (1/π) arg(Z(E)) ∈ (0, 1].

Following we introduce the slope phase correspondence.

Definition 2.4.7. Let Z : K(A) → C be a stability function. For E ∈ A
define the ”slope” of Z by

µZ(E) :=
−<(Z(E))

=(Z(E))
.

Lemma 2.4.8. Let Z : K(A)→ C be a stability function and E ∈ A. There
is a correspondence between phase and slope provided by

µZ(E) = − cot(πφ(E))

Proof. This is seen from

µZ(E) =
−<(Z(E))

=(Z(E))
= − cot(πφ(E)).

Generalising the concept of a µ-(semi)stable object in definitions 2.3.3 and
2.3.4 Bridgeland has introduced the crucial concept of a semistable object:
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Definition 2.4.9. Let Z : K(A) → C be a stability function. A non-zero
object E ∈ A is called ”semistable” (with respect to Z), if for every non-zero
subobject A ⊂ E we have φ(A) ≤ φ(E).

Remark 2.4.10. Note that this definition is equivalent to saying that for any
non-zero quotient B of E we have φ(B) ≥ φ(E). Once lemma 2.4.22 is
established it will follow as an immediate consequence.

Remark 2.4.11. If A = Coh(C) where C is a smooth projective curve and

Z(E) = − deg(E) + i rank(E) for E ∈ A

then for vector bundles on C we obtain the usual µ-stability and additionally
all torsion sheaves are semistable since φ(T ) = 1 for any torsion sheaf T on
C.

In the context of stability conditions – the one in which we are interested
– a very important feature of a stability function is the so-called Harder-
Narashiman property. Since it has proved to be an important feature, the
existence of Harder-Narashiman filtrations will be included in the definition of
a stability condition. We will now generalise the definition of µ-semistability,
given in 2.3.4 and that of the Harder-Narashiman filtration defined in 2.3.5
in order to provide a definition of the Harder-Narashiman property.

Definition 2.4.12. For a given stability function Z : K(A) → C on an
abelian category, a ”Harder-Narashiman filtration” of a non-zero object E ∈
A is a finite chain of subobjects

0 = E0 ⊂ E1 ⊂ · · · ⊂ En−1 ⊂ En = E, n ≥ 1

such that Fi = Ei/Ei−1 for i ∈ {1, . . . , n} are semistable objects of A and
φ(F1) > φ(F2) > · · · > φ(Fn).

Lemma 2.4.13. If for a stability function Z : K(A) → C and an object
E ∈ A a Harder-Narashiman filtration exists, then it is unique up to isomor-
phisms.

Proof. Assume that, using a suitable change of notation

0 = En ⊂ En−1 ⊂ · · · ⊂ E1 ⊂ E0 = E, n ≥ 1

and
0 = E ′m ⊂ E ′n−1 ⊂ · · · ⊂ E ′1 ⊂ E ′0 = E, n ≥ 1

are Harder-Narashiman filtrations of a non-zero object E ∈ A with regard to
the stability function Z. We proceed by induction and observe at first that
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E ′0 = E = E0. Assume now that for an i ≤ n, i ≤ m, we have Ej ∼= E ′j for
every j ≤ i. Consider the exact sequences

0→ Ei+1 → Ei → Fi → 0

and
0→ E ′i+1 → E ′i → F ′i → 0

where Fi and F ′i are the quotients defined in 2.4.12 (recall that the notation
has been reversed). Without loss of generality we assume φ(Fi) ≥ φ(F ′i ).
Consider now the diagram

0 −−−→ Ei+1 −−−→ Ei −−−→ Fi −−−→ 0

∼=
y

0 −−−→ E ′i+1 −−−→ E ′i −−−→ F ′i −−−→ 0

and apply the functor Hom(Ei+1,−) to the second row – we obtain the exact
sequence

0→ Hom(Ei+1, E
′
i+1)→ Hom(Ei+1, E

′
i)→ Hom(Ei+1, F

′
i ).

It can be proved by induction that φ(Ei+1) > φ(Fi) and since φ(Fi) ≥ φ(F ′i )
we obtain φ(Ei+1) > φ(F ′i ) implying Hom(Ei+1, F

′
i ) = 0. Hence we now

have Hom(Ei+1, E
′
i+1) ∼= Hom(Ei+1, E

′
i) and conclude that we get an arrow

Ei+1 → E ′i+1 and via that an arrow Fi → F ′i such that the diagram

0 −−−→ Ei+1 −−−→ Ei −−−→ Fi −−−→ 0y ∼=
y y

0 −−−→ E ′i+1 −−−→ E ′i −−−→ F ′i −−−→ 0

commutes.
The arrow Fi → F ′i is not zero as otherwise E ′i → F ′i would be zero

implying F ′i being zero. This means, on the other hand, that φ(Fi) ≤ φ(F ′i )
and as we have φ(Fi) ≥ φ(F ′i ) we obtain φ(Fi) ≥ φ(F ′i ). Similar to what
we did before, we can therefore apply the functor Hom(E ′i+1,−) to get a
commutative diagram

0 −−−→ E ′i+1 −−−→ E ′i −−−→ F ′i −−−→ 0y =

y y
0 −−−→ Ei+1 −−−→ Ei −−−→ Fi −−−→ 0,

in other words we have arrows in both directions. Combining both diagrams
we get a new diagram
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0 −−−→ Ei+1 −−−→ Ei −−−→ Fi −−−→ 0y =

y y
0 −−−→ Ei+1 −−−→ Ei −−−→ Fi −−−→ 0

and, as before, we have Hom(Ei+1, Ei+1) ∼= Hom(Ei+1, Ei). This means, that
the identity as a possible choice for the arrow Ei+1 → Ei+1 is in fact the only
possible choice.

We proceed in the same manner with the diagram

0 −−−→ E ′i+1 −−−→ E ′i −−−→ F ′i −−−→ 0y =

y y
0 −−−→ E ′i+1 −−−→ E ′i −−−→ F ′i −−−→ 0,

to obtain that E ′i+1 → E ′i+1 from the diagram has to be the identity. We
obtain that

(E ′i+1 → Ei+1) ◦ (Ei+1 → E ′i+1) = idE

and that
(Ei+1 → E ′i+1) ◦ (E ′i+1 → Ei+1) = idE′ .

This means Ei+1
∼= E ′i+1 which finishes the proof.

Definition 2.4.14. A stability function Z : K(A) → C on an abelian cat-
egory A has the ”Harder-Narashiman property” if every non-zero object
E ∈ A has a Harder-Narashiman filtration with regard to Z.

This definition however is somewhat hard to handle – we do, on the other
hand, have an easier approach available, that Bridgeland introduced in [18]
and that is based on certain chain-conditions that the stability function needs
to satisfy. Our aim is to establish theorem 2.4.23, in order to do that, we will
start with stating the chain conditions that by theorem 2.4.23 will provide a
criterion to decide whether a stability function has the Harder-Narashiman
property.

Definition 2.4.15. Let Z : K(A)→ C be a stability function.
(a) We say that Z satisfies the ”subobject-chain condition” if there are

no infinite sequences · · · ⊂ Ej+1 ⊂ Ej ⊂ · · · ⊂ E2 ⊂ E1 of subobjects in A
with φ(Ej+1) > φ(Ej) for all j.

(b) We say that Z satisfies the ”quotient-chain condition” if there are no
infinite sequences E1 � E2 � · · · � Ej � Ej+1 � . . . of quotients in A
with φ(Ej) > φ(Ej+1) for all j.
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We will now, after introducing the concept of a maximal destabilising quo-
tient, prove the theorem 2.4.23. To do so, we need a series of lemmas which
we have worked out from a somewhat less extensive version by Bridgeland.

Definition 2.4.16. We define an ”mdq” (maximal destabilising quotient)
of a non-zero E ∈ A to be a non-zero quotient E � B with the property
that every non-zero quotient E � B′ satisfies φ(B′) ≥ φ(B) and in case of
equality E � B′ factors via E � B.

Lemma 2.4.17. Assume that the quotient-chain condition holds. A quotient
E � B is an mdq of a non-zero E ∈ A if every non-zero semistable quotient
E � B′ satisfies φ(B′) ≥ φ(B) and in case of equality E � B′ factors via
E � B.

Proof. Every E ∈ A has a semistable quotient as otherwise we would get
an infinite chain of non-semistable quotients with descending φ (the dual
statement is proved more detailed in theorem 2.4.23). Let E � B′′ be a
quotient of E, then there is a semistable quotient B′′ � B′ of B′′ with
φ(B′′) ≥ φ(B′). If B′′ is not semistable, then we have indeed φ(B′′) > φ(B′).
Semistability implies, that B′′ is its own semistable quotient – in other words
φ(B′′) = φ(B′) implies that B′′ = B′ meaning then that E � B′′ factors
via B. If, on the other hand we assume φ(B′′) > φ(B′) and observe that B′

is also a quotient of E and since B′ is semistable, we obtain by assumption
that φ(B′) ≥ φ(B) which in turn implies that φ(B′′) > φ(B′) ≥ φ(B) and
hence φ(B′′) > φ(B).

Remark 2.4.18. Note that if B is an mdq E � B of E ∈ A, B must be
semistable and φ(E) ≥ φ(B) as non-semistability of B would imply the exis-
tence of a non-zero quotient B′ of B with φ(B′) < φ(B), which is impossible
by definition since via

E � B � B′

we obtain that B′ is a quotient of E as well. Since we also have E � E it
follows from the definition of an mdq that φ(E) ≥ φ(B).

If, furthermore, E is not semistable, we can observe that there is a quo-
tient E � E ′ with φ(E) > φ(E ′). We obtain B � E � E ′ and conclude
that B � E ′ is a quotient with φ(E) > φ(E ′), which contradicts E being
and mdq..

Lemma 2.4.19. If E ∈ A is semistable it is its own mdq.

Proof. Since E is semistable, we obtain φ(E ′) ≥ φ(E) for any non-zero quo-
tient E → E ′ of E. As any quotient E → E ′ factors via the quotient E � E,
so do those quotients E ′ where φ(E ′) = φ(E).
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Lemma 2.4.20. Let a stability function Z fulfil the quotient-chain condition
then every non-zero E ∈ A has an mdq.

Proof. If E is semistable it is its own mdq by lemma 2.4.19 – otherwise, if
we assume E not semistable, there are objects A,E ′ ∈ A and a short exact
sequence: 0 → A → E → E ′ → 0 with A semistable and φ(A) > φ(E) >
φ(E ′), as being not semistable means that E has a subobject A with bigger
φ then itself, E ′ is the corresponding quotient.

Assume that an mdq of E ′, E ′ � B, exists. We will prove that under
this condition the quotient E � B is an mdq for E. If E � B′ is a quotient
with B′ semistable and φ(B′) ≤ φ(B) (recall that by lemma 2.4.17 it is good
enough to conduct this proof under the assumption that B′ is semistable)
then φ(B′) ≤ φ(B) ≤ φ(E ′) < φ(E) < φ(A), implying φ(B′) < φ(A). Since
both A and B′ are semistable, this implies that Hom(A,B′) = 0. So we
deduce from the exact sequence Hom(E ′, B′)→ Hom(E,B′)→ Hom(A,B′)
which hence equals to Hom(E ′, B′)→ Hom(E,B′)→ 0 that E � B′ factors
via E ′. The map E � B′ on the other hand factors as E � E ′ � B′.
We have φ(B′) ≤ φ(B) and E ′ � B is an mdq for E ′, which means that
φ(B′) ≥ φ(B), hence φ(B′) = φ(B) implying that the quotient E ′ � B′

factors via B. This means that the quotient E � B′ factors via B as well.
We have proved that B is indeed an mdq for E.

If, on the other hand, there is no mdq for E ′, we apply the same procedure
as before, where now E ′ is assuming the role of E. If we keep on repeating
this process, we will eventually find an mdq for E, as otherwise we would
get an infinite sequences E1 � E2 � · · · � Ej � Ej+1 � . . . of quotients
in A with φ(Ej) > φ(Ej+1) for all j. This would violate the quotient-chain
condition. We have proved that E has indeed an mdq.

Lemma 2.4.21. Let z1, z2 ∈ C∗ such that z1 = r exp(iα) and z2 = s exp(iβ)
and t exp(iγ) = z1 +z2 for r, s, t ∈ R>0 and assume |α−β| < π. Then either
α = β = γ or γ lies strictly between α and β.

Proof. If α = γ, then r exp(iα) + s exp(iβ) = 2rs exp(iβ). This implies
β = γ.

Otherwise, assuming without loss of generality that α < β, we obtain
r exp(iα) + s exp(iβ) = exp(iα)(r + s exp(i(β − α))) and as exp(iβ) is a
rotation we may – again without loss of generality – assume that β = 0 and
additionally that β ∈ (0, π). We then have exp(iα)(r + s exp(i(β − α))) =
exp(iα)(r+ s exp(i(β−α))) = exp(i0)(r+ s exp(i(β− 0))) = r+ s exp(iβ) =
r + s(cos(β) + i sin(β)) and at the same time t exp(iγ) = t(cos(γ) + i sin(γ).
This means that r + s(cos(β) + i sin(β)) = z1 + z2 = t(cos(γ) + i sin(γ))
implying r + s cos(β) = t cos(γ) and s sin β = t sin(γ).
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If we let β ∈ (0, π
2
) we obtain t cos(γ) > 0 < t sin(γ) and since t > 0

this means that cos(γ) > 0 < sin(γ) which gives γ ∈ (0, π
2
). We have

t2 = |r+s exp(iβ)|2 = r2 +s2 +2rs cos(β) > s2 since cos(β) > 0 for β ∈ (0, π
2
)

and r, s > 0 by assumption. Therefore t2 > s2 providing t > s and hence
s
t
∈ (0, 1). Now we obtain from s sin β = t sin(γ) that sin(γ) = s

t
sin(β) which

means that sin(γ) < sin(β) and as sin(x) is strictly increasing for x ∈ (0, π
2
)

we have γ < β.
If, on the other hand, β ∈ (π

2
, π), we have cos(β) < 0 and hence we

must distinguish between r + s cos(β) < 0 and r + s cos(β) ≥ 0. If indeed
r+s cos(β) < 0 we have γ ∈ (π

2
, π) and additionally – similar to the previous

case – that t2 = |r+s exp(iβ)|2 = r2 +s2 +2rs cos(β) = s2 +r(r+2s cos(β) <
s2 because r + 2s cos(β) < r + s cos(β) < 0 by assumption. Hence s

t
> 1,

implying that sin(γ) > sin(β) and as sin(x) is strictly decreasing for x ∈
(π

2
, π) we must have γ < β. If r + s cos(β) > 0, we obtain cos(γ) > 0 and

hence γ ∈ (0, π
2
]. Therefore γ < β.

Lemma 2.4.22. Suppose Z : K(A)→ C is a weak stability function and let
Z(E ′) = r exp(iα), Z(E ′′) = r exp(iβ) such that |α − β| < π. If 0 → E ′′ →
E → E ′ → 0 is exact then exactly one of the following (in)equalities holds.

1. φ(E ′′) > φ(E) > φ(E ′);

2. φ(E ′′) = φ(E) = φ(E ′);

3. φ(E ′′) < φ(E) < φ(E ′).

Proof. Recall that by 2.4.4, a stability function is defined on the Grothendieck
group of A and therefore E = E ′ + E ′′. As the stability function is a homo-
morphism of groups we obtain Z(E) = Z(E ′) +Z(E ′′). Recalling the defini-
tion of φ provided in 2.4.6, the result now follows from lemma 2.4.21.

Theorem 2.4.23. Let Z : K(A) → C be a stability function that satisfies
the subobject-chain condition and the quotient-chain condition of definition
2.4.15. Then Z has the Harder-Narashiman property.

Proof. [18, Proposition 2.4] A non-zero object E ∈ A is either semistable
or has a non-zero subobject E ′ with φ(E ′) > φ(E). Replacing E by E ′

we can deduce from the first chain condition that every non-zero object of
A has a semistable subobject A ⊂ E with φ(A) ≥ φ(E). This is easily
seen by induction if we let E0 = E and E1 = E ′. For some n and En−1

not semistable En has to be semistable in order to avoid an infinite chain
– therefore we obtain the desired result. If we now take a non-zero object
E ∈ A, then E either is its own filtration if it is semistable or by lemma
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2.4.20 there exists a subobject E ′ such that 0 → E ′ → E → B → 0 where
E � B is an mdq and φ(E ′) > φ(E). For an mdq E ′ � B′ of E ′ we now
construct a diagram of short exact sequences, starting with:

0

��

0 // K // E ′ //

��

B′ // 0

E

g
��

B

��

0

where K → E ′ is the kernel of the map E ′ → B′. Dually to this idea
we now define the map f : E → Q as the quotient of the map K → E and
obtain the following diagram of short exact sequences:

0

��

0

��

0 // K // E ′ //

��

B′ //

��

0

0 // K // E
f
//

g

��

Q //

α
��

0

B

��

B

��

0 0.

By the snake lemma (we refer to [60, Lemma 1.3.2] or to [41, Section
9] for details) we obtain that the sequence 0 → B′ → Q → B → 0 is
exact. We now deduce from the diagram that φ(Q) = φ(B) leads to a
contradiction. According to the definition of an mdq the equality would give
us a factorisation β of f via B, that is: f = βg:
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E
f
//

g

  

Q

α
��

B.

β

OO

Additionally we know from the diagram that αf = g (commutativity).
Therefore βαf = f = id f and as f is an epimorphism we obtain βα = id.
Moreover βg = f , implying αβg = αf = g = id g, giving αβ = id since g
is an epimorphism which means that Q and B are isomorphic. We therefore
obtain B′ = 0. But B′ was assumed to be an mdq of E ′ and so we have
E ′ = 0 which gives the contradiction. Then, as f : E � Q is a quotient of
E it follows that φ(Q) > φ(B) and this implies φ(B′) > φ(B) using lemma
2.4.22.

We now rename E into E0 and E ′ into E1. This provides the n = 0 case
of an induction proof: If En−1 is not automatically semistable, as before,
when we investigated the object E, En−1 if not semistable has a destabilizing
subobject En, analogous to E ′ in the previous proof. Then again, En is either
semistable or has a destabilizing subobject. To all of these we can apply
the previous proof in order to show that over the descending chain the φ
strictly increases. That means, we obtain a – due to the first chain condition
eventually terminating sequence of subobjects · · · ⊂ Ei ⊂ Ei−1 ⊂ · · · ⊂ E1 ⊂
E0 = E with φ(Ei) > φ(Ei−1). It has semistable factors Fi = Ei/Ei−1 of
ascending phase (the mdq’s). This is the Harder-Narashiman Filtration.

2.5 Stability conditions

We are now ready to discuss the most important concept of this thesis. The
definition of a stability condition uses so called slicings and central charges –
we will now define the necessary terms and provide the connection to stability
functions.

Definition 2.5.1. A slicing P of a triangulated category T R consists of full
additive subcategories P(φ) ⊂ T R for each φ ∈ R satisfying:

1. for all φ ∈ R,P(φ+ 1) = P(φ)[1];

2. if φ1 > φ2, A1 ∈ P1, A2 ∈ P2 then HomT R(A1, A2) = 0;

3. for each non-zero object E ∈ T R there is an n ∈ N≥1, a sequence of
real numbers

φ1 > φ2 > · · · > φn,
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and a collection of exact triangles

E0
// E1

//

~~

E2
//

~~

. . . // En−1
// En

||

A1

+

OO

A2

+

OO

An

+

OO

with E0 = 0, En = E and Aj ∈ P(φj) for all j ∈ {1, . . . , n}.

Definition 2.5.2. For a non-zero object E ∈ T R and a slicing P of T R
let φ+ = φ1 and φ− = φn, where φ1 > φ2 > · · · > φn, n ≥ 1 is the series of
definition 2.5.1.

Lemma 2.5.3. If E ∈ P(φ) for φ ∈ R we have φ+(E) = φ−(E).

Proof. If E ∈ P(φ) then A1 = An = E.

Definition 2.5.4. Let E ∈ P(ξ) for ξ ∈ R, for the slicing P define

φ(E) := ξ.

Remark 2.5.5. We will refer to the collection of exact triangles of definition
2.5.1 as a ”filtration” in the style of a Harder-Narashiman filtration.

Before we can use the term slicing as part of the definition of a stability
condition we need – in order to define the second part, the (pre-)stability
condition consists of – to introduce the notion of the Grothendieck group of
a triangulated category. Since the concept of a triangulated category adapts
the idea of the concept of an abelian category with regard to exact sequences,
the following definition is only a slight alteration of definition 2.4.1.

Definition 2.5.6. For a triangulated category T R let G be the free abelian
group generated by isomorphism classes of objects in T R. Let G̃ be the
subgroup generated by all elements of the form E1−E2−E3 where E1, E2 and

E3 are objects in T R and there exists an exact triangle E2 → E1 → E3
+→.

We define the ”Grothendieck group” K(T R) of T R as the quotient G/G̃.

We need to somewhat strengthen this definition.

Definition 2.5.7. We define the ”numerical Grothendieck group”N (T R) as
the quotient K(T R)/K(T R)⊥, where K(T R)⊥ denotes the right orthogonal
with respect to the Euler form, that is

K(T R)⊥ = {E ∈ K(T R) | χ(E,F ) = 0 for all F ∈ K(T R)}.

Moreover, if N (T R) has finite rank then T R is called ”numerically finite”.
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Using the data that we have now available, Bridgeland has defined the
concept of a pre-stability condition in [18]. This is a pair consisting of a group
homomorphism and a slicing that fulfils a certain compatibility condition
provided in the following definition which now introduces stability conditions.
Note that the concept of a pre-stability condition was not used in [18] yet
and pre-stability conditions simply referred to as stability conditions.

Definition 2.5.8. Let Λ to be a finite-rank Z-lattice and a (fixed) surjective
homomorphism of groups v : K(T R) � Λ.

A quasi-stability condition on a triangulated category T R is a pair (P , Z)
that consists of a slicing P on a triangulated category T R together with a
group homomorphism Z : K(T R) → C, such that for any non-zero object
E ∈ P(φ) we have Z(v(E)) = m(E) exp(iπφ) for some m(E) ∈ R>0. We
then call Z the ”central charge” of the quasi-stability condition (P , Z).

We need the notion of a category of finite length.

Definition 2.5.9. We define

1. A non-zero object E in an abelian category A is called simple if for any
non-zero subobject F of E one has F = E;

2. A ”composition series” for X ∈ A is a series

0 = X0 ⊂ X1 ⊂ · · · ⊂ Xn = X,n ≥ 0

where Xi+1/Xi is simple for any i ∈ {0, . . . , n− 1}.

Definition 2.5.10. An abelian category A is of ”finite length” if any non-
zero X ∈ A has a composition series.

Definition 2.5.11. We define

1. An object E in an abelian category A is said to be ”noetherian” if any
increasing chain E1 ⊂ E2 ⊂ . . . of subobjects of E becomes stationary
after finitely many steps. An abelian category A is noetherian if every
object in it is noetherian.

2. An abelian category A is said to be ”artinian” if any infinite chain of
subobjects · · · ⊂ E2 ⊂ E1 becomes stationary.

Lemma 2.5.12. An abelian category A is of finite length if and only if it is
artinian and noetherian.
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Proof. Assume first that A is of finite length. First we prove that it is
noetherian. For an E ∈ A let

E1 ⊂ E2 ⊂ · · · ⊂ E

be a series of subobjects in A. We have that E has a JHF

0 = X0 ⊂ X1 ⊂ · · · ⊂ Xn = E

where Xi+1/Xi simple. Hence X1 = X1/0 = X1/X0 too is simple. Hence, if
we consider Ei ∩X1 ⊂ X1, then we must have Ei ∩X1 = X1 or Ei ∩X1 = 0.

1. If there is j such that Ej ∩X1 = X1, then X1 ⊂ Ej ⊂ Ej+1 ⊂ · · · ⊂ E
and hence Ej/X1 ⊂ Ej+1/X1 ⊂ · · · ⊂ E/X1. We set up a prove by
induction over n starting with E simple for n = 1. Now E/X1 has
JHF of length n− 1 that hence becomes stationary such that Ej/X1 =
Ej+1/X1 which implies Ej = Ej+1 and so on.

2. If Ei∩X1 = 0 for all i then Ei = Ei/(Ei∩X1) ∼= (Ei+X1)/X1 ⊂ E/X1

which has JHF of length n− 1, similar to before we are finished.

To prove that A is artinian we use

· · · ⊂ E2 ⊂ E1 ⊂ E

and, distinguishing X1 ∩ Ej = 0 for an existing j and X1 ∩ Ei = X1 for all i
we argue similar to the noetherian case that A is artinian.

Assume now that A is artinian and noetherian. Any E1 ∈ A has a
subobject E2 such that E1/E2 is simple. Otherwise we would obtain that
E1/E2 is not simple for any choice of E2 which would mean that there is an
object E3 in A such that 0 ( E3 ⊂ E1/E2. Hence there is a non-zero F ∈ A
such that we have E3 = F/E2. We obtain 0 = E2/E2 ( F/E2 ⊂ E1/E2 which
implies E2 ( F ( E1. We could now find an object G with F ( G ( E1

in the same manner and keep on repeating this process to obtain an infinite
chain. This violates the ascending chain condition which implies that it is
always possible to choose an object E2 such that E1/E2 is simple. For E2

we can now choose a subobject E3 such that E2/E3 is simple. We obtain
a descending chain of subobjects that will – due to the descending chain
condition – become stationary after finitely many steps.

Definition 2.5.13. For an interval I ⊂ R let P(I) be the extension closed
subcategory of T R that is generated by all subcategories P(φ) for which
φ ∈ I.
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Definition 2.5.14. A Slicing P of a triangulated category T R is called
”locally finite” if there is a real number ν > 0 such that for all t ∈ R the
category P(t− ν, t+ ν) ∈ T R is of finite length.

Remark 2.5.15. Note that P(t − ν, t + ν) of definition 2.5.14 is not gener-
ally abelian, but ”quasi-abelian” which is a slightly weaker concept. In the
theoretical framework of quasi-abelian categories one would have to restate
definition 2.5.11 using the term ”strict subobject”. This derives from the fact,
that the concept of strictness as a feature of morphisms plays an important
role in the context of quasi-abelian categories, in so far as while in an abelian
category every morphism is strict that is not necessarily the case in a quasi-
abelian category. Strictness of a morphism means, as we already pointed at
in the proof of theorem 2.5.33 that the canonical map ζ : coim f → im f
between the coimage and the image of a morphism f is an isomorphism. We
will however omit this terminology and refer to [57] for more information on
quasi-abelian categories.

Definition 2.5.16. A quasi-stability condition (P , Z) will be called locally
finite if the corresponding slicing P is.

Finally we approach the definition of the concept of a ”stability condition”
which nowadays usually includes the stability condition to fulfil the support
property which we will define later (definition 2.5.44).

Definition 2.5.17. A quasi-stability condition will be referred to as a ”pre-
stability condition” if it is locally finite.

Notation 2.5.18. Objects E ∈ P(φ) for φ ∈ R will be referred to as
”semistable”. If additionally E simple in P then E will be referred to as
”stable”.

Remark 2.5.19. Throughout this thesis we will work with Λ = N (T R), since
the triangulated category that we are working with is numerically finite. We
will – in abuse of notation – write Z(E) instead of Z(v(E)) from now on.

We will now explain the connection between stability functions on A
and pre-stability conditions on D. To provide this important connection we
need the notion of a bounded t-structure. Beilinson, Bernstein and Delingne
introduced t-structures in [10] and they have since been subject to many
research articles.

Definition 2.5.20. A ”t-structure” on a triangulated category T R is a pair
of strictly full subcategories (T R≤0, T R≥1) of T R such that for T R≤n =
T R≤0[−n] and T R≥n+1 = T R≥1[−n], n ∈ Z the following conditions hold:
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1. For X ∈ T R≤0 and Y ∈ T R≥1, HomT R(X, Y ) = 0;

2. T R≤0 ⊂ T R≤1 and T R≥1 ⊂ T R≥0;

3. For each X ∈ T R there is an exact triangle

A→ X → B
+→

where A ∈ T R≤0 and B ∈ T R≥1.

Lemma 2.5.21. Let (T R≤0, T R≥1) be an arbitrary t-structure. The in-
clusion iT R≤n : T R≤n → T R admits a right adjoint functor τ≤n and the
inclusion iT R≥n : T R≥n → T R admits a left adjoint functor τ≥n. For any
E ∈ T R there is an exact triangle

τ≤0E → E → τ≥1E
+→ . (2.6)

Proof. See [10, Proposition 1.3.3].

Lemma 2.5.22. Let E ∈ T R, then (τ≤n+mE)[m] = τ≤n(E[m]) and addi-
tionally (τ≥n+mE)[m] = τ≥n(E[m]).

Proof. Let X ∈ T R≤n. We have

Hom(τ≤n+mE)[m], X) = Hom(τ≤n+mE), X[−m]) =

Hom(E, iT Rn+m(X[−m])) = Hom(E,X[−m]) = Hom(E[m], X),

providing (τ≤n+mE)[m] = τ≤n(E[m]). Similarly one proves that (τ≥n+mE)[m] =
τ≥n(E[m]).

Lemma 2.5.23. For any E ∈ T R there is an exact triangle

τ≤nE → E → τ≥n+1E
+→ . (2.7)

Proof. From lemma 2.5.21 we obtain that for E ∈ T R, E[n] fits into the
exact triangle

τ≤0(E[n])→ E[n]→ τ≥1(E[n])
+→

which, by lemma 2.5.22, equals to

(τ≤nE)[n]→ E[n]→ (τ≥n+1E)[n]
+→

Applying [−n] to this we obtain the exact triangle

τ≤nE → E → τ≥n+1E
+→,

which finishes the proof.
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Lemma 2.5.24. If Hom(Y, T ) = 0 for all T ∈ T R≥n+1 then Y ∈ T R≤n. If
Hom(T ′, X) = 0 for all T ′ ∈ T R≤m then X ∈ T R≥m+1.

Proof. From Hom(Y, T ) = 0 for any T ∈ T R≥n+1, considering that by
definition τ≥n+1Y ∈ T R≥n+1, we obtain that Hom(Y, τ≥n+1Y ) = 0. Since
τ≤nY [1] ∈ T R≤n we additionally obtain that Hom((τ≤nY )[1], τ≥n+1Y ) = 0.
Now using the exact triangle (2.7) from 2.5.23 we obtain the exact sequence

Hom((τ≤nY )[1], τ≥n+1Y )→ Hom(τ≥n+1Y, τ≥n+1Y )→ Hom(Y, τ≥n+1Y )

implying Hom(τ≥n+1Y, τ≥n+1Y ) = 0 and therefore τ≥n+1Y = 0. The sequence
τ≤nY → Y → τ≥n+1Y must therefore equal to τ≤nY → Y → 0, implying
τ≤nY ∼= Y which is what we wanted to prove. Similarly one obtains that if
Hom(T ′, X) = 0 for all T ′ ∈ T R≤m then X ∈ T R≥m+1.

Lemma 2.5.25. The categories T R≤n and T R≥m are extension closed.

Proof. Let X → Y → Z
+→ be an exact triangle. Let X,Z ∈ T R≤n, then

Hom(X,T ) = Hom(Z, T ) = 0 for all T ∈ T R≥1. Hence we obtain from the
exact sequence

Hom(Z, T )→ Hom(Y, T )→ Hom(X,T )

that Hom(Y, T ) = 0. By lemma 2.5.24 this implies Y ∈ T R≤n. This means
that T R≤n is extension closed. Similarly one obtains T R≥m extension closed.

For the particular topic that we are interested in throughout this thesis
we will need a slightly stronger term.

Definition 2.5.26. A t-structure is ”bounded” if ∪n∈ZT R≤n = T R and at
the same time ∪n∈ZT R≥n = T R.

We also need the notion of a heart of a t-structure.

Definition 2.5.27. The heart of a t-structure (T R≤0, T R≥1) on a triangu-
lated category T R is the category T R≤0 ∩ T R≥0.

There is a first – immediate – implication of this definition which will be
useful at a later stage.

Lemma 2.5.28. Let H be the heart of a t-structure on T R. Then H is
closed under isomorphisms in T R.

Proof. This is implied by the strictness of the inclusion of the subcategories
out of which H is obtained (see definition 2.5.20)
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In the following we will prove that the heart of a t-structure is actually an
abelian category. This fact was proved by Beilinson, Bernstein and Deligne
in [10]. The proof is broken down into the following series of lemmas.

Lemma 2.5.29. Let H be the heart of a t-structure on T R. Then we have
Hom<0(E,F ) = 0 for E,F ∈ H.

Proof. By definition H = T R≤0 ∩ T R≥0 for a t-structure T R≤0, T R≥1

on T R. Then for E,F ∈ H we have E ∈ T R≤0 ∩ T R≥0 ⊂ T R≤0 and
F ∈ T R≤0 ∩ T R≥0 ⊂ T R≥0. Hence F [−m] ∈ T R≥m ⊂ T R≥1 for any
positive integer m since T R≥m ⊂ T R≥m−1 ⊂ . . . ⊂ T R≥1. That means
Hom−m(E,F ) = Hom(E,F [−m]) = 0 as Hom(T R≤0, T R≥1) = 0. We ob-
tain Hom<0(E,F ) = 0.

Lemma 2.5.30. Let a ≤ b and X ∈ T R. Then τ≥aτ≤bX = τ≤bτ≥aX.

Proof. See [10, Proposition 1.3.5].

Remark 2.5.31. Note that the condition a ≤ b of lemma 2.5.30 is not nec-
essary for the statement to hold true. This is a somewhat unusual way of
stressing that only with the condition a ≤ b holding, one actually obtains
an interesting result – in cases where the condition does not hold, both com-
positions of the two functors are just zero and hence trivially equal to each
other.

Lemma 2.5.32. If X ∈ T R≤n then τ≥mX ∈ T R≤n. If X ∈ T R≥n then
τ≤mX ∈ T R≥n.

Proof. If X ∈ T R≤n then X ∼= τ≤nX. Hence, using lemma 2.5.30, we obtain

τ≥mX ∼= τ≥mτ≤nX = τ≤nτ≥mX.

This means that τ≥mX ∼= τ≤nτ≥mX implying τ≥mX ∈ T R≤n. Similarly one
proves that τ≤mX ∈ T R≥n for X ∈ T R≥n.

With the preparations we have made up to this point we are now able to
prove the following theorem that has been introduced by Beilinson, Bernstein
and Deligne.

Theorem 2.5.33. The heart H of a t-structure (T R≤0, T R≥1) is an abelian
category.
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Proof. [10, Theorem 1.3.6] Let f : A → B be a morphism in H. We will
show that it has a kernel and a cokernel in A. For the morphism f there is

an object S ∈ T R such that A
f→ B → S

+→ is an exact triangle. We have
S ∈ T R≤0 ∩ T R≥−1 by lemma 2.5.25. Let C = τ≥0S, then, since by lemma
2.5.32 we have C = τ≥0S ∈ T R≤0, we obtain C ∈ A. We compose B → S

from the exact triangle A
f→ B → S

+→ with the canonical map S → τ≥0S
which equals to S → C and obtain a map B → C. Let X ∈ H and consider
the exact sequence

Hom(A[1], X)→ Hom(S,X)→ Hom(B,X)→ Hom(A,X).

We have Hom(A[1], X) = Hom(A,X[−1]) = 0 due to lemma 2.5.29 and
additionally Hom(S,X) = Hom(S, iT R≥0X) = Hom(τ≥0S,X) = Hom(C,X)
which combined provides us with the exact sequence

0→ Hom(C,X)→ Hom(B,X)→ Hom(A,X).

This proves that B → C is the cokernel of f . Similarly we define K =
(τ≤−1S)[−1]) which, again by lemma 2.5.25 and lemma 2.5.32 is in H. As
before we obtain a morphism K → A this time via the exact triangle

S[−1] → A → B
+→. Applying lemma 2.5.22 to see that, on one hand

we have Hom(X,S[−1]) = Hom(X, (τ≤−1S)[−1]) and lemma 2.5.29 to see
that on the other, we have Hom(X,B[−1]) = 0 we obtain that the sequence

Hom(X,B[−1])→ Hom(X,S[−1])→ Hom(X,A)→ Hom(X,B),

equals to

0→ Hom(X,K)→ Hom(X,A)→ Hom(X,B).

Hence K → A is the kernel of f . To complete the proof we need to show that
f is strict – this means that the canonical morphism between the coimage
and the image of f is an isomorphism. Consider the following diagram in
which the left and the right triangle are exact triangles and the upper and
the lower triangle commutative diagrams:

C

+

��

Boo

xx
S

gg

+

&&
K[1]

77

+ // A

OO
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By the octahedron axiom for triangulated categories we obtain an object
I ∈ T R and the following diagram in which the left and the right triangle
are commutative diagrams while the upper and the lower triangle are exact
triangles:

C

+

��

+

''

Boo

I

88

xx

K[1]
+ // A.

OO

ff

This means that we obtain the exact triangles

I → B → C
+→ (2.8)

and
K → A→ I

+→ . (2.9)

Applying similar techniques to the ones we used before we see that we now
obtain that coim(f) = coker(K → A) = τ≥0(I) and moreover that at the
same time we have im(f) = ker(B → C) = (τ≤−1I[1])[−1] = τ≤0I. From

(2.9) we obtain the exact triangle A → I → K[1]
+→ and as A ∈ T R≤0 and

K[1] ∈ T R≤−1 ⊂ T R≤0 we have I ∈ T R≤0 by lemma 2.5.25. Similarly,
combining (2.8) with lemma 2.5.25 we obtain I ∈ T R≥0. Hence im(f) =
τ≤0I ∼= τ≥0 = coim(f). Then we obtain f = (I → B) ◦ idI ◦(A → I).

Let f̃ be the morphism coim f → im f induced by f . We obtain (τ≤0I
∼=→

I)◦ f̃ ◦ (I
∼=→ τ≥0I) = idI and hence f̃ has to be an isomorphism which proves

that f is strict.

The motivating example for t-structures is the standard t-structure on
the bounded derived category of an abelian category. It is straightforward,
that the following definition fulfils the conditions of definition 2.5.20. The
t-structure is moreover bounded (definition 2.5.26).

Definition 2.5.34. For a bounded derived category D of an abelian category
A, we define the ”standard t-structure” by lettingD≤0 be the full subcategory
of D such that obj(D≤0) = {E ∈ obj(D) | H i(E) = 0, i > 0} and D≥0 be the
full subcategory of D such that obj(D≥0) = {E ∈ obj(D) | H i(E) = 0, i < 0}
where H i is the standard cohomology.

Example 2.5.35. The heart of the standard t-structure of D is the underly-
ing abelian category A itself. Therefore, in the context of t-structures, A is
sometimes referred to as the ”standard heart”.
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In [18], Bridgeland proved the following crucial lemma, that provides the
connection between stability functions and pre-stability conditions as defined
in 2.5.17.

Lemma 2.5.36. To give a pre-stability condition on a triangulated category
T R is equivalent to giving a bounded t-structure on T R and a stability func-
tion on its heart with the Harder-Narashiman property.

Proof. See [18, Proposition 5.3].

We can now produce the standard example of a pre-stability condition
in the language of t-structures and stability functions. It was introduced by
Bridgeland in [18].

Example 2.5.37. Let A be the abelian category of coherent OC-modules
on a non-singular projective curve C over an algebraically closed field k of
characteristic zero. Let a stability function Z : K(A)→ C given by

Z(E) = − deg(E) + i rank(E)

as in example 2.4.5. Then (Z,A) is a pre-stability condition on Db(A). (see
[18, Example 5.4]).

The stability condition from example 2.5.37 will play an important role
in later investigations. Therefore we introduce the following definition.

Definition 2.5.38. The stability function Z from example 2.5.37 will be re-
ferred to as Zµ. The resulting pre-stability condition (Zµ,A) will be referred
to as σµ.

Lemma 2.5.36 provides the connection between pre-stability conditions
and stability functions. However, as a tool to study stability conditions, the
relation between stability conditions and t-structures is much more essential.
This is very important, as the approach to find new stability conditions
may consist in finding new t-structures using lemma 2.5.36. In fact we will,
throughout this thesis, often make use of the observation provided by lemma
2.5.36.

Having introduced stability conditions as hearts of t-structures with sta-
bility functions on them we can extend our definition of φ.

Definition 2.5.39. Let σ = (Z,H) where H is the heart of a bounded
t-structure on D and Z a stability function on H, then we define for E ∈ H

φσ(E) = arg(Z(E)).
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Lemma 2.5.40. If σ as in definition 2.5.39, σ = (P , Z) and E is semistable
with regard to σ then definitions 2.5.39 and 2.5.4 coincide.

Proof. This is due to the compatibility between the central Z, that the sta-
bility function extends to and P .

The connection between pairs of slicings and central charges on one hand
and t-structures and stability functions on the other hand provided by lemma
2.5.36 also allows us to extend concepts from one set of data to the other.
We can now link our concept of a standard t-structure into that of a slicing.

Definition 2.5.41. We define a ”standard slicing” on D, the bounded de-
rived category of an abelian category A, to be a slicing P for which we have
P(0, 1] = A.

The connection is now provided by the following remark.

Remark 2.5.42. Note that if P is the slicing of a pre-stability condition, for
which the corresponding t-structure is the standard t-structure defined in
2.5.34, then P is a standard slicing. In other words, P(0, 1] is the standard
heart of example 2.5.35.

Definition 2.5.43. A pre-stability condition σ = (Z,H) satisfies the ”sup-
port property” if there is a symmetric bilinear form Q on Λ⊗R = ΛR such
that

1. All σ-semistable objects E ∈ H satisfy Q(v(E), v(E)) ≥ 0.

2. All non zero vectors v ∈ ΛR with Z(v) = 0 satisfy Q(v, v) < 0.

Now we can conclude this section by providing the definition of a stability
condition.

Definition 2.5.44. A pre-stability condition σ = (Z,H) on a triangulated
category T R that satisfies the support property is called a ”stability condi-
tion”.

Remark 2.5.45. Note that stability conditions as defined in 2.5.44 are also
referred to as ”Bridgeland stability conditions”.

The following lemma provides that the conditions for the support prop-
erty can be relaxed for its purposes.

Lemma 2.5.46. It suffices to assume all σ-stable objects E ∈ H satisfy
Q(v(E), v(E)) ≥ 0 in definition 2.5.43.
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Proof. See [8, Lemma 11.6].

Definition 2.5.47. A pre-stability condition is discrete if the image of Z is
a discrete subgroup of C.

Finally we have the following important features.

Definition 2.5.48. Define G̃L
+

2 (R) to be the universal cover of GL+
2 (R).

Remark 2.5.49. In [18] Bridgeland explained that G̃L
+

2 (R) should be thought
of as pairs (T, f) where f : R → R is an increasing map with f(φ + 1) =
f(φ) + 1 and T : R2 → R2 is an orientation-preserving linear isomorphism,
such that the induced maps on S1 = R/2Z coincide. More concretely we can
say

M exp(iπf(t)) ∈ R>0 exp(iπt)

where – in slight abuse of notation – identify the number exp(iπf(t)) ∈ C
with the vector (cos(iπf(t)), sin(iπf(t))) ∈ R2 such that we can multiply it
by M = T−1.

Lemma 2.5.50. There is a (right) action of G̃L
+

2 (R) on pre Stab(T R) given
by σg = (T−1 ◦Z,P(f(φ))), where σ = (P , Z) ∈ Stab(T R) and g = (T, f) ∈
G̃L

+

2 (R).

Proof. See [18, lemma 8.2].

Using the language we have just introduced, Macŕı has – generalising a
result by Bridgeland ([18, theorem 9.1]) – proved the following crucial result
on the stability space of Db(Coh(C)). A lot of the content of this thesis is
based on it.

Theorem 2.5.51. Let A = Coh(C) where C is a smooth projective curve,

then the action of G̃L
+

2 (R) is free and transitive so that

Stab(D) ∼= G̃L
+

2 (R).

Proof. See [18, Theorem 9.1] and [45, Theorem 2.7].

Remark 2.5.52. Note that theorem 2.5.51 implies that for A = Coh(C) where
C is a smooth projective curve and any σ ∈ Stab(D) the semistable objects

are simply (shifts of) the µ-stable objects in A, as G̃L
+

2 (R) in this situation
merely changes the numbering of the slices.

Definition 2.5.53. Define Aut(T R) to be the group of exact autoequiva-
lences of T R.
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Lemma 2.5.54. There is a (left) action by isometries of the group Aut(T R)
on pre Stab(T R), given by Φ(σ) = (Φ(P), Z ◦ Φ−1), where σ = (P , Z) ∈
Stab(T R) and Φ ∈ Aut(T R). These two actions commute.

Proof. See [18, Lemma 8.2].

The connection of both actions with the support property is crucial.

Lemma 2.5.55. Let σ ∈ Stab(T R), g ∈ G̃L
+

2 (R) and Φ ∈ Aut(T R), then

Φσg ∈ Stab(T R)

Proof. Let Q be a quadratic form such that σ satisfies the support property
with respect to Q. The result now follows from the definition of the action

of G̃L
+

2 (R) given in lemma 2.5.50 and Φ ∈ Aut(T R) given in lemma 2.5.54.
Then, σg satisfies the support property with respect to the quadratic form
Q and Φσ with respect to Q ◦ Φ−1.

2.6 Topology of Stab

Previously we have established the set of stability conditions on T R. We
can, however, say more – in [18], Bridgeland has defined a generalised metric
on the set of stability conditions on T R, that gives this set the structure of
a topological space and that we will now introduce. In doing this, we will
in fact only look at those stability conditions that fulfil a certain criterion
called locally finiteness, which explains definition 2.5.17.

And hence we can define the stability space of a triangulated category as

Notation 2.6.1. By Stab(T R) we denote the set of locally finite stability
conditions on the triangulated category T R.

Remark 2.6.2. Note that the locally finiteness is a requirement for the proof
of corollary 2.6.8 and will therefore give the stability space a somewhat nicer
structure.

By defining a topology on the set of stability conditions on a triangu-
lated category T R one obtains a topological space – this is what we call the
stability space of T R. This topology is induced by the generalised metric
that will be defined next. Prior to this we will clarify what we mean by a
generalised metric as there does not seem to be a common definition – the
ways different authors define generalised metrics differ quite significantly in
fact.

Definition 2.6.3. A ”generalised metric” is a map d(−,−) : S → [0,∞],
defined on a set S, with the properties:
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1. d(σ1, σ2) = 0 if and only if σ1 = σ2;

2. d(σ1, σ2) = d(σ2, σ1);

3. d(σ1, σ3) ≤ d(σ1, σ2) + d(σ2, σ3)

for any σ1, σ2, σ3 ∈ S.

Remark 2.6.4. Note that other authors do not necessarily assume d(σ1, σ2) =
0 implies σ1 = σ2 and the second axiom of 2.6.3.

Definition 2.6.5. For stability conditions σ1 = (Z1,P1) and σ2 = (Z2,P2)
we denote by φ+

σi
and φ−σi the φ+ and φ− defined in 2.5.2 of an E ∈ T R for

the particular slicing Pi of σi. Similarly we denote by mσi the m defined in
2.5.17 for the central charge Zi of σi. Define

d(σ1, σ2) = sup
0 6=E∈T R

{|φ−σ1
(E)− φ−σ2

(E)|, |φ+
σ1

(E)− φ+
σ2

(E)|, | ln(
mφσ2

mφσ1

)|}.

Lemma 2.6.6. The mapping d(−,−) : Stab(T R)× Stab(T R)→ R≥0 ⊂ R
defined in 2.6.5 defines a generalised metric on Stab(T R).

Proof. To prove the first axiom of definition 2.6.3, on observes that

d(σ1, σ1) = sup
06=E∈T R

{|φ−σ1
(E)− φ−σ1

(E)|, |φ+
σ1

(E)− φ+
σ1

(E)|, | ln(
mφσ1

mφσ1

)|} = 0.

for any σ1 ∈ Stab(T R). To prove that d(σ1, σ2) = 0 implies σ1 = σ2 one notes
that d(σ1, σ2) = 0 implies φ−σ1

(E) = φ−σ2
(E) and φ+

σ1
(E) = φ+

σ2
(E). Hence

an object is semistable with regard to σ1 if and only if it is semistable with
regard to σ2. This means that P1 = P2. Since d(σ1, σ2) additionally implies
that mσ1(E) = mσ2(E) for any E ∈ T R, one concludes that the central
charges of σ1 and of σ2 agree on the semistable objects. The semistable
objects, on the other hand, generate N (T R) and hence Z1 = Z2 due to the
fact that the central charge is a homomorphism of groups. We conclude that
σ1 = σ2.

Is is directly due to the properties of the absolute value, that the second
axiom holds. The third axiom follows from the triangle inequality of R.

There is more about the topological features of Stab(T R). Bridgeland
proved a crucial fact, which allows us to formulate the following theorem
and a direct implication. Besides Bridgeland’s paper [18] from which this is
taken, we refer to [5, Section 5.5] for a sketch of the proof.



41

Theorem 2.6.7. Let T R be a triangulated category. For each connected
component Σ ⊂ Stab(T R) there is a linear subspace V (Σ) ⊂ Hom(Λ,C)
with a well-defined linear topology and a local homeomorphism Z, given by

Z : Σ→ V (Σ)

Z(σ) = Z,

where σ = (P , Z).

Proof. See [18, Theorem 1.2].

Corollary 2.6.8. Each connected component of the stability space Stab(T R)
of a triangulated category T R is a complex manifold.

Proof. This is an implication of 2.6.7 – see [18, Section 1].

The aim in dealing with stability conditions is, hence, to reach a full de-
scription of the stability space of the particular triangulated category one
is interested in. This provides an interesting invariant and therefore bares
information about the triangulated category itself. The particular example
that we are interested in is to compute the stability space of the bounded de-
rived category D↑ of the arrow category A↑ of an abelian category A. More
precisely are we interested in the stability space of the triangulated cate-
gory Db(Coh(C)↑), it will be our aim to research it throughout the following
chapters.

3 CP-Gluing

This section aims at the introduction of a technique to compute stability
conditions. At a pre-Serre functor level (see section 4) we can compute
stability conditions using the technique of CP-gluing and hence obtain pre-
stability conditions. The CP-gluing-technique, introduced by Collins and
Polishchuk (CP) in [21], can be thought of as a special case of recollement
which will be introduced in the subsequent section. There is, however, a
fundamental difference – to be able to set up recollement in our case one
requires the existence of a Serre functor, which is a crucial concept that
simplifies many problems. However, this section develops the theory entirely
without it. The section is joint work with Eva Mart́ınez and Alejandra
Rincón.
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3.1 The CP-gluing-technique

This chapter provides the background theory regarding the technique of CP-
gluing t-structures on a triangulated category from t-structures of certain
triangulated subcategories that sit particularly nicely in the triangulated
category one started with. Lemma 3.1.4 will clarify what this means.

Lemma 3.1.1. Let T R = 〈i1(T R1), i2(T R2)〉. The exact triangle

i2(E2)→ E → i1(E1)
+→

of definition 2.1.6 is unique up to isomorphisms of exact triangles.

Proof. For E ∈ T R consider exact triangles

i2(E2)
u→ E

v→ i1(E1)
+→

and
i2(E ′2)

u′→ E
v′→ i1(E ′1)

+→
with E1, E

′
1 ∈ T R1 and E2, E

′
2 ∈ T R2. This gives

v′ ◦ idE ◦u ∈ Hom(i2(E2), i1(E ′1)) ⊂ Hom(i2(T R2), i1(T R1)) = 0

by definition 2.1.6. By [32, Lemma 1.6] there are now morphisms f and g
such that the diagram

i2(E2)
u−−−→ E

v−−−→ i1(E1)
+−−−→yf yidE

yg
i2(E ′2)

u′−−−→ E
v′−−−→ i1(E ′1)

+−−−→
is a morphism of triangles. Since we have

Hom(i2(E2), i1(E ′1)[−1]) ⊂ Hom(T R2, T R1) = 0, (3.1)

again using definition 2.1.6, it is also implied in [32, Lemma 1.6], that f and
g are unique. To prove that f and g are indeed isomorphisms, we extend the
above diagram to

i2(E2)
u−−−→ E

v−−−→ i1(E1)
+−−−→yf yidE

yg
i2(E ′2)

u′−−−→ E
v′−−−→ i1(E ′1)

+−−−→yf ′ yidE

yg′
i2(E2)

u−−−→ E
v−−−→ i1(E1)

+−−−→
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and obtain a morphism of triangles

i2(E2)
u−−−→ E

v−−−→ i1(E1)
+−−−→yf ′◦f yidE

yg′◦g
i2(E2)

u−−−→ E
v−−−→ i1(E1)

+−−−→

by composing the vertical arrows. On the other hand,

i2(E2)
u−−−→ E

v−−−→ i1(E1)
+−−−→yidi2(E2)

yidE

yidi1(E1)

i2(E2)
u−−−→ E

v−−−→ i1(E1)
+−−−→

is a morphism of triangles and since, once again combining definition 2.1.6
with [32, Lemma 1.6], the morphism idE determines the left and right vertical
arrow uniquely, we obtain f ′ ◦ f = idi2(E2) and g′ ◦ g = idi1(E1). Similarly,
now using the diagram

i2(E ′2)
u′−−−→ E

v′−−−→ i1(E ′1)
+−−−→yf ′ yidE

yg′
i2(E2)

u−−−→ E
v−−−→ i1(E1)

+−−−→yf yidE

yg
i2(E ′2)

u′−−−→ E
v′−−−→ i1(E ′1)

+−−−→

we see that f ◦ f ′ = idi2(E2) and g ◦ g′ = idi1(E1). Hence f and g are isomor-
phisms. This implies that i1(E1) and i2(E2) are unique up to isomorphism
which finishes the proof since i1 and i2 are embeddings.

Remark 3.1.2. We can in fact adapt the proof of lemma 3.1.1 to show that
the exact triangle (2.7) is unique. This is obtained in the same way as
its existence from the uniqueness of the exact triangle (2.6). The unique-
ness of (2.6), however, can be seen in the same way as in the case of the
semiorthogonal decomposition. A semiorthogonal decomposition is after all
a special t-structure for which the condition to be closed under certain shifts
is stricter. However, the proof of lemma 3.1.1 only uses the stability under
shift to prove (3.1). Since for a t-structure (T R≤0, T R≥1), we have that
T R≥1 is – by definition – closed under negative shift however, (3.1) is still
true for t-structures.
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Lemma 3.1.3. Let T R = 〈i1(T R1), i2(T R2)〉. For λ1 and ρ2 as in defini-
tion 2.1.8, there are identities

λ1 ◦ i1 ∼= id ∼= ρ2 ◦ i2.

Proof. Let E2 ∈ T R2. Then

i2(E2)→ i2(E2)→ 0
+→

is an exact triangle in T R, equal to

i2(E2)→ i2(E2)→ i1(0)
+→ .

Since E2 ∈ T R2 and 0 ∈ T R1 this is the, by lemma 3.1.1 unique, exact
triangle that the semiorthogonal decomposition 〈i1(T R1), i2(T R2)〉 provides
for i2(E2). Hence ρ2(i2(E2)) = E2 and in the same manner one sees that
ρ2(i2(f)) = f for a morphism f on E2. The proof for λ1◦i1 ∼= id is similar.

Lemma 3.1.4. Assume that on the triangulated category T R a semiorthog-
onal decomposition T R = 〈i1(T R1), i2(T R2)〉 is given. The functor ρ2 is
the right adjoint to the inclusion i2 : T R2 → T R, and λ1 is the left adjoint
functor to the inclusion i1 : T R1 → T R.

Proof. Let Y ∈ T R2 and X ∈ T R. The semiorthogonal decomposition
T R = 〈i1(T R1), i2(T R2)〉 hence provides us with an exact triangle

i2(X2)→ X → i1(X1)
+→

where X1 ∈ T R1 and X2 ∈ T R2. Applying the functor HomT R(i2(Y ),−) to
this exact triangle provides us with the long exact sequence

· · · → Hom(i2(Y ), i1(X1)[−1])→ Hom(i2(Y ), i2(X2))

→ Hom(i2(Y ), X)→ Hom(i2(Y ), i1(X1))→ . . .

which equals to

0→ Hom(i2(Y ), i2(X2))→ Hom(i2(Y ), X)→ 0

since 〈i1(T R1), i2(T R2)〉 is a semiorthogonal decomposition, implying that
Hom(i1(T R1), i2(T R2)) = 0. Therefore we obtain

Hom(Y, ρ2(X)) = Hom(Y,X2) ∼= Hom(i2(Y ), i2(X2)) ∼= Hom(i2(Y ), X),

where Hom(Y,X2) ∼= Hom(i2(Y ), i2(X2)) is provided via the fact that i2 is
full by definition 2.1.6.

The functoriality, using lemma 3.1.3 is seen by

HomT R(i2(Y ), X)
ρ2→ HomT R2(ρ2(i2(Y )), ρ2(X))

∼=→ HomT R2(Y, ρ2(X)).

The proof for λ1 is similar.
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We can compute t-structures and hence in particular bounded t-structures
– the type that we are interested in – on a triangulated category via the
semiorthogonal decomposition by a method called ”CP-gluing” which was
introduced by Collins and Polishchuk in [21]. The idea of CP-gluing is to
combine the data provided by the hearts of bounded t-structures on both
components of the semiorthogonal decomposition and compute a heart of a
bounded t-structure on the triangulated category T R in this manner.

Lemma 3.1.5. Let T R = 〈i1(T R1), i2(T R2)〉 be a semiorthogonal decom-
position and Hi the hearts of bounded t-structures on T Ri for i = 1, 2, such
that Hom≤0

T R(i1(H1), i2(H2)) = 0, then

H = {X ∈ T R | λ1(X) ∈ H1, ρ2(X) ∈ H2}

is the heart of a bounded t-structure on T R. We will refer to hearts of this
kind as ”hearts obtained by CP-gluing”.

Proof. For the proof of

H = {X ∈ T R | λ1(X) ∈ H1, ρ2(X) ∈ H2}

being the heart of a t-structure on T R see [21, Lemma 2.1]. Note, that also
[21, Lemma 2.1] claims that a t-structure obtained in this manner is bounded,
a proof is not given, we therefore include a proof, provided in 3.1.7.

Remark 3.1.6. Note that the t-structure (T R≤0, T R≥1) on T R that corre-
sponds to the heart H of lemma 3.1.5 is then given by

T R≤0 = {X ∈ T R | λ1(X) ∈ (T R1)≤0, ρ2(X) ∈ (T R2)≤0}

and

T R≥1 = {X ∈ T R | λ1(X) ∈ (T R1)≥1, ρ2(X) ∈ (T R2)≥1}

where ((T Ri)≤0, (T Ri)≥1) are the t-structures corresponding to the hearts
Hi on T Ri.

Lemma 3.1.7. Let T R = 〈i1(T R1), i2(T R2)〉 be a semiorthogonal decom-
position and Hi the hearts of bounded t-structures on T Ri for i = 1, 2. If

H = {X ∈ T R | λ1(X) ∈ H1, ρ2(X) ∈ H2}

is the heart of a t-structure on T R, then that t-structure is bounded.



46

Proof. Recall the definition of boundedness of a t-structure in 2.5.26. Let
E ∈ T R then the semiorthogonal decomposition provides us with the exact

triangle i2(ρ2(E)) → E → i1(λ1(E))
+→. The definition of H implies that if

for an object E ∈ T R we have λ1(E) ∈ (T R1)≤0 and ρ2(E) ∈ (T R2)≤0, then
E ∈ T R≤0, where T R≤0, (T R1)≤0 and (T R2)≤0 are the categories corre-
sponding to H,H1 and H2. For any F ∈ T R we have λ1(F ) ∈ ∪n∈Z(T R1)≤n

and ρ2(F ) ∈ ∪n∈Z(T R2)≤n which implies that F ∈ ∪n∈ZT R≤n and hence
∪n∈ZT R≤n. The proof is finished by repeating the argument for T R≥n.

Lemma 3.1.8. Let T R = 〈i1(T R1), i2(T R2)〉, be a semiorthogonal decom-
position, E1 ∈ T R1 and φ : T R1 → T R2 an equivalence of categories. As-
sume additionally, that ρ2 has a right adjoint functor ∆ and ∆φ left adjoint
to λ1 and that ∆ is fully faithful. There exist an exact triangle

i2(φ(E1))→ ∆(φ(E1))→ i1(E1)
+→ .

Proof. Since T R = 〈i1(T R1), i2(T R2)〉 is a semiorthogonal decomposition,
any F ∈ T R can be embedded into an exact triangle

i2(ρ2(F ))→ F → i1(λ1(F ))
+→ .

If we, on the other hand, now let F = ∆(φ(E1)) ∈ T R, we obtain an

exact triangle i2(ρ2(∆(φ(E1)))) → ∆(φ(E1)) → i1(λ1(∆(φ(E1))))
+→. As

∆ was assumed to be fully faithful, so is ∆φ since φ is an equivalence of
categories. As, additionally, ∆ is the right adjoint functor of ρ2 and ∆φ
the left adjoint to λ1, we conclude with [44, Subsection 4.3, Theorem 1]
that ρ2∆ ∼= idT R2 and idT R1

∼= λ1∆φ. Hence we obtain an exact triangle

i2(φ(E1))→ ∆(φ(E1))→ i1(E1)
+→.

Remark 3.1.9. Subsection 3.2 will see the introduction of an example of such
a ∆.

Lemma 3.1.10. Let T R = 〈i1(T R1), i2(T R2)〉. For X ∈ T R and i ∈ Z,we
have(λ1(X))[i] = λ1((X)[i]).

Proof. For any E1 ∈ T R1 we have

HomT R1((λ1(X))[i], E1) = HomT R1(λ1(X), E1[−i])
∼= HomT R(X, i1(E1[−i])) = HomT R(X, (i1(E1))[−i])

= HomT R(X[i], i1(E1)) = HomT R1(λ1((X)[i]), E1)

since λ1 is the left adjoint functor to i1 and i1 commutes with the shift
functor by definition 2.1.6. This finishes the proof as E1 was freely chosen
from T R1.



47

Lemma 3.1.11. Let T R = 〈i1(T R1), i2(T R2)〉 be a semiorthogonal decom-
position, then the composition λ1i2 = 0.

Proof. For any E1 ∈ T R1, E2 ∈ T R2 we obtain

HomT R1(λ1(i2(E2)), E1) = HomT R(i2(E2), i1(E1)) = 0

since λ1 is the left adjoint to i1 and T R = 〈i1(T R1), i2(T R2)〉 is a semiorthog-
onal decomposition implying that Hom(i1(T R1), i2(T R2)) = 0. This pro-
vides us with the required statement, as E1, E2 were chosen freely from T R1

and T R2.

Lemma 3.1.12. Let T R = 〈i1(T R1), i2(T R2)〉, then

Homi
T R(∆(φ(E1)), i2(E2)) = 0

for any i ∈ Z, E1 ∈ T R1 and E2 ∈ T R2.

Proof. Since λ1 is the right adjoint functor of ∆φ we obtain

Hom(∆(φ(E1)), (i2(E2))[i]) = Hom(E1, λ1((i2(E2))[i])).

But λ1 commutes with the shift functor due to lemma 3.1.10 and hence

Hom(∆(φ(E1)), (i2(E2))[i]) = Hom(E1, λ1((i2(E2))[i]))

= Hom(E1, (λ1(i2(E2))[i]) = Hom(E1, 0) = 0

as λ1i2 = 0 due to lemma 3.1.11.

Theorem 3.1.13. Let T R = 〈i1(T R1), i2(T R2)〉 be a semiorthogonal de-
composition, E1 ∈ T R1, E2 ∈ T R2 and φ : T R1 → T R2 an equivalence
of categories. Assume additionally, that there exists a ∆ which is the right
adjoint functor of ρ2 and for which ∆φ is the left adjoint functor to λ1 and
that ∆ is fully faithful. Then

Homi
T R2(φ(E1), E2) ∼= Homi+1

T R(i1(E1), i2(E2))

for any i ∈ Z.

Proof. Due to lemma 3.1.8 there is an exact triangle

i2(φ(E1))→ ∆(φ(E1))→ i1(E1)
+→ .

If we apply the functor Hom(−, i2(E2)) to this triangle we obtain an exact
sequence

· · · → Homi
T R(∆(φ(E1)), i2(E2))→ Homi

T R(i2(φ(E1)), i2(E2))→
Homi+1

T R(i1(E1), i2(E2))→ Homi+1
T R(∆(φ(E1)), i2(E2))→ . . .
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and Homi
T R(∆(φ(E1)), i2(E2)) = Homi+1

T R(∆(φ(E1)), i2(E2)) = 0 due to lemma
3.1.12. This provides us with the exact sequence

0→ Homi
T R(i2(φ(E1)), i2(E2))→ Homi+1

T R(i1(E1), i2(E2))→ 0.

Hence, as i2 is fully faithful, we have

Homi
T R2(φ(E1), E2) ∼= Homi

T R(i2(φ(E1)), i2(E2))

∼= Homi+1
T R(i1(E1), i2(E2))

which finishes the proof.

The following can be seen as an ”almost-inverse” of lemma 3.1.5.

Lemma 3.1.14. Let T R = 〈i1(T R1), i2(T R2)〉 be a semiorthogonal decom-
position and Hi the hearts of bounded t-structures on T Ri for i = 1, 2, such
that

H = {X ∈ T R | λ1(X) ∈ H1, ρ2(X) ∈ H2}

is the heart of a t-structure on T R, then Hom<0
T R(i1(H1), i2(H2)) = 0.

Proof. Apply lemma 2.5.29.

In order to obtain the data that we need to define stability conditions
on T R we need the following observation (that has – without proof – been
stated in [21, Equation (2.5)]):

Lemma 3.1.15. Let T R = 〈i1(T R1), i2(T R2)〉 be a semiorthogonal decom-
position and Hi the hearts of bounded t-structures on T Ri for i = 1, 2, such
that Hom≤0

T R(i1(H1), i2(H2)) = 0, then

Z(X) = Z1(λ1(X)) + Z2(ρ2(X))

defines a stability function on the heart

H = {X ∈ T R | λ1(X) ∈ H1, ρ2(X) ∈ H2}.

Proof. The function Z is a homomorphism of groups on K(H) as every ele-
ment X ∈ K(H) decomposes into a sum of elements of K(Hi) via the exact

triangle i2(X2)→ X → i1(X1)
+→. By definition of H we have X1 ∈ H1 and

X2 ∈ H2, since Z1, Z2 are stability functions Z1(X1), Z2(X2) and hence their
sum are in H, therefore Z(X) ∈ H.
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Lemma 3.1.16. Let T R = 〈i1(T R1), i2(T R2)〉 and σ be a stability condition
on T R obtained by CP-gluing stability conditions σ1 on T R1 and σ2 on
T R2 via the semiorthogonal decomposition T R = 〈i1(T R1), i2(T R2)〉. Let

g = (T, f) ∈ G̃L
+

2 (R), then for σg = (W,H), σ1g = (W1, H1) and σ2g =
(W2, H2) and d ∈ {1, 2} we have

• id(Hd) ⊂ H,

• W
∣∣
id(T Rd)

= Wd and

• if Hom≤0(i1(H), i2(H)) = 0 then σg is a stability condition on T R
obtained by CP-gluing stability conditions σ1g on T R1 and σ2g on T R2

via the semiorthogonal decomposition T R = 〈i1(T R1), i2(T R2)〉.

Proof. For d ∈ {1, 2} let Pd be the slicing corresponding to σd and P the

slicing that corresponds to σ. The action of G̃L
+

2 (R) works in such a way
that we obtain Hd = Pd(f(0), f(1)] as well as H = Pd(f(0), f(1)]. Therefore
we have id(Hd) ⊂ H by [21, Proposition 2.2(3)].

Let Z and Zd be the stability functions corresponding to σ and σd. We
have W = T−1 ◦ Z such that W (E) = T−1 ◦ Zd(E) = Wd(E).

Assume now Hom≤0(i1(H), i2(H)). By [21, Proposition 2.2(1)] σg is a
stability condition on T R obtained by CP-gluing stability conditions σ1g
on T R1 and σ2g on T R2 via the semiorthogonal decomposition T R =
〈i1(T R1), i2(T R2)〉.

3.2 Application of CP-gluing to D↑

We will now use the theory outlined in this chapter to compute t-structures
on D↑ by means of extending our knowledge about t-structures on D to D↑
using the technique of CP-gluing.

In order to find new bounded t-structures on D↑ we want to make use of
the fact that D↑ consists of two copies of D and use the technique of CP-
gluing to obtain bounded t-structures on D↑ of the bounded t-structures on
D.

We start by defining the following functors in the context of A and A↑
and subsequently in terms of D and D↑.

Definition 3.2.1. For an object (A → B) ∈ A↑ and a morphism f =
(f1, f2) ∈ A↑, define
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1.

λA1 : A↑ → A
λA1 (A→ B) = A

λA1 (f) = f1,

2.

ρA2 : A↑ → A
ρA2 (A→ B) = B

ρA2 (f) = f2.

Definition 3.2.2. For an object A ∈ A and a morphism f1 ∈ A define

1.

iA1 : A → A↑

iA1 (A) = A→ 0

iA1 (f1) = (f1, 0),

2.

iA2 : A → A↑

iA2 (A) = 0→ A

iA2 (f1) = (0, f1),

3.

∆A : A → A↑

∆A(A) = A
id→ A

∆A(f1) = (f1, f1).

We obtain the following.

Lemma 3.2.3. There are adjoint pairs λA1 a iA1 and iA2 a ρA2 for the functors
defined in 3.2.1 and 3.2.2.

Proof. To see that (iA2 , ρ
A
2 ) is an adjoint pair, consider

HomA↑(i
A
2 (E), B) ∼= HomA(0, B1)× HomA(E,B2) = 0× HomA(E,B2)

∼= HomA(E,B2) = HomA(E, ρA2 (B)).
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In order to demonstrate explicitly how this works, let us define a morphism
HomA↑(i

A
2 (E), B) → HomA(E, ρA2 (B)) as (f, g) 7→ g. Since f : 0 → λA1 (B)

implies f = 0 and therefore (f, g) = (f, 0), this is indeed an isomorphism.
To prove that this isomorphism is bifunctorial, on the other hand, we regard
the isomorphism

HomA↑(i
A
2 (E), B) ∼= HomA(E, ρA2 (B))

as an embedding of the set HomA(E,B2) into the product of sets that is
HomA(0, A)×HomA(E,B2) ⊃ HomA↑(i

A
2 (E), B). This embedding, however,

is indeed bifunctorial – seen by the fact that the diagram

HomA(X, Y )× HomA(E,B2)
(0,−◦t)−−−−→ HomA(X, Y )× HomA(E ′, B2)x(0,−)

x(0,−)

HomA(E,B2)
(−◦t)−−−→ HomA(E ′, B2)

commutes for X, Y,E ′ ∈ A and t : E ′ → E a morphism in A. Therefore, the
proof is finished. The proof that (λA1 , i

A
1 ) is an adjoint pair is similar.

Lemma 3.2.4. There are adjoint pairs ∆A a λA1 and adjoint pairs ρA2 a ∆A

for ∆A, λA1 , ρ
A
2 as in lemma 3.2.8.

Proof. Let A ∈ A and B = (B1 → B2) ∈ A↑. We have

HomA↑(∆
A(A), B) = HomA↑((A→ A), (B1 → B2))

∼= HomD(A,B1) = HomA(A, λA1 B).

To prove that this isomorphism is bifunctorial, on the other hand, we regard
the isomorphism

HomA↑(∆
A(A), B) ∼= HomA(A, λA1 B)

as an embedding of the set HomA(A,B1) into the product of sets that is
HomA(A,B1) × HomA(A,B2) ⊃ HomA↑(∆

A(A), B). This embedding, how-
ever, is indeed bifunctorial – seen by the fact that the diagram

HomA(A,B1)× HomA(A,B2)
(−◦t,−◦t)−−−−−→ HomA(A′, B1)× HomA(A′, B2)x(−,f◦−)

x(−,f◦−)

HomA(A,B1)
(−◦t)−−−→ HomA(A′, B1)

commutes where f equals to (B1 → B2) regarded as a morphism in A. The
proof for ∆A a λA1 is similar.
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We will now generalise the facts that we previously presented to the case
of D by means of the next lemmas.

Lemma 3.2.5. The functors λA1 and ρA2 are exact.

Proof. This is obvious from corollary 2.2.7.

Lemma 3.2.6. The functors λA1 , ρ
A
2 , i
A
1 , i
A
2 and ∆A are exact.

Proof. We obtain that λA1 and ρA2 are exact from lemma 3.2.5. The exactness
of ∆A is an implication of lemma 3.2.4. We obtain the statement for iA1 by
realising that λA1 ◦ iA1 = id and ρA2 ◦ iA1 = 0 and applying corollary 2.2.7. The
proof for iA2 is similar.

We need to combine this with a fact provided in [60, 10.5.2]. Since the
details of the proof are left to the reader in the named literature, we will, for
the convenience of the reader, prove the fact stated in proposition 3.2.7. It is
subsequently our aim to obtain a well-defined functor FD(A)b on the derived
category D(A)b of an abelian category A, out of an exact functor FA defined
on A.

Proposition 3.2.7. Let A and B be abelian categories and Db(A) and Db(B)
their bounded derived categories. If a functor

FA : A → B

is exact, it extents to a functor

FDb(A) : Db(A)→ Db(B).

by applying FA : A → B to the objects and differentials in a complex and
to the components of localised homotopy classes of complex-morphisms – the
morphisms in Db(A).

Proof. Consider the functor FC(A) which is the functor on the chain-complex
category C(A) that is induced by the functor FA operating componentwise
on the objects and morphisms in A, that a complex in C(A) is composed
of. This is consistent with chain-maps and boundary operators as well, since
functors preserve commutative diagrams. Again for the same reason – the
preservation of commutative diagrams – we can now define FK(A) to be the
functor on the homotopy category that is induced by FC(A).

It is at this point, however, that we require the exactness of FA in order
to define FDb(A) as the functor on Db(A) induced by FK(A). To obtain that
the functor FDb(A) is well-defined, we now need to verify that it preserves
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quasi-isomorphisms. Assume that A•
f→ B• is a quasi-isomorphism. We

need to prove that FA(A•)
FA(f)→ FA(B•) is a quasi-isomorphism as well.

The morphism A•
f→ B• is a quasi-isomorphism if and only if the induced

morphism Hn(A•)
Hn(f)→ Hn(B•) is an isomorphism in A for any n ∈ Z, where

Hn is the usual complex-cohomology. In other words,

0→ Hn(A•)
Hn(f)→ Hn(B•)→ 0

is exact. Hence, so is

FA(0)→ FA(Hn(A•))
FA(Hn(f))→ FA(Hn(B•))→ FA(0)

which means that

0→ FA(Hn(A•))
FA(Hn(f))→ FA(Hn(B•))→ 0

is exact and hence FA(Hn(A•))
FA(Hn(f))→ FA(Hn(B•)) is an isomorphism in

B.
Since FA is exact, it preserves quotients – to see this, we let dn be the

boundary operator of the complex A• and consider the exact sequence

0→ im(dn−1)→ ker(dn). (3.2)

On one hand, if we apply the exact functor FA we obtain the exact sequence

F (0)→ F (im(dn−1))→ F (ker(dn))

which equals to
0→ F (im(dn−1))→ F (ker(dn))

and can be completed to the short exact sequence

0→ F (im(dn−1))→ F (ker(dn))→ FA(ker(dn))
/
FA(im(dn−1)) → 0.

On the other hand, (3.2) can be completed to the exact sequence

0→ im(dn−1)→ ker(dn)→ ker(dn)
/

im(dn−1) → 0

and applying the exact functor FA this gives

0→ F (im(dn−1))→ F (ker(dn))→ F (ker(dn)
/

im(dn−1))→ 0.
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We obtain

FA(ker(dn))
/
FA(im(dn−1)) ∼= FA(ker(dn)

/
im(dn−1)).

Again by exactness, an exact functor also preserves kernels and images such
that we obtain

ker(FA(dn))
/

im(FA(dn−1)) = FA(ker(dn))
/
FA(im(dn−1)) ,

which hence gives

Hn(FDb(A)(A
•)) = ker(FA(dn))

/
im(FA(dn−1)) = FA(ker(dn))

/
FA(im(dn−1))

= FA(ker(dn)
/

im(dn−1)) = FA(Hn(A•))

and so we obtain that Hn(FDb(A)(A
•))

Hn(FDb(A)
(f))

→ Hn(FDb(A)(B
•)) is an

isomorphism in A, which finishes the proof.

We can now introduce the two following lemmas.

Lemma 3.2.8. For an object (A→ B) ∈ D↑ and a morphism f =

C

��

f ′1

++

q1
~~

A

��

F

��

D

q2
~~

f ′2

++B G

in D↑, where we define fi = f ′i ◦ q−1
i , i ∈ {1, 2}, we obtain

1. The functor λA1 extends to a functor

λ1 : D↑ → D
λ1(A→ B) = A

λ1(f) = f1,

2. The functor ρA2 extends to a functor

ρ2 : D↑ → D
ρ2(A→ B) = B

ρ2(f) = f2.
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Proof. This combines lemma 3.2.6 with proposition 3.2.7.

Lemma 3.2.9. For an object A ∈ D and a morphism f1 ∈ D, we obtain the
following.

1. The functor iA1 extends to a functor

i1 : D → D↑

i1(A) = A→ 0

i1(f1) = (f1, 0).

2. The functor iA2 extends to a functor

i2 : D → D↑

i2(A) = 0→ A

i2(f1) = (0, f1).

3. The functor ∆A extends to a functor

∆ : D → D↑

∆(A) = A
id→ A

∆(f1) = (f1, f1).

Here we want (f1, 0), (0, f1) and (f1, f1) to be morphisms in D↑ in the sense
of the diagram in lemma 3.2.8.

Proof. Again, combine lemma 3.2.6 with proposition 3.2.7.

We can now use the fact that certain adjunctions hold in the abelian
case with regard to the previously defined functors, in order to obtain these
adjunctions for the case of D as well.

Lemma 3.2.10. Let A,B be abelian categories and

FA : A → B

and
GB : B → A

be exact functors such that FA a GB. These extend trivially to functors
FA, GB

FDb(A) : Db(A)→ Db(B).

and
GDb(B) : Db(B)→ Db(A).

and FDb(A) a GDb(B).
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Proof. This is a special case of [47, Corollary] because it was assumed that
both involved functors extend trivially to the respective derived categories –
in other words they each are their own right- and left derived functor.

We obtain the following.

Lemma 3.2.11. There are adjoint pairs λ1 a i1 and i2 a ρ2 for the functors
obtained by lemma 3.2.8 and 3.2.9.

Proof. Combine lemma 3.2.3 with lemma 3.2.10.

Moreover we have the following lemmas, in order to prepare lemma 3.2.14.

Lemma 3.2.12. A morphism (f, g) in A↑ is an isomorphism if and only if
f, g are isomorphisms in A.

Proof. Let X1, X2, Y1, Y2 ∈ A such that the morphism (f, g) is given by the
diagram

X1
f−−−→ Y1y y

X2
g−−−→ Y2

and consider this as a complex of the form

. . . −−−→ 0 −−−→ X1
f−−−→ Y1 −−−→ 0 −−−→ . . .y y y y

. . . −−−→ 0 −−−→ X2
g−−−→ Y2 −−−→ 0 −−−→ . . .

to which we can now apply corollary 2.2.7 which finishes the proof.

Lemma 3.2.13. A morphism f in D↑ is an isomorphism if and only if
λ1(f), ρ2(f) are isomorphisms in D.

Proof. A morphism f in a derived category - viewed as a roof f1 ◦ q−1 for a
quasi-isomorphism q is an isomorphism if and only if a chain-map ξ that can
be chosen as a representative for f , is a quasi-isomorphism. We have that the
chain maps λ

C(A)
1 (ξ) and ρ

C(A)
2 (ξ) that represent the morphisms λ1(f), ρ2(f)

are quasi-isomorphisms if and only ifHn(λA1 (ξ)), Hn(ρA2 (ξ)) are isomorphisms
in A for all n ∈ Z. By lemma 3.2.5 however, both λA1 and ρA2 are exact and
hence commute with cohomology. This, on the other hand, implies that
Hn(λA1 (ξ)), Hn(ρA2 (ξ)) are isomorphisms in A for all n ∈ Z if and only if
λA1 (Hn(ξ)), ρA2 (Hn(ξ)) are isomorphisms in A for all n ∈ Z. The latter
happens – by definition – exactly if and only if ξ is a quasi-isomorphism.
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Lemma 3.2.14. The functors obtained in lemma 3.2.8 and lemma 3.2.9 fulfil

1. ker(λ1) = im(i2) and

2. ker(ρ2) = im(i1).

Proof. First assume that (E → F ) ∈ ker(λ1) ⊂ D↑. This means E ∼= 0 in D.

In other words, there is a quasi-isomorphism q in K(A) such that E
q→ 0 in

D (which – of course – implies q = 0 in D↑). The diagram

0
0−−−→ Ey y

F −−−→ F

commutes and both id and q = 0 are quasi-isomorphisms. Hence, by lemma
3.2.13, (q, id) is an isomorphism in D↑. Since im(i2) consists of all objects
(A→ B) that fulfil (A→ B) ∼= (0→ C), we obtain (E → F ) ∈ im(i2).

If, on the other hand, we take (A → B) ∈ im(i2) ⊂ D↑, we have
(A → B) ∼= (0 → C). By lemma 3.2.13, this implies that there is a quasi-
isomorphism between A and 0. Hence, A is exact which means A ∼= 0 in D
and hence (A→ B) ∈ ker(λ1).

The proof for ker(ρ2) = im(i1) is similar.

We do – however – not need the complete statement of this particular
lemma, but only the following corollary.

Corollary 3.2.15. The functors obtained in lemma 3.2.8 and 3.2.9 fulfil

ρ2 ◦ i1 = 0 = λ1 ◦ i2.

Proof. This is an immediate implication of lemma 3.2.14.

We also have

Lemma 3.2.16. For any E,F ∈ D, the functors defined in 3.2.9 fulfil

Hom(i2(E), i1(F )) = 0.

Proof. Using lemma 3.2.11 and corollary 3.2.15 we obtain

Hom(i2(E), i1(F )) = Hom(λ1(i2(E)), F ) = Hom(0, F ) = 0.
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Remark 3.2.17. Another – more direct, yet more tedious – way to prove the
crucial lemma 3.2.16 is to see that we have both i2(E) = 0→ E and i1(F ) =
F → 0. A morphism in Hom(i2(E), i1(F )) is given by the commutative
diagram

A

��

++
quis

~~
0

��

F

��

B

quis~~
++E 0

where (A → B) ∈ D↑. We want to prove that this is in fact the zero-
morphism, which follows by comparing it to a known representative of the
zero-morphism in D↑:

A

��

++
quis

~~

0

��

quis
ss

0

��

0

��

F

��

B

quis~~
++

E
0

��
quis

ssE 0

The next step is to now complete the above to the following commutative
diagram:
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0

��

quis
xx

quis

&&
A

��

,,
quis

~~

0

��

quis
rr

0

��

0

��

B

quis
xx

quis

&&

F

��

B

quis~~
,,

E
0

��quis
rrE 0.

This proves that every morphism from E2 to E1 in D↑ is equivalent to the
zero-morphism.

Furthermore we need this.

Lemma 3.2.18. The functors i1 and i2 obtained by lemma 3.2.9 are fully
faithful.

Proof. Let A,B ∈ D. Viewing i1 as an induced map i1 : Hom(A,B) →
Hom(i1(A), i1(B)) on the hom-sets, given by

i1(f1) = (f1, 0)

for f1 ∈ Hom(A,B) we obtain that i1 is bijective. On one hand, if f ∈
HomD↑(i1(A), i1(B)), then we have

f ∈ HomD↑(i1(A), i1(B)) = HomD(λ1(i1(A)), B) ∼= HomD(A,B).

In other words, f has a preimage under i1 making i1 a surjective map. On
the other hand, if g1, g2 ∈ Hom(A,B) such that i1(g1) = i1(g2), we have
(g1, 0) = i1(g1) = i1(g2) = (g2, 0) which implies (g1, 0) = (g2, 0) and hence
g1 = g2, proving that i1 is also an injective map. Similarly one obtains the
fully faithfulness of i2.

This provides us with a corollary.

Corollary 3.2.19. For the functors obtained by lemma 3.2.8 and by lemma
3.2.9 we obtain the identities

λ1 ◦ i1
∼=→ idD

and
idD

∼=→ ρ2 ◦ i2.
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Proof. This is obtained by combining lemmas 3.2.18 and 3.2.11.

Additionally we require this.

Lemma 3.2.20. Assume X = (E → F ) ∈ D↑. There is an exact triangle

i2(ρ2(X))→ X → i1(λ1(E))
+→ .

Proof. We obtain the exact triangle from the fact that the sequence

0 −−−→ 0 −−−→ E −−−→ E −−−→ 0y y y y y
0 −−−→ F −−−→ F −−−→ 0 −−−→ 0

regarded as a diagram, commutes and has exact rows. In other words, it is
an exact sequences of chain complexes. This implies that

(0→ F )→ (E → F )→ (E → 0)
+→ (3.3)

is an exact triangle. Because of the shape of the functors i1, i2, λ1 and ρ2

according to lemma 3.2.8 and lemma 3.2.9 the exact triangle (3.3) equals to

i2(ρ2(X))→ X → i1(λ1(E))
+→ .

Definition 3.2.21. For ij as in lemma 3.2.9, we define Dj for j ∈ {1, 2} to
be the smallest strictly full subcategory of D↑ that contains all objects ij(E)
for E ∈ D.

Now we obtain a crucial theorem.

Proposition 3.2.22. There is a semiorthogonal decomposition of D↑ given
by D↑ = 〈i1(D), i2(D)〉.

Proof. Using lemmas 3.2.16 and 3.2.20 we see that the conditions of definition
2.1.6 are fulfilled.

We can, however obtain more.

Lemma 3.2.23. There is an adjoint pair ∆ a λ1 for ∆, λ1 as in lemma
3.2.8.

Proof. Similar to the proof of lemma 3.2.3, we deduce this result from lemma
3.2.4.
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Lemma 3.2.24. There is an adjoint pair ρ2 a ∆ for ρ2,∆ as in lemma 3.2.8.

Proof. Similar to the proof of lemma 3.2.23.

Remark 3.2.25. Note that the similarity of the proofs of lemmas 3.2.23 and
3.2.24 implies ρA2 a ∆A.

To be able to work with D in connection to D↑ it will prove to be impor-
tant to establish the connections between the corresponding Hom-sets. In
the previous section we have done that in a more general framework. We
will now use the results to obtain to necessary knowledge about D↑.

Lemma 3.2.26. Let T R2 and T R be derived categories of abelian categories
A2 and A and F : T R2 → T R a functor that is induced by an exact, fully-
faithful functor F ′ : A2 → A, for which the following condition is fulfilled:

For any Z ∈ T R such that Z
quis→ F (X) for X ∈ T R2 there is a G ∈ T R2

such that F (G)
quis→ Z. Then F is a fully-faithful functor.

Proof. Assume all arrows to be morphisms of chain-complexes. Let X, Y ∈
T R2 and φ : F (X) → F (Y ) a morphism in T R, hence φ is represented via
a roof

Z

''quisww

F (X) F (Y )

for Z ∈ T R.
For a G ∈ T R this can, due to the condition on F , be extended to:

F (G)

quis
��

Z

((quisvv

F (X) F (Y )

for G ∈ T R and as we complete this to
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F (G)

quis
��

quis

~~ !!

Z

((quisvv

F (X) F (Y ).

We see that F is full if the functor of homotopy categories F ′′ : K(A2)→
K(A) that is induced by F ′ is full. To see this, we prove, that the functor
F ′′′ : C(A2) → C(A) that is induced by F ′ and hence induces F ′′ is full.
If f is a map of chain complexes in C(A), e.g. given by a collection fi of
morphisms A then by the assumption of F ′ being full, there are gi ∈ A2 such
that F ′(gi) = fi. If we denote this collection by g, then g is indeed a map of
chain complexes since the commutative squares:

Xi
di+1−−−→ Xi+1

fi

y fi+1

y
Yi

d′i+1−−−→ Yi+1

that can now be rewritten as:

Xi
F ′(ei+1)−−−−−→ Xi+1

F ′(gi)

y F ′(gi+1)

y
Yi

F ′(e′i+1)
−−−−−→ Yi+1

as boundary operators e, e′ ∈ A2, provide us with the equation F ′(gi+1ei+1) =
F ′(gi+1)F ′(ei+1) = F ′(e′i+1)F ′(gi) = F ′(e′i+1gi). As F ′ is faithful, by assump-
tion, we obtain gi+1ei+1 = e′i+1gi.
Now as HomC(A)(X, Y ) � HomK(A)(X, Y ) holds for any abelian category A
the statement follows from the commutative diagram:

HomC(A2)(X, Y )
F ′′′−−−→ HomC(A)(F (X), F (Y ))y y

HomK(A2)(X, Y )
F ′′−−−→ HomK(A)(F (X), F (Y )).

Since all other arrows are surjective maps, so is F ′′.
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If we have, on the other hand, two morphisms φ : X → Y and ψ : X → Y ,
for G1, G2 ∈ T R2 presented by the diagram

G1

quis
xx ++

G2

quis
ss &&

X Y

that map to the same morphism under F , which means that the diagram:

F (G1)

quis
vv

++

F (G2)

quis
ss ((

F (X) F (Y )

can be completed to:

Z

quis|| ""

F (G1)

quis
vv

++

F (G2)

quis
ss ((

F (X) F (Y )

we can apply the condition on F once more to obtain:

F (G)

quis
��

Z

quiszz $$

F (G1)

quis
vv

,,

F (G2)

quis
rr

((

F (X) F (Y )

and hence:
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F (G)

quis
��

quis

|| ""

Z

quiszz $$

F (G1)

quis
vv

,,

F (G2)

quis
rr

((

F (X) F (Y ).

In order to prove, that φ and ψ come from the same preimage we now
need F ′′ to be faithful. To see this, we must prove, that the preimage of any
null-homotopic morphism in C(A) (hence a representative of the 0-morphism
in K(A)) is already null-homotopic. Let fi : Xi → Yi be a collection that
represents a chain-map f in C(A) and fi = d′isi + si+1di+1 for si : Xi → Yi−1

and boundary operators d, d′ (in other words f is null-homotopic). Similar
to the proof of surjectivity we can now conclude, that a chain map g, that is
mapped to f via F ′′ has to be null-homotopic as well, once again by the fully-
faithfulness of F ′′. Since F ′′ is full, we can deduce from the previous diagram
another diagram, that due to the faithfulness of F ′′ is also commutative:

G

quis~~   

G1

quis
xx ++

G2

quis
ss &&

X Y.

This means that φ and ψ represent the same morphism in T R2, hence F
is faithful and we conclude that it is fully-faithful.

Lemma 3.2.27. The functor ∆A : A2 → A↑ from definition 3.2.2 is fully
faithful.

Proof. This is obvious in the abelian case as ∆ simply doubles everything.

Lemma 3.2.28. The functor ∆ : D → D↑ is fully-faithful.

Proof. Due to lemma 3.2.6 and lemma 3.2.27 exactness and fully-faithfulness
of ∆ : A2 → A is fulfilled. Consider a quasi-isomorphism



65

A1
quis−−−→ X2y =

y
A2

quis−−−→ X2

where A1 → A2, X2 → X2 ∈ D↑ and note that ∆(X2) = X2 → X2. Then,
as the diagram commutes, A1 → A2 has to be a quasi-isomorphism and hence
we get a commutative diagram:

A1
=−−−→ A1

=

y y
A1

quis−−−→ A2.

As A1 → A2 is G of lemma 3.2.26 we can now apply lemma 3.2.26 in
the special case where F = ∆, T R = D↑ and T R2 = D2. The statement
follows.

Corollary 3.2.29. Let, E1, E2 ∈ D, then

Homi
D(E1, E2) ∼= Homi+1

D↑ (i1(E1), i2(E2))

for any i ∈ Z.

Proof. Due to lemma 3.2.28, the functor ∆ is fully faithful and hence we can
apply theorem 3.1.13 letting T R1 = D = T R2 and φ = idD.

We can now make use of the connection between the Hom-sets of D and
D↑ provided by corollary 3.2.29 in order to prove that it is possible to glue
hearts of bounded t-structures in this particular case.

Lemma 3.2.30. For a standard slicing P (as it has been defined in 2.5.41)
on D consider hearts of bounded t-structures on D that are given by H1 =
P(α, α + 1] and H2 = P(β, β + 1], where α, β ∈ R. Then α ≥ β if and only
if Hom≤0

D↑(i1(H1), i2(H2)) = 0.

Proof. In order to prove the ”only if”-part it is sufficient to show that we
obtain Hom≤0

D↑(i1(E), i2(F )) = 0 for E ∈ P1(γ), F ∈ P2(δ), with γ ∈ (α, α +
1], δ ∈ (β, β + 1] as there are filtrations of any G,H ∈ D↑ by objects
in slices. Assume now for a contradiction that Hom≤0

D↑(i1(H1), i2(H2)) 6=
0. That means there are E ∈ P1(γ) ⊂ H1, F ∈ P1(δ) ⊂ H2 such that
HomD↑(i1(E), i2(F )[m]) 6= 0 for an m ∈ Z,m ≤ 0. Since F ∈ P1(δ), there
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is an F1 ∈ P1(δ − n) ⊂ H1 such that F1[n] = F for n ∈ Z, n ≤ 0. Hence,
making use of the Hom-connection provided by corollary 3.2.29 we obtain

Homm+n−1
D (E,F1) = Homm+n

D↑ (i1(E), i2(F1)) = Homm
D↑(i1(E), i2(F )) 6= 0

and that provides the contradiction as Hom<0
D (E,F1) = 0 (by lemma 2.5.29)

and hence

Homm+n−1
D (E,F1) ⊂ Hom≤−1

D (E,F1) = Hom<0
D (E,F1) = 0.

To prove the ”if”-part assume that Hom≤0
D↑(i1(H1), i2(H2)) = 0. If we

now have α < β, this implies that there is a non-zero E ∈ H1 such that
E ∈ P(α, β) and hence i2(E[n]) ∈ i2(P(β, β + 1]) = i2(H2) for an n ∈ N>0.
This gives

idE ∈ HomD(E,E) = Hom
−(n−1)
D (E,E[n− 1]) = Hom

−(n−1)

D↑ (i1(E), i2(E[n])).

This is a contradiction as i1(E) ∈ i1(H1) and i2(E[n]) ∈ i2(H2) and −(n −
1) ≤ 0 for n > 0. Hence we must have α ≥ β.

Corollary 3.2.31. For a standard slicing P on D consider hearts of bounded
t-structures on D given by H1 = P(α, α + 1] and H2 = P(β, β + 1], where
α, β ∈ R. If α ≥ β, then H = {X ∈ D↑ | λ1(X) ∈ H1, ρ2(X) ∈ H2} is the
heart of a bounded t-structure on D↑.

Proof. Glue the heart using the technique described in lemma 3.1.5, as the
necessary conditions are fulfilled by lemma 3.2.30.

It is at this point a natural question if the requirements of corollary 3.2.31
are necessary for H = {X ∈ D↑ | λ1(X) ∈ H1, ρ2(X) ∈ H2} to be the heart
of a bounded t-structure on D↑. The ”better part” of this question can
be answered in general by lemma 3.1.14 which is simply a straightforward
application of lemma 2.5.29.

However, the question that remains to be answered is, what happens in
the case of HomT R(H1, H2) 6= 0. It is possible that this question cannot be
answered in general. The following deals with this question in the special
context of D↑.

Lemma 3.2.32. Let H1, H2 be hearts of bounded t-structures on D. Assume
HomK(A)(H1, H2[−1]) = 0, then HomD↑(i1(H1), i2(H2)) = 0.

Proof. Let f ∈ HomD(H1, H2[−1]). Hence f is of the form
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U

quis��

fK(A)

))
A A′

where fK(A) ∈ K(A), A ∈ H1, A
′ ∈ H2[−1] and U ∈ D. By lemma 2.5.28 this

implies U ∈ H1. Hence fK(A) ∈ HomK(A)(H1, H2[−1]) = 0. Hence, f is a
representative of the 0-morphism in D and therefore HomD(H1, H2[−1]) = 0.
This implies, since we have

HomD↑(i1(H1), i2(H2)) ∼= HomD(H1, H2[−1]),

by corollary 3.2.29, that we obtain HomD↑(i1(H1), i2(H2)) = 0.

Lemma 3.2.33. Let H1, H2 be the hearts of bounded t-structures on D, such
that

H = {X ∈ D↑ | λ1(X) ∈ H1, ρ2(X) ∈ H2}
is the heart of a t-structure on D↑, then HomD↑(i1(H1), i2(H2)) = 0.

Proof. Assume φ ∈ HomK(A↑)(H1, H2[−1]). This implies that there are ob-

jects E ∈ H1 ⊂ D≤0
1 and F ∈ H2[−1] ⊂ D≥1

2 and an object φ̃ = (E → F ) ∈
D↑ that corresponds to the morphism φ. We now denote the t-structures
corresponding to H1 and H2 by (D≤0

1 ,D≥1
1 ) and (D≤0

2 ,D≥1
2 ), then we have

E ∈ H1 ⊂ D≤0
1 and F ∈ H2[−1] ⊂ D≥1

2 . Denote the t-structure correspond-

ing to H by (D≤0,D≥1). We can embed E
φ̃→ F into the exact triangle

X
e−−−→ E

e′−−−→ X ′
+−−−→

ψ

y φ̃

y ψ′

y
Y

f−−−→ F
f ′−−−→ Y ′

+−−−→
in D↑, where (X → Y ) ∈ D≤0 and (X ′ → Y ′) ∈ D≥1. Hence we obtain X ∼=
λ1(X → Y ) ∈ D≤0

1 , X ′ ∼= λ1(X ′ → Y ′) ∈ D≥1
1 , Y ∼= ρ2(X → Y ) ∈ D≤0

2 and
Y ′ ∼= ρ2(X ′ → Y ′) ∈ D≥1

2 (We refer to remark 3.1.6 regarding the definition
of a t-structure that corresponds to a heart obtained by CP-gluing). This,
however, implies that e′ ∈ Hom(D≤0

1 ,D≥1
1 ) = 0 and f ∈ Hom(D≤0

2 ,D≥1
2 ) = 0.

This means that e′ = f = 0, which, by [32, Lemma 1.4] implies that e has

a right inverse ẽ such that e ◦ ẽ = id. Hence, viewing the object φ̃ ∈ D↑ as
a morphism in D, we obtain, using the commutativity of the exact triangle
viewed as a diagram, that

φ̃ = φ̃ ◦ id = φ̃ ◦ e ◦ ẽ = f ◦ ψ ◦ ẽ = 0 ◦ ψ ◦ ẽ = 0.
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Hence, we have HomK(A↑)(H1, H2[−1]) = 0 and therefore, by lemma 3.2.32,
HomD↑(i1(H1), i2(H2)) = 0.

We can now conclude by formulating the following theorem.

Theorem 3.2.34. Let H1, H2 be the hearts of bounded t-structures on D,

H = {X ∈ D↑ | λ1(X) ∈ H1, ρ2(X) ∈ H2}

is the heart of a t-structure on D↑ if and only if Hom≤0
D↑(i1(H1), i2(H2)) = 0.

Proof. Apply lemma 3.1.5, lemma 3.1.14 and lemma 3.2.33.

Remark 3.2.35. Note, that by lemma 3.1.7 the t-structure corresponding to
H of theorem 3.2.34 is also bounded.

Corollary 3.2.36. For a standard slicing P on D consider hearts of bounded
t-structures on D given by H1 = P(α, α + 1] and H2 = P(β, β + 1], where
α, β ∈ R. Then H = {X ∈ D↑ | λ1(X) ∈ H1, ρ2(X) ∈ H2} is the heart of a
bounded t-structure on D↑ if and only if α ≥ β.

Proof. Combine corollary 3.2.31 with the ”only if”-part of theorem 3.2.34.

The question that remains, however, is whether these are the only t-
structures on D↑. In particular, it has been previously investigated how to
obtain a t-structure on D↑ coming from a pair of t-structures on D, that will
then have a heart H with the – moderately – straightforward description
H = {X ∈ D↑ | λ1(X) ∈ H1, ρ2(X) ∈ H2}. It is, however, possible to go
further and combine pairs of t-structures that do not meet the requirement
of corollary 3.2.36. This is done by the technique of recollement that we will
introduce in the subsection 4.1.

Proposition 3.2.37. Assume σ = (Z,H) to be a pre-stability condition
on D↑, obtained by CP-gluing from stability conditions σ1 = (H1, Z1) and
σ2 = (H2, Z2), such that for i = 1, 2, Hi = Pµ(θi, θi + 1]. If θ1 ≥ θ2 + 1 then

Z = Z1 ◦ i1 + Z2 ◦ i2

has the HN-property.

Proof. Since θ1 ≥ θ2 + 1 we have

Hom≤1
D↑(i1(H1), i2(H2)) = Hom≤−1

D↑ (i1(H1), i2(H2)[1]) = 0

by lemma 3.2.30. Now we obtain from [21, Proposition 3.5] that Z has the
HN-property on H.
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Remark 3.2.38. Note that it is in fact possible to complete the picture pro-
vided by proposition 3.2.37 under particularly favourable conditions. Under
the right assumptions on A we obtain via proposition 4.10.16, that any heart
obtained by CP-gluing via the semiorthogonal decomposition 〈D1,D2〉 pro-
vides in fact a pre-stability condition – that is, the HN-property is fulfilled for
Z as in proposition 3.2.37. Note that one can relax the condition θ1 ≥ θ2 + 1
of proposition 3.2.37 slightly by using certain rationality assumptions (see
[21, Proposition 3.5]).

We conclude with the following – preliminary – result. Its vague nature
hints at the fact that one requires further conditions on D↑ in order to obtain
more satisfactory results.

Theorem 3.2.39. If the space of pre-stability conditions of D is non-empty,
then so is the space of pre-stability conditions of D↑.

Proof. Combine corollary 3.2.36 with proposition 3.2.37.

The following is – in analogy to the standard example of a stability con-
dition explained in example 2.5.37 – what could be seen as the standard
example of a glued stability condition on a particular version of A↑. It is the
concept of alpha-stability for holomorphic triples introduced by Bradlow and
O. Garćıa-Prada (see [14] and [15]).

Example 3.2.40. Let A = Coh(C) where C is a smooth projective curve.
Consider pre-stability conditions (Z1,A) and (Z2,A) on D where for Ai, Ci ∈
R>0 and Bi ∈ R,

Z1(E1) = −A1 deg(E1) +B1 rank(E1) + iC1 rank(E1)

and

Z2(E2) = −A2 deg(E2) +B2 rank(E2) + iC2 rank(E2)

with E1, E2 ∈ A. The pre-stability condition obtained by CP-gluing via the
semiorthogonal decomposition 〈D1,D2〉 from (Z1,A) and (Z2,A) is given by
(Z,A↑) where

Z(F1 → F2) = −A1 deg(F1)− A2 deg(F2) +B1 rank(F1) +B2 rank(F2)

+i(C1 rank(F1) + C2 rank(F2))

for (F1 → F2) ∈ A↑.
Letting A1 = A2 = C1 = C2 = 1, B1 = −α ∈ R and B2 = 0, we obtain

Z(F1 → F2) = deg(F1)− deg(F2)− α rank(F1) + i(rank(F1) + rank(F2)).

This is the classical concept of α-stability translated into our language.
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4 Recollement, tilting and the computation

of Stab(D↑)
In this section we introduce two additional techniques that can be used to
compute stability conditions on a given triangulated category. The first is
that of recollement which will prove to produce interesting results with regard
to the computation of the data we are interested in – we will develop this
throughout subsections 4.1 - 4.4. However, the main result (theorem 4.4.6)
with regard to recollement will be, that given the particular situation that we
are working in it will not produce stability conditions that we could not have
obtained via gluing. However, the tilting-technique, that will be introduced
– and subsequently applied – in subsection 4.7 completes the picture painted
by the application of CP-gluing as will be demonstrated in the remaining
subsections of this section. The section is joint work with Eva Mart́ınez and
Alejandra Rincón.

4.1 Recollement

The technique of ”recollement” was introduced by Beilinson, Bernstein and
Deligne in [10] and as a method of finding and classifying bounded t-structures
it is crucial for the search of new stability conditions and goes – from some
perspective – beyond the CP-gluing technique. The theory bases on the fol-
lowing definition. The motivation is the consideration of open (j : X ↪→ Z)
and closed (i : Y ↪→ Z) embeddings among topological spaces and of sheaves
that are being pushed and pulled along them. Note, that our own notation
will be inspired by the notation of Liu and Vitoria from [43], instead of the
original one of [10]:

Definition 4.1.1. Let X ,Y and Z be triangulated categories. We say that
Z admits recollement of X and Y if there are exact functors:

i∗ : Z → Y , i∗ = i! : Y → Z, i! : Z → Y ,
j! : X → Z, j∗ = j! : Z → X and j∗ : X → Z,

such that i∗ a i∗ = i! a i!, j! a j! = j∗ a j∗, moreover i∗, j∗, j! are full
embeddings, i! ◦ j∗ = 0 and for any Z ∈ Z there are exact triangles:

i!i
!(Z)→ Z → j∗j

∗(Z)
+→

and
j!j

!(Z)→ Z → i∗i
∗(Z)

+→ .
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Notation 4.1.2. We will in the future refer to the data and conditions of
definition 4.1.1 as ”recollement-data”.

The use of recollement in order to find t-structures is seen by the following
lemma, that Beilinson, Bernstein and Deligne proved in [10].

Lemma 4.1.3. Let X ,Y and Z be triangulated categories. Assume that
Z admits recollement of X and Y. Let (X≤0,X≥1) and (Y≤0,Y≥1) be t-
structures on X and Y respectively. Define

Z≤0 = {Z ∈ Z | j∗(Z) ∈ X≤0, i∗(Z) ∈ Y≤0}
Z≥1 = {Z ∈ Z | j∗(Z) ∈ X≥1, i!(Z) ∈ Y≥1}.

Then (Z≤0,Z≥1) is a t-structure on Z.

Proof. See [10, Theorem 1.4.10].

A straightforward – yet useful – implication of definition 4.1.1 is provided
by the following lemma that will be required later.

Lemma 4.1.4. Let X ,Y and Z be triangulated categories. Assume that Z
admits recollement of X and Y via the functors given in definition 4.1.1.
Then

Hom(i∗(A), j∗(B)) = 0

Proof. By definition 4.1.1, the recollement-data fulfils the conditions i! ◦ j∗ =
0 and i! a i!. Hence

Hom(i!(A), j∗(B)) = Hom(A, i!(j∗(B)) = Hom(A, 0) = 0

Remark 4.1.5. In subsection 5.1 we will provide an abundance of examples
that will help the reader to understand the concept of recollement better. In
particular will this help with regard to the difference of this concept compared
to that of its related concept of CP-gluing which subsection 5.1 is build on
and which subsection 4.4 investigates with regard to the issue of stability
conditions in our particular situation.

The main difference between the similar techniques of gluing and recolle-
ment lies at the point where one needs to make restrictions in order to apply
the theory. CP-Gluing works with two less adjoint functors then recollement
and only requires one exact triangle. This means that it works in a more
general context regarding the category that one works in – the findings of
subsection 3.2 required no further restrictions on A (and hence on D).
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However, to use recollement, one may be forced to impose conditions, such
as D having a Serre functor or A having enough injective objects in order
to obtain the missing functors. On the other hand, in a situation where
recollement is applicable, the orthogonality-assumption on the hearts is no
longer required allowing to combine any two hearts which is not generally
possible in the case of CP-gluing.

4.2 Application of the theory of Serre functors to D↑

We can now use the theorems provided in the appendix (A.1.15 and A.1.16)
to extend our knowledge on D↑. This is accomplished by theorem 4.2.19,
for which we will now provide some preparations. Note that from now on
we also draw on notation and terminology that has been introduced in the
appendix. The following lemma is taken from [11, Proposition 1.5].

Lemma 4.2.1. If B is a strictly full triangulated subcategory of a triangulated
category A the following statements are equivalent.

1. B is right- (respectively left-) admissible

2. The inclusion functor B ↪→ A has a right (respectively left) adjoint.

Proof. At first we assume that B is right admissible. By definition, for any
Y ∈ A there hence exists an exact triangle

B → Y → C
+→

where B ∈ B and C ∈ B⊥. For any B′ ∈ B, applying the functor Hom(B′,−),
this provides us with the exact sequence

Hom(B′, C[−1])→ Hom(B′, B)→ Hom(B, Y )→ Hom(B,C).

Since we have Hom(B′, C[−1]) = 0 = Hom(B, Y ), we obtain the isomorphism
Hom(B′, B) ∼= Hom(B′, Y ) making the functor that maps Y onto B the right
adjoint to the inclusion functor of B into A.

If, on the other hand, the inclusion B ↪→ A has a right adjoint, we obtain
Hom(B′, B) ∼= Hom(B′, Y ) for any B′ ∈ B and Y ∈ A, where B ∈ B is the
image of Y under the functor that is right adjoint to the inclusion. Hence
there is a v ∈ Hom(B, Y ) such that for any f ∈ Hom(B′, B) there is a
g ∈ Hom(B′, Y ) for which we have f = v ◦ g. Consider the canonical exact
triangle

B
v→ Y → Cone(v)

+→ .
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From Hom(B′, Y ) ∼= Hom(B′, B) we obtain Hom(B′,Cone(v)) = 0 and hence
we have Cone(v) ∈ B⊥, therefore, B is right admissible.

The proof for the equivalence with regard to the left admissibility and
the existence of a left adjoint functor is similar.

We require the following corollary.

Corollary 4.2.2. Let D3 be the strictly full image of ∆, then D3 is admis-
sible.

Proof. ∆ has a right adjoint functor by 3.2.23 and a left-adjoint by 3.2.24.
Now apply lemma 4.2.1.

In order to make use of corollary 4.2.2 we introduce another lemma pro-
vided in [12, Proposition 1.7] and – since it was omitted there – include the
proof for the convenience of the reader.

Lemma 4.2.3. If B ⊂ A is a right-admissible subcategory of a triangulated
category A then ⊥(B⊥) = B.

Proof. It is trivially always true that B ⊂ ⊥(B⊥) and we have to prove
⊥(B⊥) ⊂ B. Assume E ∈ ⊥(B⊥), since B is right-admissible we obtain an
exact triangle

B
v→ E → B′

+→

where B ∈ B and B′ ∈ B⊥. Since E ∈ ⊥(B⊥), we have Hom(E,B′) = 0.
This gives

B′[−1]
u→ B

v→ E
0→

and hence we obtain ũ : B → B′[−1] such that ũ ◦ u = idB′[−1]. But we have

ũ ∈ Hom(B,B′[−1]) ⊂ Hom(⊥(B⊥),B⊥) = 0

and therefore obtain

idB′[−1] = ũ ◦ u = 0 ◦ u = 0

which implies B′[−1] = 0. Hence E ∼= B implying E ∈ B, which finishes the
proof.

In analogy, we have the next lemma.

Lemma 4.2.4. If B ⊂ A is a left-admissible subcategory of a triangulated
category A then (⊥B)⊥ = B.
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Proof. It is trivially always true that B ⊂ (⊥B)⊥. Assume E ∈ (⊥B)⊥, since
B is left admissible we obtain an exact triangle

B′ → E
v→ B

+→

where B ∈ B and B′ ∈ ⊥B. Since E ∈ (⊥B)⊥, we have Hom(B′, E) = 0.
This gives

0→ E
v→ B

u→ B′[1]
+→

and hence we obtain ũ : B′[1]→ B such that u ◦ ũ = idB′[1]. But we have

ũ ∈ Hom(B′[1], B) = Hom(B′, B[−1]) ⊂ Hom(⊥B,B) = 0

and therefore we obtain

idB′[1] = u ◦ ũ = u ◦ 0 = 0

which implies B′[1] = 0. Hence E ∼= B implying E ∈ B which finishes the
proof.

Corollary 4.2.5. We have (⊥(D3))⊥ = D3 = ⊥((D3)⊥).

Proof. By corollary 4.2.2, D3 is admissible, now use lemmas 4.2.3 and 4.2.4
to obtain the statement of the lemma.

Additionally we require the following simple fact.

Lemma 4.2.6. Let (T R≤0, T R≥1) be a t-structure on a triangulated category
T R. Then (T R≤n)⊥ = T R≥n+1 and ⊥(T R≥n+1) = T R≤n.

Proof. This is a simple redraft of lemma 2.5.24 in a language that will suite
us better to work with in the following.

In addition we need the – easy – observation that is next.

Lemma 4.2.7. Let (T R1, T R2) be a semiorthogonal decomposition on a
triangulated category T R. Then, if we define categories T R≤0 = T R2 and
T R≥1 = T R1, we obtain that (T R≤0, T R≥1) is a t-structure on T R.

Proof. Definition 2.1.6 simply provides a special case of definition 2.5.20.

Remark 4.2.8. Note that these t-structures are never bounded and hence use-
less as data of a stability condition. Therefore the fact that semiorthogonal
decompositions are in fact t-structures is best disregarded in the context that
we are working in.
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We can, however, use the t-structure (T R≤0, T R≥1) to prove the follow-
ing.

Lemma 4.2.9. Let (T R1, T R2) be a semiorthogonal decomposition. Then
(T R2)⊥ = T R1 and ⊥(T R1) = T R2.

Proof. Combine lemma 4.2.7 with lemma 4.2.6.

Lemma 4.2.10. For categories A,B and f a g an adjoint pair of functors
f : A → B and g : B → A. Then

ker(f) = ⊥(im(g)).

Proof. Assume E ∈ ker(f), for any F ∈ B we obtain

Hom(E, g(F )) = Hom(f(E), F ) = Hom(0, F ) = 0

implying E ∈ ⊥(im(g)) and hence ker(f) ⊂ ⊥(im(g)).
Assume now E ∈ ⊥(im(g)) to obtain

Hom(f(E), f(E)) = Hom(E, gf(E)) = 0

which implies f(E) = 0 and therefore E ∈ ker(f). Hence ⊥(im(g)) ⊂ ker(f)
and the proof is finished.

Lemma 4.2.11. For categories A,B and f a g an adjoint pair of functors
f : A → B and g : B → A. Then

ker(g) = (im(f))⊥.

Proof. Similar to 4.2.10.

Lemma 4.2.12. There is an equality D1 = ⊥D3.

Proof. Since we have the semiorthogonal decomposition 〈D1,D2〉, we have
(D2)⊥ = D1 and ⊥(D1) = D2 by lemma 4.2.9. Using the lemmas 4.2.10 and
4.2.11 together with the adjunctions i2,a ρ2 and ρ2 a ∆ we obtain

D1 = (D2)⊥ = (im(i2))⊥ = ker(ρ2) = ⊥(im ∆) = ⊥(D3).

In analogy to this we have the next lemma.

Lemma 4.2.13. There is an equality D⊥3 = D2.

Proof. Similar to the proof of lemma 4.2.12.
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We sum up with the following corollary.

Corollary 4.2.14. The following equalities hold true.

1. D⊥2 = D1

2. ⊥D1 = D2

3. D⊥1 = D3

4. ⊥D2 = D3

5. D⊥3 = D2

6. ⊥D3 = D1

Proof. Proving this in order of appearance we have

1. This was shown as part of the proof of lemma 4.2.12.

2. This was shown as part of the proof of lemma 4.2.12.

3. By lemma 4.2.12 we have D1 = ⊥D3. Hence, using corollary 4.2.5 we
obtain (D1)⊥ = (⊥D3)⊥ = D3.

4. Similar to the previous, this time use lemma 4.2.13 again combined
with corollary 4.2.5.

5. By lemma 4.2.13.

6. By lemma 4.2.12.

It is at this point that we introduce a very important fact that can now
be easily established.

Theorem 4.2.15. We have D↑ = 〈D1,D2〉,D↑ = 〈D3,D1〉 and D↑ = 〈D2,D3〉.

Proof. The equality D↑ = 〈D1,D2〉 is provided by proposition 3.2.22. For
the others combine lemma A.1.6 with corollaries 4.2.2 and 4.2.14.

Now returning to the development of the theory of Serre functors on D↑,
corollary 4.2.14 allows us to prove the following lemma.

Lemma 4.2.16. The subcategory D1 of D↑ is admissible.
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Proof. We obtain D1 left admissible from the fact that D↑ = 〈D1,D2〉 (propo-
sition 3.2.22). We must – therefore – prove that D1 is right admissible too.
Since D3 is admissible by corollary 4.2.2, we obtain an exact triangle

A→ X → B
+→ (4.1)

where A ∈ ⊥D3 and B ∈ D3. By corollary 4.2.14, we obtain ⊥D3 = D1

and D⊥1 = D3. This means, the exact triangle (4.1) now becomes one where
A ∈ D1 and B ∈ D⊥1 . In other words, D1 is right admissible and combined
with the fact that it is also left admissible as we saw at the beginning, it is
indeed admissible.

And we also obtain the statement for D2.

Lemma 4.2.17. The subcategory D2 of D↑ is admissible.

Proof. We obtain D2 right admissible from the fact that D↑ = 〈D1,D2〉
(proposition 3.2.22). We must – therefore – prove that D2 is left admissible
too. Since D3 is admissible by corollary 4.2.2, we obtain an exact triangle

A→ X → B
+→ (4.2)

where A ∈ D3 and B ∈ (D3)⊥. By corollary 4.2.14, we obtain ⊥D2 = D3 and
(D3)⊥ = D2. This means, the exact triangle (4.2) now becomes one where
A ∈ ⊥D2 and B ∈ D2. In other words, D2 is left admissible and combined
with the fact that it is also right admissible as we saw at the beginning, it is
indeed admissible.

Remark 4.2.18. After developing a lot of theory over section 3 and this one we
are now able to prove theorem 4.2.19 without extra assumptions. In [49] the
additional assumption of D being right- and left-saturated (see [12, Definition
2.5] for the meaning of ”saturated”) had to be made, which provides a short
cut to the admissibility of D2 via [12, Proposition 2.6].

The admissibility shown before has the following nice consequence, that
we will need later.

Theorem 4.2.19. If D has a Serre functor then so has D↑.

Proof. For the categories B and C from theorem A.1.15 we let B = D3,
which, by corollary 4.2.2 is indeed admissible. By corollary 4.2.14, we have
(D3)⊥ = D2 and therefore C = B⊥ = (D3)⊥ = D2. Since, by 4.2.17, D2 is
admissible and, additionally both D3 and D2, as copies of D have a Serre
functor, we can apply theorem A.1.15 to see that D↑ has a Serre functor.
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We therefore introduce new language.

Notation 4.2.20. Let SD denote the Serre functor on D and SD↑ the Serre
functor on D↑.

An immediate consequence of theorem 4.2.19, in combination with theo-
rem 4.2.15, is that we can now compute additional hearts of t-structures.

We harvest from the previous work in order to provide recollement-data.
At first we need to introduce a new functor.

Lemma 4.2.21. The functor i1 has a right adjoint.

Proof. Combine lemma 4.2.16 with lemma 4.2.1.

Definition 4.2.22. Define K to be the right adjoint functor of i1.

Remark 4.2.23. The existence of K is granted by lemma 4.2.21.

Corollary 4.2.24. Assume D has Serre functor. Let P be a standard slicing
and H1 = P(α, α + 1], H2 = P(β, β + 1] be hearts of t-structures on D.

• There is a heart H = {E ∈ D↑ | λ1(E) ∈ H1,K(E) ∈ H2} of a bounded
t-structure on D↑ obtained by CP-gluing via 〈D3,D1〉 from H1, H2 if
α ≥ β + 1.

• There is a heart H = {E ∈ D↑ | K(E)[1] ∈ H1, ρ2(E) ∈ H2} of
a bounded t-structure on D↑ obtained by CP-gluing via 〈D2,D3〉 from
H1, H2 if α ≥ β + 1.

Proof. To see that there is a heart H of a bounded t-structure on D↑ obtained
by CP-gluing via 〈D3,D1〉 (that theorem 4.2.15 provides) from H1, H2 if
α ≥ β + 1 we use

Hom≤0(∆H1, i1H2) = Hom≤0(∆H1[−1], i1H2[−1])

= Hom≤0(S−1
D↑ i1H1, S

−1
D↑ i2H2[1]) = Hom≤0(i1H1, i2H2[1])

which we obtain from theorems 4.2.19 and A.1.16. The result now follows
from lemmas 3.2.30 and 3.1.5 ([21, Lemma 2.1]). The proof that there is a
heart H of a bounded t-structure on D↑ obtained by CP-gluing via 〈D2,D3〉
from H1, H2 if α ≥ β + 1 is similar.

We will use the admissibility of the categories D1,D2 and D3 to prove the
main theorem of this section (4.3.15). The proof is broken into a series of
lemmas.

As a result of the adjunction of K and i1 we can now introduce the
vanishing of a composition of functors, that we also require.



79

Lemma 4.2.25. For ∆ as in lemma 3.2.8 we have

K ◦∆ = 0.

Proof. By corollary 3.2.15, we have ρ2 ◦ i1 = 0. Now, using the adjunctions
provided by lemma 3.2.24 and lemma 4.2.21 in combination with definition
4.2.22, we obtain for any F ∈ D,

HomD(K(∆(F )),K(∆(F ))) ∼= HomD↑(i1(K(∆(F ))),∆(F ))
∼= HomD(ρ2(i1(K(∆(F )))), F ) = HomD(0, F ) = 0,

which implies K ◦∆ = 0.

Lemma 4.2.26. For any E ∈ D there are exact triangles

1. i1(K(E))→ E → ∆(ρ2(E))
+→

2. ∆(λ1(E))→ E → i2(C(E))
+→ where C is defined to be the left adjoint

functor of i2 (which exists by the combined statements of lemma 4.2.17
and lemma 4.2.1).

Proof. By theorem 4.2.15 we have semiorthogonal decompositions 〈D3,D1〉
and 〈D2,D3〉 of D↑ where K,C and ∆ are the left and right adjoint functors
to the respective inclusions.

We proceed with the following technical lemmas.

Lemma 4.2.27. We have K ◦ i2[1] ∼= idD.

Proof. For any E ∈ D↑ we have an exact triangle

i2(ρ2(E))→ E → i1(λ1(E))
+→ .

Hence, for any F ∈ D we obtain

i2(ρ2(∆(F )))→ ∆(F )→ i1(λ1(∆(F )))
+→ .

Now, since ρ2 ◦∆ = idD = λ1 ◦∆ this becomes the exact triangle

i2(F )→ ∆(F )→ i1(F )
+→ .

Using K on this we obtain the exact triangle

K(i2(F ))→ K(∆(F ))→ K(i1(F ))
+→ .

ButK◦∆ = 0 by lemma 4.2.25 and hence we obtainK(i1(F )) ∼= K(i2(F ))[1].
Since i1 is fully faithful and i1 a K, we have idD ∼= K ◦ i1. Hence idD ∼=
K ◦ i2[1].
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Lemma 4.2.28. Assume D has a Serre functor. We have K = C[−1].

Proof. Define j! to be the left adjoint functor of C. Its existence is due to the
combination of the statements of theorem 4.2.19 and theorem A.1.16. Since
i2 is fully faithful, so is j! and we define D̃! = im(j!). Hence, using lemma
4.2.11 and corollary 4.2.14 we obtain

(D̃!)
⊥ = (im(j!))

⊥ = ker(C) = ⊥D2 = D3.

Moreover, D̃! is right admissible by lemma 4.2.1 which implies that for any
E ∈ D↑ there is an exact triangle

j!(C(E))→ E → ∆(ρ2(E))
+→ .

Since, by lemma 4.2.26, there is also an exact triangle

i1(K(E))→ E → ∆(ρ2(E))
+→,

we obtain i1(K(E)) ∼= j!(C(E)). By lemma 4.2.27 we have idD ∼= K ◦ i2[1].
Now, since i2 is fully faithful and C a i2, we obtain C ◦ i2 ∼= idD, giving

i1 = i1 ◦ idD ∼= i1 ◦K ◦ i2[1] ∼= j! ◦C ◦ i2[1] ∼= j![1].

Since i1 a K is an adjoint pair. Hence we also have j![1] a K and therefore
K ∼= C[−1].

4.3 Application of recollement to D↑ with regard to
the theory of Serre functors

We are now ready to make use of our previous preparations in order to
introduce recollement data on D↑.

Lemma 4.3.1. For

i! = i∗ = i1, i
∗ = λ1, j! = i2, j

∗ = j! = ρ2, j∗ = ∆, i! = K,

the adjunctions of definition 4.1.1 are fulfilled.

Proof. This is provided by lemmas 3.2.11, 3.2.24 and the combination of
lemma 4.2.21 with definition 4.2.22.
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Lemma 4.3.2. Keep the assumptions of lemma 4.3.1. Then for Z ∈ D↑,

i1K(Z)→ Z → ∆ρ2(Z)
+→ (4.3)

and

i2ρ2(Z)→ Z → i1λ1(Z)
+→ (4.4)

are exact triangles.

Proof. The existence of (4.3) is due to lemma 4.2.26, the existence of (4.4)
to proposition 3.2.22.

It is at this point that we shall – prior to the continuation of the provision
of the necessary facts that will lead to the usage of recollement – provide a
small excursion on an implication that lemma 4.3.2 has.

Lemma 4.3.3. For any Z ∈ D↑, there is an exact triangle

K(Z)→ λ1(Z)→ ρ2(Z)
+→

on D.

Proof. By lemma 4.3.2,

i1K(Z)→ Z → ∆ρ2(Z)
+→ (4.5)

is an exact triangle. Since λ1 is an exact functor, we obtain the exact triangle

λ1(i1K(Z))→ λ1(Z)→ λ1(∆(ρ2(Z)))
+→

on D. By corollary 3.2.19 we have

λ1(i1(K(Z)))
∼=→ K(Z)

and, similarly to 3.2.19 we also obtain idD
∼=→ λ1 ◦∆, implying

ρ2(Z)
∼=→ λ1(∆(ρ2(Z))),

which finishes the proof.

This provides us with the following – quite useful – fact that will be
presented next.
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Corollary 4.3.4. For Z ∈ D↑ where Z = (Z1
f→ Z2), let

K(Z)→ λ1(Z)
µZ→ ρ2(Z)

+→

be the exact triangle of lemma 4.3.3. Then µZ = f ◦ (quis)−1 where quis is a
quasi-isomorphism in K(A↑).

Proof. Let Z = (E1
f→ E2). The three objects (E1

f→ E2), (E2

idE2→ E2) and
(Cone(f)→ 0) ∈ D↑ fit into the short exact sequence

0 −−−→ E1
f−−−→ E2

iE2−−−→ Cone(f) −−−→ 0yf idE2

y y
0 −−−→ E2

iE2−−−→ E2 −−−→ 0 −−−→ 0

in C(A) and therefore into the corresponding exact triangle in D↑. Hence,
we obtain an exact triangle

(0→ Cone(f)[−1])→ (E1
f→ E2)

ξ→ (E2

idE2→ E2)
+→ (4.6)

where ξ =

E1
f−−−→ E2yf yidE2

E2

idE2−−−→ E2.

Since (0→ Cone(f)[−1]) ∈ D1 and (E2

idE2→ E2) ∈ D3, we see that (4.6) is a
decomposition-triangle for the semiorthogonal decomposition 〈D1,D3〉 which
exists by theorem 4.2.15. But – on the other hand – so is (4.3) and since
decomposition-triangles are unique up to isomorphisms by lemma 3.1.1, we
obtain (4.3) ∼= (4.6). Therefore we obtain λ1((4.3)) ∼= λ1((4.6)) which implies
µZ ∼= λ1(ξ) ∼= f . The proof is now finished.

Remark 4.3.5. Note that we will form now on refrain from the – formally
correct – referring to µ as f ◦ (quis)−1 and simply say that it equals to f .

Furthermore, we obtain the following nice result.

Corollary 4.3.6. For any Z = (Z1
f→ Z2) ∈ D↑ we obtain the equality

K(Z) ∼= Cone(f)[−1].
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Proof. Extend the morphism f to the exact triangle

Z1
f→ Z2 → Cone(f)

+→ .

Since λ1(Z) = Z1 and ρ2(Z) = Z2, we obtain the result by considering the
exact triangle

K(Z)→ λ1(Z)
µZ→ ρ2(Z)

+→

from lemma 4.3.3 together with that statement of corollary 4.3.4.

Remark 4.3.7. Note that we can too obtain the result K(Z) ∼= Cone(f)[−1]
from the isomorphism of triangles (4.3) ∼= (4.6) that we used in corollary
4.3.4.

Lemma 4.3.8. Keep the assumptions of lemma 4.3.1. Then i∗ = i1, j∗ = ∆
and j! = i2 are full embeddings.

Proof. Let A,B ∈ D↑ and f ∈ HomD↑(i1(A), i1(B)) then f = (f1, 0) where
f1 ∈ HomD(A,B). Hence the map

i1 : HomD(A,B)→ HomD↑(i1(A), i1(B))

i1(f) = (f, 0)

is surjective – and therefore i1 is full. In the same manner we obtain that i2
and ∆ are full.

Remark 4.3.9. Note that the fact that ∆ is full was already proven in the
general situation where one does not have a Serre functor available – see
lemma 3.2.28. However, the availability of the Serre functor makes the proofs
a whole lot easier and less tedious.

Theorem 4.3.10. Keep the assumptions of lemma 4.3.1. Then recollement
data on D↑ is provided by two copies of D via the functors given in lemma
4.3.1.

Proof. The adjunction-condition of definition 4.1.1 is given by lemma 4.3.1.
The vanishing condition on K◦∆ is provided by lemma 4.2.25, the fullness of
the embeddings by lemma 4.3.8 and finally the two exact triangles by lemma
4.3.2.

We can hence apply the theory developed in [10] to combine any two
bounded t-structures on D.
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Corollary 4.3.11. Let (D≤0
1 ,D≥1

1 ) and (D≤0
2 ,D≥1

2 ) be t-structures on D.
Then (D≤0,D≥1), defined by

D≤0 = {Z ∈ D↑ | ρ2(Z) ∈ D≤0
2 , λ1(Z) ∈ D≤0

1 }
D≥1 = {Z ∈ D↑ | ρ2(Z) ∈ D≥1

2 ,K(Z) ∈ D≥1
1 }

is a t-structure on D↑.

Proof. We combine lemma 4.1.3 with theorem 4.3.10.

We have seen that we can obtain a t-structure on D↑ by combining any
two t-structures on D. In some of these cases the result of this process can be
understood by applying corollary 3.2.36. It is hence our task to understand
what the extra data gained by recollement means in terms of Stab(D↑).

Definition 4.3.12. Recollement-data on D↑, given by

i! = i∗ = i1, i
∗ = λ1, j! = i2, j

∗ = j! = ρ2, j∗ = ∆, i! = K

will be called ”type-1-recollement-data”.

At this point it is not clear, whether this definition is of a mere theoretical
nature, or if indeed other recollement-datas can be chosen. We will see now
that the latter is – indeed – the case.

Lemma 4.3.13. Assume D has a Serre functor. Recollement-data on D↑ is
given by

i! = i∗ = ∆, i∗ = ρ2, j! = i1, j
∗ = j! = K, j∗ = i2[1], i! = λ1

Proof. All adjunctions of definition 4.1.1 and the fullness are fulfilled – the
key-point being K = C[−1] by lemma 4.2.28, which implies K a i2[1]. The
existence of the required exact triangles is due to the lemmas 4.3.2 and
4.2.26.

Lemma 4.3.14. Assume D has a Serre functor. Recollement-data on D↑ is
given by

i! = i∗ = i2, i
∗ = C, j! = ∆, j∗ = j! = λ1, j∗ = i1, i

! = ρ2.

Proof. Similar to the proof of 4.3.13 but without the implication of lemma
4.2.28.

Theorem 4.3.15. Three sets of recollement-data on D↑ are given by the
functors
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1. equation (4.3.12),

2. i! = i∗ = ∆, i∗ = ρ2, j! = i1, j
∗ = j! = K, j∗ = i2[1], i! = λ1,

3. i! = i∗ = i2, i
∗ = C, j! = ∆, j∗ = j! = λ1, j∗ = i1, i

! = ρ2.

Proof. Use lemmas 4.3.13 and 4.3.14 for parts two and three.

Definition 4.3.16. In extension of definition 4.3.12 we define the second and
third set of recollement-data of theorem 4.3.15 to be ”type-2-recollement-
data” and ”type-3-recollement-data”, respectively.

We can hence use this to define more t-structures on D↑, provided by the
following.

Corollary 4.3.17. There are t-structures on D↑ given by

1.

D≤0 = {Z ∈ D↑ | ρ2(Z) ∈ D≤0
2 , λ1(Z) ∈ D≤0

1 }
D≥1 = {Z ∈ D↑ | ρ2(Z) ∈ D≥1

2 ,K(Z) ∈ D≥1
1 }

that we refer to as t-structures obtained via type-1-recollement-data,

2.

D≤0 = {Z ∈ D↑ | K(Z) ∈ D≤0
2 , ρ2(Z) ∈ D≤0

1 }
D≥1 = {Z ∈ D↑ | K(Z) ∈ D≥1

2 , λ1(Z) ∈ D≥1
1 },

that we refer to as t-structures obtained via type-2-recollement-data,

3.

D≤0 = {Z ∈ D↑ | λ1(Z) ∈ D≤0
2 ,C(Z) ∈ D≤0

1 }
D≥1 = {Z ∈ D↑ | λ1(Z) ∈ D≥1

2 , ρ2(Z) ∈ D≥1
1 }

that we refer to as t-structures obtained via type-3-recollement-data,

for t-structures (D≤0
1 ,D≥1

1 ) and (D≤0
2 ,D≥1

2 ) on D.

Proof. The first is by 4.3.11, the second and the third are by 4.3.15 combined
with lemma 4.1.3.



86

Definition 4.3.18. Let t-structures on D be given by

(D≤0
1 ,D≥1

1 ) = (P(α,∞),P(−∞, α]), (D≤0
2 ,D≥1

2 ) = (P(β,∞),P(−∞, β])

where P denotes the standard slicing. A t-structure (D≤0,D≥1) that is
obtained by recollement from t-structures (D≤0

1 ,D≥1
1 ) and (D≤0

2 ,D≥1
2 ) via

type-1-recollement-data, type-2-recollement-data or type-3-recollement-data
in the sense of corollary 4.3.17, will be denoted (D≤0

1,α,β,D
≥1
1,α,β), (D≤0

2,α,β,D
≥1
2,α,β)

or (D≤0
3,α,β,D

≥1
3,α,β) respectively.

Lemma 4.3.19. For a t-structure (D≤0
2,β,α,D

≥1
2,α,β) on D↑ assume that α ≤

β − 1, then (D≤0
2,β,α,D

≥1
2,β,α) = (D≤0

1,α,β,D
≥1
1,α,β).

Proof. Assume X ∈ D≤0
2,β,α = {X | K(X) ∈ D≤0

1 , ρ2(X) ∈ D≤0
2 }. Since

α ≤ β − 1 was assumed, we have α ≤ β and therefore D≤0
2 = P(β,∞) ⊂

P(α,∞) = D≤0
1 . Hence ρ2(X) ∈ D≤0

1 . By lemma 4.3.3, there is an exact
triangle

K(X)→ λ1(X)→ ρ2(X)
+→ (4.7)

and since K(X) ∈ D≤0
1 and ρ2(X) ∈ D≤0

1 , we deduce from the fact that
D≤0

1 is extension closed, that λ1(X) ∈ D≤0
1 . Hence, we now obtain that

X ∈ {X | λ1(X) ∈ D≤0
1 , ρ2(X) ∈ D≤0

2 } = D≤0
1,α,β. In other words, we have

D≤0
2,β,α ⊂ D

≤0
1,α,β.

On the other hand, if X ∈ D≤0
1,α,β = {X | λ1(X) ∈ D≤0

1 , ρ2(X) ∈ D≤0
2 },

we obtain that ρ2(X)[−1] ∈ D≤0
2 [−1] = P(β,∞)[−1] = P(β − 1,∞) ⊂

P(α,∞) = D≤0
1 since α ≤ β − 1 was assumed. From the exact triangle (4.7)

we now obtain the exact triangle

ρ2(X)[−1]→ K(X)→ λ1(X)
+→ (4.8)

and deduce in the same way as we did before, that X ∈ D≤0
2,β,α. In other

words, we have D≤0
1,α,β ⊂ D

≤0
2,β,α. This means that D≤0

1,α,β = D≤0
2,β,α. Now,

applying lemma 4.2.6, we obtain

D≥1
1,α,β = ⊥D≤0

1,α,β = ⊥D≤0
2,β,α = D≥1

2,β,α

and the proof is finished.

We obtain the alternative statement as well.

Lemma 4.3.20. For a t-structure (D≤0
2,β,α,D

≥1
2,β,α) on D↑ assume that α ≥ β,

then (D≤0
2,α,β,D

≥1
2,α,β) = (D≤0

3,α+1,β,D
≥1
3,α+1,β).
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Proof. Unlike the procedure of lemma 4.3.19, this time we will prove that
D≥1

3,α+1,β = D≥1
2,β,α. Other then that, the proof is quite similar. To obtain the

inclusion D≥1
2,β,α ⊂ D

≥1
3,α+1,β we use the exact triangle

λ1(X)→ ρ2(X)→ K(X)[1]
+→

that we obtain from the exact triangle (4.7). ThenK(X)[1] ∈ P(−∞, α][1] =
P(−∞, α + 1] and λ1(X) ∈ P(−∞, β] ⊂ P(−∞, α] (because of α ≥ β)
and hence λ1(X) ∈ P(−∞, α] ⊂ P(−∞, α + 1] provide us with ρ2(X) ∈
P(−∞, α + 1].

For the inclusion D≥1
3,α+1,β ⊂ D

≥1
2,β,α, on the other hand, we see that if

ρ2(X) ∈ P(−∞, α + 1], then ρ2(X)[−1] ∈ P(−∞, α + 1][−1] = P(−∞, α]
and since α ≥ β implies P(−∞, β] ⊂ P(−∞, α] and we therefore ob-
tain λ1(X) ∈ P(−∞, β] ⊂ P(−∞, α], we obtain from (4.8) that K(X) ∈
P(−∞, α]. Again, applying lemma 4.2.6 finishes the proof.

We combine lemmas 4.3.19 and 4.3.20 to the following proposition.

Proposition 4.3.21. For a t-structure (D≤0
2,β,α,D

≥1
2,β,α) on D↑ we have

1. (D≤0
2,β,α,D

≥1
2,β,α) = (D≤0

1,α,β,D
≥1
1,α,β) if α ≤ β − 1 and

2. (D≤0
2,β,α,D

≥1
2,β,α) = (D≤0

3,α+1,β,D
≥1
3,α+1,β) if α ≥ β.

Proof. Apply lemmas 4.3.19 and 4.3.20.

Remark 4.3.22. Of course, as for the hearts of these t-structures, this means,
we can say at this point, that we do not obtain anything new either as long
as α /∈ (β − 1, β).

4.4 The Jealousy Lemma

This subsection deals with the question of the necessity of extending CP-
gluing to recollement with regard to the computation of Stab(D↑). With
respect to this aim, theorem 4.4.6 deals with the problem hinted at in remark
4.3.22.

Definition 4.4.1. Denote the heart of a t-structure

• (D≤0
1,α,β,D

≥1
1,α,β) on D↑ by H1,α,β,

• (D≤0
2,α,β,D

≥1
2,α,β) on D↑ by H2,α,β,
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• (D≤0
3,α,β,D

≥1
3,α,β) on D↑ by H3,α,β.

The following lemma investigates in which situation a heart of a t-structure
on D↑ that is obtained by recollement via type-1-recollement-data contains
hearts of bounded t-structures on D embedded into it in three different ways.

Lemma 4.4.2. Let P be a slicing on D and α ≤ β ≤ α + 1 for α, β ∈ R.
There are γ1, γ2, γ3 ∈ R such that

1.
i1(P(γ1, γ1 + 1]) ⊂ H1,α,β (4.9)

if and only if γ1 = α

2.
i2(P(γ2, γ2 + 1]) ⊂ H1,α,β (4.10)

if and only if γ2 = β and

3.
∆(P(γ3, γ3 + 1]) ⊂ H1,α,β (4.11)

if and only if γ3 = β.

Proof. The inclusion from (4.9), i1(P(γ1, γ1 + 1]) ⊂ H1,α,β holds if and only
if ρ2(i1(P(γ1, γ1 + 1])) ⊂ P(β, β + 1], λ1(i1(P(γ1, γ1 + 1])) ⊂ P(α,∞] and
K(i1(P(γ1, γ1 + 1] ⊂ P(−∞, α + 1])). Since ρ2 ◦ i1 = 0, we automatically
obtain ρ2(i1(P(γ1, γ1 + 1])) = 0 ⊂ P(β, β + 1]. On the other hand, we have
λ1(i1(P(γ1, γ1 + 1])) = P(γ1, γ1 + 1] ⊂ P(α,∞) and K(i1(P(γ1, γ1 + 1])) =
P(γ1, γ1 + 1] ⊂ P(−∞, α + 1] if and only if α = γ1.

Next, we have the inclusion i2(P(γ2, γ2 + 1]) ⊂ H1,α,β from (4.10) which
holds if and only if ρ2(i2(P(γ2, γ2 + 1])) ⊂ P(β, β+ 1], λ1(i2(P(γ2, γ2 + 1])) ⊂
P(α,∞) and K(i2(P(γ2, γ2 + 1])) ⊂ P(−∞, α + 1]. Since λ1 ◦ i2 = 0, the
inclusion λ1(i2(P(γ2, γ2 + 1])) ⊂ P(α,∞) is automatic. Then, we also obtain
that ρ2(i2(P(γ2, γ2+1])) = P(γ2, γ2+1] ⊂ P(β, β+1] holds if and only if γ2 =
β. And, since = K(i2(P(γ2, γ2 + 1])) = P(γ2, γ2 + 1][−1] = P(γ2 − 1, γ2] ⊂
P(−∞, α + 1] holds if and only if γ2 ≤ α + 1, we now have β = γ2 ≤ α + 1
if and only if i2(P(γ2, γ2 + 1]) ⊂ H1,α,β.

Finally, ∆(P(γ3, γ3 +1]) ⊂ H1,α,β, from (4.11) which hold if and only if we
– at the same time – have ρ2(∆(P(γ3, γ3 +1])) ⊂ P(β, β+1], λ1(∆(P(γ3, γ3 +
1])) ⊂ P(α,∞) and K(∆(P(γ3, γ3 + 1])) ⊂ P(−∞, α + 1]. First, K ◦∆ = 0
implies that K(∆(P(γ3, γ3 + 1])) ⊂ P(−∞, α + 1]. Then, additionally, we
have that ρ2(∆(P(γ3, γ3 +1])) = P(γ3, γ3 +1] ⊂ P(β, β+1] holds if and only
if γ3 = β. Since λ1(∆(P(γ3, γ3 + 1])) = P(γ3, γ3 + 1] ⊂ P(α,∞) holds if and
only if α ≤ γ3, we obtain α ≤ γ3 = β if and only if ∆(P(γ3, γ3 + 1]) ⊂ H1,α,β.
Hence, the proof is finished.
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We obtain a similar statement in the cases of H2,α,β and H3,α,β.

Lemma 4.4.3. We have

• let P be a slicing on D. There are γ1, γ2, γ3 ∈ R such that

1. i1(P(γ1, γ1 + 1]) ⊂ H2,α,β,

2. i2(P(γ2, γ2 + 1]) ⊂ H2,α,β and

3. ∆(P(γ3, γ3 + 1]) ⊂ H2,α,β.

if and only if γ2 = α, γ1 = γ3 = β and α− 1 ≤ β ≤ α. And

• let P be a slicing on D. There are γ1, γ2, γ3 ∈ R such that

1. i1(P(γ1, γ1 + 1]) ⊂ H3,α,β,

2. i2(P(γ2, γ2 + 1]) ⊂ H3,α,β and

3. ∆(P(γ3, γ3 + 1]) ⊂ H3,α,β.

if and only if γ3 = α, γ2 = γ1 = β and α− 1 ≤ β ≤ α.

Proof. Similar to the proof of lemma 4.4.2.

Lemma 4.4.4. If α < β ≤ α + 1, there is no stability condition with heart
H1,α,β.

Proof. Assume there is a stability function Z such that a stability condition
σ is given by H1,α,β and Z. We consider the imaginary part of Z which is
given by

=(Z(X)) = D1(deg(λ1(X))) +D2(deg(ρ2(X)))

+C1(rank(λ1(X))) + C2(rank(ρ2(X)))

for X ∈ H1,α,β and C1, C2, D1, D2 ∈ R. By lemma 4.4.2 we have that
i1(P(α, α+1]) ⊂ H1,α,β, i2(P(β, β+1]) ⊂ H1,α,β and ∆(P(β3, β3+1]) ⊂ H1,α,β.
Therefore we obtain the restrictions

=(Z(X))|i1(P(α,α+1])

= =(Z(i1(X1))) = D1(deg(X1)) + C1(rank(X1)),

=(Z(X))|i2(P(β,β+1])

= =(Z(i2(X1))) = D2(deg(X1)) + C2(rank(X1))

and =(Z(X))|∆(P(β,β+1])

= =(Z(∆(X1))) = (D1 +D2)(deg(X1)) + (C1 + C2)(rank(X1)).
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Let β̃ be given by the equation β̃ = β − bβc (and α̃ analogously). The value

β̃ is hence determined by both the quotient D2

C2
and D1+D2

C1+C2
at the same time.

This gives D1

C1
= D2

C2
. However, since the value of α̃ = α − bαc is determined

by D1

C2
= D2

C2
, we obtain α̃ = β̃ and hence α = β. This is a contradiction,

which finishes the proof.

Again, we obtain a similar statement in the cases of⊂ H2,α,β and⊂ H3,α,β.

Lemma 4.4.5. If α − 1 ≤ β ≤ α, there is no stability condition with heart
H2,α,β or H3,α,β.

Proof. Similar to the proof of lemma 4.4.4, now making use of lemma 4.4.3.

Summing up, we obtain the Jealousy Lemma, which gives name to this
subsection - the name reflects its proof which was given throughout the sub-
section and which hints at the contradiction being constructed via the as-
sumption of having three hearts of t-structures on D embedded into the same
heart of a t-structure on D↑.

Theorem 4.4.6 (Jealousy Lemma). If Hi,α,β for i ∈ {1, 2, 3} is the heart
of a t-structure that is not obtained by CP-gluing via either of the three
semiorthogonal decompositions 〈D1,D2〉, 〈D3,D1〉 or 〈D2,D3〉 then there is
no stability condition with heart Hi,α,β.

Proof. We can apply lemmas 4.4.4 and 4.4.5 because Hi,α,β is not a heart
obtained by CP-gluing if and only if the respective inequalities on α and β
are fulfilled.

Remark 4.4.7. The significance of the Jealousy Lemma is the following. It
demonstrates, that the (older) technique of recollement, which was not de-
signed to construct stability conditions but, in fact, to compute t-structures
produces certain hearts that Stab(D↑) does not ”see”.

4.5 Stability of embeddings

This subsection provides an important result that characterises Stab(D↑). It
will, moreover, subsequently be used to give a complete description of it.

First, we provide certain background and necessary notation by the next
lemma.
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Lemma 4.5.1. For the units and counits ε, η, we have

η : idD
∼=−→ K ◦ i1, ε : λ1 ◦ i1

∼=−→ idD,

η : idD
∼=−→ ρ2 ◦ i2, ε : K ◦ i2

∼=−→ idD,

η : idD
∼=−→ λ1 ◦∆, ε : ρ2 ◦∆

∼=−→ idD

(4.12)

while there are remaining units and counits

ε1 : i1 ◦K→ idD↑ , η1 : idD↑ → i1 ◦ λ1,

ε2 : i2 ◦ ρ2 → idD↑ , η2 : idD↑ → I2 ◦K[1],

ε3 : ∆ ◦ λ1 → idD↑ , η3 : idD↑ → ∆ ◦ ρ2

(note that these are not isomorphic to idD↑) such that we have

I i2ρ2(A)
ε2→ A

η1→ i1λ1(A)
+→

II ∆λ1(A)
ε3→ A

η2→ i2K[1](A)
+→

III i1K(A)
ε1→ A

η3→ ∆ρ2(A)
+→

for the respective exact triangles for the three semiorthogonal decompositions
that we are using on D↑.

Proof. The functors i1, i2 and ∆ are fully faithful.

Lemma 4.5.2. Let A = (A1
ϕ→ A2) be an object in D↑ and denote by

[ϕ] ∈ HomD(λ1(A), ρ2(A)) the morphism induced by the chain map ϕ.

a) The exact triangle ρ2((II)A) is isomorphic to a triangle of the form

λ1(A)
[ϕ]→ ρ2(A)

t2→ K(A)[1]→ λ1(A)[1].

b) The exact triangle λ1((III)A) is isomorphic to a triangle of the form

K(A)→ λ1(A)
[ϕ]→ ρ2(A)

t2→ K(A)[1].

The morphism t2 is determined by [ϕ] up to an automorphism of the object
K(A)[1].

Proof. The objects of ρ2((II)A) and λ1((III)A) are identified with those
in the given triangles with the aid of the natural isomorphisms provided in
(4.12). The proof that, after the identifications from (4.12), ρ2(ε3) and λ1(η3)
are both equal to [ϕ] requires to use the explicit description of the adjunction
isomorphisms provided in lemma 3.2.4.
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Remark 4.5.3. It is a crucial for the proof of theorem 4.6.4 to have ρ2(ε3) =
[ϕ] = λ1(η3), after the identifications using (4.12). Lemma 4.5.2 allows us to
access the ”structural” map ϕ of an object in D↑ as a morphism in D. It is
not clear if ρ2(ε3)] = λ1(η3) holds in general, when ρ2 a ∆ a λ1 gets replaced
by two adjunctions L a M a R with M fully faithful. The Problem that,
at this point, remains open is under which conditions we can guarantee that
the diagram

LMR
L(ε)−−−→ L

εR

y∼ ∼
yηL

R
R(η)−−−→ RLM

is commutative.

Lemma 4.5.4. If we have h ∈ HomD↑(A,B) where A = (A1
ϕ→ A2) and

B = (B1
ψ→ B2), then

ρ2(h) ◦ [ϕ] = [ψ] ◦ λ1(h)

in D.

Proof. Because ∆λ1
ε3→ idD↑ and ε : ρ2∆

∼→ idD are natural transformations,
we have a commutative diagram

λ1(A)
ελ1(A)←−−−
∼

ρ2∆λ1(A)
ρ2(ε3,A)
−−−−→ ρ2(A)

λ1(h)

y yρ2∆λ1(h)

yρ2(h)

λ1(B)
ελ1(B)←−−−
∼

ρ2∆λ1(B)
ρ2(ε3,B)
−−−−→ ρ2(B).

Theorem 4.5.5. If A = (A1
ϕ→ A2) and B = (B1

ψ→ B2) are objects in D↑
such that [ϕ] ∼= [ψ] in D, then A ∼= B in D↑.

Proof. We are going to prove a slightly stronger statement. Let tA denote
the connecting morphism of the decomposition triangle IA :

i2ρ2(A)
ε2→ A

η1→ i1λ1(A)
tA→ i2ρ2(A)[1].

Note that the object A ∈ D↑ is determined up to non-unique isomorphisms
by tA, which is a morphism in D. Suppose f : λ1(A) → λ1(B) and g :
ρ2(A) → ρ2(B) are morphisms in D such that g ◦ [ϕ] = [ψ] ◦ f . Our aim is
to show that then

i2(g[1]) ◦ tA = tB ◦ i1(f). (4.13)
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As a consequence, if f and g are both isomorphisms in D then we obtain a
commutative diagram

i1λ1(A)
tA−−−→ i2ρ2(A)[1]

i1(f)

y∼ ∼
yi2(g[1])

i1λ1(B)
tB−−−→ i2ρ2(B)

that extends to an isomorphism between the exact triangles (I)A and (IB). In

particular we obtain an isomorphism A
h→ B which fits into the commutative

diagram

i2ρ2(A)
ε2,A−−−→ A

η1,A−−−→ i1λ1(A)
tA−−−→

∼
yρ2(g) ∼

yh ∼
yi1(f)

i2ρ2(B)
ε2,B−−−→ B

η1,B−−−→ i1λ1(B)
tB−−−→ .

To prove (4.13) we first note that (IA) is functorial in A. This means – in
particular – that the morphism η3,A : A→ ∆(ρ2(A)) induces a commutative
diagram

i1λ1(A)
tA−−−→ i2ρ2(A)[1]

i1λ1(η3,A)

y∼ ∼
yi2ρ2∆ρ2(A[1])

i1λ1∆ρ2(A)
t∆ρ2(A)−−−−→ i2ρ2∆ρ2(A).

The isomorphisms η : idD
∼=→ λ1 ◦∆ and ε : ρ2 ◦∆

∼=→ idD from (4.12) allow us
to define a natural transformation t̃∆ by saying that t̃∆(X) : i1(X)→ i2(X)[1]
is the composition

i1(X)
∼=−−−→

i1(ηX)
i1λ1∆(X) −−−→

t∆(X)

i2ρ2∆(X)[1]
∼−−−−−→

i2(εX[1])
i2(X)[1].

Using X = ρ2(A), we obtain a commutative diagram

i1λ1(A)
tA−−−→ i2ρ2(A)[1]

i1λ1(η3,A)

y yi1ρ2(η3,A[1])

i1λ1(∆ρ2A)
t∆ρ2A−−−→ i2ρ2(∆ρ2A)[1]

i1(ηρ2A)

x∼ ∼
yi2(ερ2A1

)

i1ρ2A
t̃∆ρ2A−−−→ i2ρ2A[1]
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in which the composition of the two vertical arrows on the right is the
identity by [3, Proposition 10.1]. The composition of the two vertical arrows
on the left is equal to i1[ϕ] by lemma 4.5.2 (b). Therefore, tA is equal to the
composition

i1λ1(A)
i1[ϕ]→ i1ρ2(A)

t̃∆ρ2A→ i2ρ2(A)[1].

For any f : λ1A→ λ1B and g : ρ2A→ ρ2B that satisfy g ◦ [ϕ] = [ψ] ◦ f , we
therefore obtain a commutative diagram

i1λ1(A)
i1[ϕ]−−−→ i1ρ2(A)

t̃∆ρ2A−−−→ i2ρ2(A)[1]

i1(f)

y i1(g)

y yi1(g[1])

i1λ1(B)
i1[ψ]−−−→ i1ρ2(B)

t̃∆ρ2B−−−→ i2ρ2(B)[1].

This establishes 4.13 and thereby finishes the proof.

Corollary 4.5.6. If A = (A1
ϕ→ A2) ∈ D↑ such that [ϕ] = 0, then we have

A = i1λ1A⊕ i2ρ2A in D↑.

Proof. Apply theorem 4.5.5 combined with i1λ1A ⊕ i2ρ2A ∼= (A1
0→ A2) in

D↑.

Hence, we conclude with the next lemma.

Lemma 4.5.7. Let A,E ∈ D↑ such that Hom≤0
D↑(E,A) = 0. Assume now that

A = (A1
ϕ→ A2) such that ϕ = 0 in HomD(A1, A2), then Hom≤0

D↑(E, i1(A1)) =
0.

Proof. Using corollary 4.5.6 we obtain

Hom≤0
D↑(E, i1(A1)) ⊂ Hom≤0

D↑(E, i1(A1))⊕ Hom≤0
D↑(E, i2(A2))

∼= Hom≤0
D↑(E, i1(A1))⊕ i2(A2) ∼= Hom≤0

D↑(E,A) = 0.

We are now able to turn our attention to the question of stability. We
require the following definition.

Definition 4.5.8. A triangulated category T R is called n-Calabi-Yau if it
has a Serre functor and this Serre functor equals to the shift [n].
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Lemma 4.5.9. Assume that D is 1-Calabi-Yau and that the ordered pair
{M,N} equals to either of the ordered pairs {i1, λ1}, {i2,K} or {∆, ρ2}. Let

X1 →M(X)→ X2
+→

in D↑ where Hom≤0
D↑(X1, X2) = 0. Then

Hom≤0
D (N(X1), N(X2)) = 0.

Proof. We have to prove the following three statements.

1. Consider an exact triangle

E → i1(X)→ A
+→ . (4.14)

in D↑ where Hom≤0
D↑(E,A) = 0. Then

Hom≤0
D (λ1(E), λ1(A)) = 0.

2. Consider an exact triangle

F → i2(X)→ B
+→ (4.15)

in D↑ where Hom≤0
D↑(F,B) = 0. Then

Hom≤0
D (K(F ),K(B)) = 0.

3. Consider an exact triangle

G→ ∆(X)→ C
+→ (4.16)

in D↑ where Hom≤0
D↑(G,C) = 0. Then

Hom≤0
D (ρ2(G), ρ2(C)) = 0.

We will prove statement 1 first and will subsequently use it to prove the other
two statements. Applying ρ2 to (4.14) gives ρ2(A) ∼= ρ2(E[1]) = ρ2(E)[1] =
SD(ρ2(E)) via ρ2 ◦ i1 = 0. Furthermore, using the definition of the Serre
functor, combined with the fact that HomD↑(E,A) ⊂ Hom≤0

D↑(E,A) = 0,
we obtain HomD↑(A, SD↑(E)) = HomD↑(E,A)∗ = 0. Moreover, the adjunc-
tions ρ2 a ∆ and ∆ a λ1 provided by lemmas 3.2.23 and 3.2.24 give us an
isomorphism ρ2

∼= S−1
D ◦ λ1 ◦ SD↑ which implies SD(ρ2(E)) ∼= λ1(SD↑(E)).

Additionally, the morphism
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A1
ϕA−−−→ A2yϕA yidA2

A2

idA2−−−→ A2

in C(A↑) gives a (corresponding) morphism νA in HomD↑(A,∆(ρ2(A))). Hence,
we obtain λ1(νA) = ϕA, where as of now we regard ϕA as the corresponding
morphism in mor(D).

The adjunction ∆ a λ1, on the other hand, provides us with the morphism
∆ ◦ λ1

ε→ 1, the counit of the adjunction. Applying λ1 to this now gives us

the natural transformation λ1 ◦∆ ◦ λ1
λ1(ε)→ λ1. Consider now the unit of the

adjunction, 1
η→ λ1 ◦ ∆, that provides us with λ1

ηλ1→ λ1 ◦ ∆ ◦ λ1. By the
triangle equalities we have

λ1(ε) ◦ ηλ1 = idλ1 (4.17)

provided via the adjointness of the functors. However, ∆ is fully-faithful and
hence η is an isomorphism, making ηλ1 an isomorphism as well. Therefore,
(4.17) implies, that λ1(ε) is an isomorphism too. We are now ready to prove
the first statement of the lemma using the previous considerations. We obtain
a morphism from A to SD↑(E) via the following chain of morphisms

A
νA→ ∆(ρ2(A))

∼=→ ∆(SD(ρ2(E)))
∼=→ ∆(λ1(SD↑(E)))

ε→ SD↑(E). (4.18)

Applying λ1 to (4.18), it becomes

λ1(A)
ϕA→ λ1(∆(ρ2(A)))

∼=→ λ1(∆(SD(ρ2(E))))
∼=→ λ1(∆(λ1(SD↑(E))))

∼=→ λ1(SD↑(E)),
(4.19)

since λ1(ε) is an isomorphism and moreover λ1(νA) = ϕA as we have seen
before. In other words, the crucial point is what is happening to the two mor-
phisms on both ends of (4.18). Now, since the morphism constructed in (4.18)
is in HomD↑(A, SD↑(E)) and HomD↑(A, SD↑(E)) ⊂ Hom≥0

D↑(A, SD↑(E)) = 0
as previously seen, this morphism is 0. Since λ1 is a functor, the mor-
phism obtained in (4.19) is therefore also 0. Since, on the other hand,
the morphism constructed in (4.19) is obtained by composing ϕA with iso-
morphisms only, this implies that we must have ϕA = 0 ∈ mor(D). By
lemma 4.5.7, this implies Hom≤0

D↑(E, i1(A1)) = 0. By adjunction we obtain

Hom≤0
D (λ1(E), λ1(A)) = Hom≤0

D (λ1(E), A1) ∼= Hom≤0
D↑(E, i1(A1)) = 0 and the

proof of 1 is finished.
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This being established, we can now go on to proving statement 3. Ap-
plying SD↑ and then [−1] to (4.16) gives

SD↑(G)[−1]→ i1(X)→ SD↑(C)[−1]
+→

via SD↑(∆(X)) = i1(SD(X)) = i1(X)[1]. By statement 1, this implies

HomD(λ1(SD↑(G)[−1]), λ1(SD↑(C)[−1])) = 0.

Hence we obtain

HomD ρ2(SD↑(G), ρ2(SD↑(C)))

= HomD(λ1(SD↑(G)[−1]), λ1(SD↑(C)[−1])) = 0

via λ1 ◦ SD↑ = SD ◦ ρ2 = ρ2[1].
Finally, in order to prove statement 2, we proceed similar to the previous

case. Applying SD↑ to (4.15) gives

SD↑(F )[−1]→ ∆(X)→ SD↑(B)[−1]
+→

via SD↑ ◦ i2 = ∆[1] such that we obtain

Hom≤0
D (K(F ),K(B)) = Hom≤0

D (ρ2(SD↑(F [−2])), ρ2(SD↑(B[−2])))

= Hom≤0
D (ρ2(SD↑(F )), ρ2(SD↑(B))) = 0

from ρ2 ◦SD↑ [−1] = K[1]. With this, the proof of statement 2 and hence the
entire proof is finished.

In order to introduce lemma 4.5.11, we need the following.

Lemma 4.5.10. Suppose E ∈ H, where H is the heart of a bounded t-
structure (D≤0,D≥1) on D. If H has homological dimension 1, we obtain for
any X ∈ D that X ∼= ⊕i∈ZH i(X)[−i], where H i is the cohomology given by
(D≤0,D≥1).

Proof. To see this, note at first, that an immediate implication of H having
homological dimension 1 is that HomD(H,D≤−2) = 0. Since (D≤0,D≥1) is
bounded, there is an m ∈ Z for any non-zero X ∈ D, such that X ∈ D≤m.
Consider the exact triangle

τ≤m−1(X)→ X → τ≥m(X)
+→

which gives the canonical connecting morphism c : τ≥m(X)→ τ≤m−1(X)[1].
Since X ∈ D≤m we have X = τ≤m(X) and hence τ≥m(X) = τ≥m(τ≤m(X)) =
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Hm(X)[−m] ∈ H[−m]. On the other hand, τ≤m−1(X)[1] ∈ Dm−2 and there-
fore c ∈ Hom(H[−m],Dm−2) = HomD(H,D≤−2) = 0. We hence obtain c = 0
and by [59, Tag 05QT] this gives

X = τ≤m−1(X)⊕ τ≥m(X) = τ≤m−1(X)⊕Hm(X)[−m].

Repeating this with τ≤m−1(X) taking the place of X one obtains the state-
ment by induction.

The following lemma is essentially a version of [30, Lemma 7.2]. In our
situation we are able to give a somewhat shorter and less tedious proof.

Lemma 4.5.11. Assume that D is 1-Calabi-Yau. Suppose E ∈ H, where H
is the heart of a bounded t-structure (D≤0,D≥1) on D. If there is an exact
triangle

Y → E → X
+→ (4.20)

in D with Hom≤0(Y,X) = 0, then X, Y ∈ H.

Proof. At first, we see that D being 1-Calabi-Yau implies that H has homo-
logical dimension 1 as for any A,B ∈ H we have

Hom(A,B[k])∗ = Hom(B[k], SD(A))

= Hom(B[k], A[1]) = Hom(B,A[1− k]) = 0
(4.21)

if k ≥ 2, provided by the fact that the morphisms between objects in hearts
vanish if a negative shift is applied to the second component. Hence, we also
have Extn(A,B) = 0 for n ≥ 2. By lemma 4.5.10, we have

X ∼= ⊕i∈ZH i(X)[−i] and Y ∼= ⊕j∈ZHj(Y )[−j]

where H i is the cohomology given by (D≤0,D≥1). Now consider the long
exact cohomology sequence provided by the exact triangle (4.20). Since E ∈
H, we haveHn(E) = 0 for any n 6= 0 and therefore the long exact cohomology
sequence is of the form

0→ Hm−1(X)
ξm→ Hm(Y )→ 0

wherever m /∈ {0, 1}, completed by

0→ H−1(X)
ε→ H0(Y )→ H0(E)→ H0(X)

τ→ H1(Y )→ 0,

which provides that ε is a monomorphism, τ is an epimorphism and that
all the ξm are isomorphisms. Hence, each of the morphisms ξm has an
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inverse (ξm)−1 ∈ Hom(Hm(Y ), Hm−1(X)). Since any non-zero morphism
within the set Hom(Hm(Y ), Hm−1(X)) would induce a non-zero morphism
in Hom(Y,X[−1]) which – as a condition of the lemma – equals 0, we now
obtain that (ξm)−1 ∈ Hom(Hm(Y ), Hm−1(X)) = 0 which implies ξm = 0
also. Since all ξm are isomorphisms this gives Hm−1(X) = Hm(Y ) = 0 for
m /∈ {0, 1}. To see that ε is equal to 0 we consider ε ∈ Hom(H−1(X), H0(Y )).
We have

Hom(H−1(X), H0(Y ))∗ = Hom(H0(Y ), SD(H−1(X))) =

Hom(H0(Y ), H−1(X)[1]) = 0

since H0(Y ) and H−1(X) are summands of Y and X respectively such that
Hom(H0(Y ), H−1(X)[1]) ⊂ Hom(Y,X) ⊂ Hom≤0(Y,X) = 0 which implies
Hom(H−1(X), H0(Y )) = 0 and therefore ε = 0. Hence, H−1(X) = 0. Simi-
larly we proceed in the case of τ , now using

Hom(H0(X), H1(Y ))∗ = Hom(H1(Y ), H0(X)[1]) =

Hom(H1(Y )[−1], H0(X)) = 0.

We obtain that H1(Y ) too is 0. This leaves us with X = H0(X) ∈ H and
Y = H0(Y ) ∈ H which finishes the proof.

Remark 4.5.12. Note that in the situation that we are in – which is that of
D being 1-Calabi-Yau – we can in fact relax the hom-vanishing condition
Hom≤0(Y,X) = 0 of lemma 4.5.11 to Hom(Y,X) = 0 because within the
proof of 4.5.11 one can alternatively simply argue the vanishing of the ξm in
the same way as the vanishing of ε and τ . For that, one now considers the
equation

Hom(Hm−1(X), Hm(Y ))∗ = Hom(Hm(Y ), Hm−1(X)[1]) =

Hom(Hm(Y )[−m], Hm−1(X)[−m+ 1]) = 0.

In the more general situation of [30, Lemma 7.2] however, Hom≤0(Y,X) = 0
is required.

Lemma 4.5.13. For a slicing P on a triangulated category and a non-zero
element E ∈ T R, let

E0
// E1

//

~~

E2
//

~~

. . . // En−1
g
// En

||

A1

+

OO

A2

+

OO

An

+ d

OO

with E0 = 0, En = E and Aj ∈ P(φj) for all j ∈ {1, . . . , n} be the Harder-
Narashiman filtration of E with regard to P. If E /∈ P(φ) for all φ ∈ R, then
g 6= 0.
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Proof. Consider the exact triangle

En−1
g→ En → An

d→ (4.22)

and assume g = 0. This provides us with the exact triangle

An
d→ En−1[1]

0→ En[1]
+→ .

By [32, Lemma 1.4], this implies that d is a retraction. This means, there is
a morphism f ∈ Hom(En−1[1], An) such that d ◦ f = idEn−1[1]. We have

φ−P(En−1) = φP(An−1) > φP(An)

and hence

φ−P(En−1[1]) = φ−P(En−1) + 1 = φP(An−1) + 1 > φP(An) + 1 > φP(An).

Hence, Hom(En−1[1], An) = 0, implying that f = 0. Therefore we obtain

idEn−1[1] = d ◦ f = d ◦ 0 = 0,

implying that En−1[1] = 0. Hence (4.22) implies E = En ∼= An ∈ P(φn)
which is a contradiction as E /∈ P(φ) for all φ ∈ R was assumed.

We will, with the help of the following lemma be able to produce the
pieces of the – crucial – proposition 4.5.20.

Lemma 4.5.14. Assume there are exact functors

P : T R → T̃ R;M : T R → T̃ R;N : T R → T̃ R;

L : T̃ R → T R;R : T̃ R → T R

such that P a L a M a R a N . Assume furthermore that P,M and N
are fully faithful, that im(N) = ⊥(im(M)), im(M)⊥ = im(P ) and that T R is
1-Calabi-Yau. If there is a bounded t-structure (T R≤0, T R≥1) on T R with
heart H, X an indecomposable object in H and an exact triangle

E
g→M(X)→ A

+→ (4.23)

in T̃ R where g 6= 0, A 6= 0 and moreover we have that Hom≤0

T̃ R
(E,A) = 0 =

Hom≤0
T R(L(E), L(A)) then we obtain A ∼= N(X) and E ∼= P (X).
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Proof. Applying the functor L to (4.23) and letting εX : L(M(X)) → X be
the counit of the adjunction L aM , provides us with the exact triangle

L(E)
εX◦L(g)→ X → L(A)

γ→

via L ◦M ∼= idT R given by the fact that M is fully faithful. Since T R is
1-Calabi-Yau we have

HomT R(L(A), L(E)[1])∗ = HomT R(L(A), ST R(L(E)))∗

= HomT R(L(E), L(A)) ⊂ Hom≤0
T R(L(E), L(A)) = 0

where ST R is the Serre functor. Hence, HomT R(L(A), L(E)[1]) = 0 which
implies γ = 0 from which we obtain X ∼= L(E) ⊕ L(A). Next, we see
that L(E) 6= 0, since otherwise we would get a contradiction via the fact
that g ∈ HomT̃ R(E,M(X)) = HomT R(L(E), X) = 0. By lemma 4.5.11,

we now obtain L(E), L(A) ∈ H since Hom≤0
T R(L(E), L(A)) = 0 by as-

sumption. Because X is indecomposable in H we hence obtain L(A) = 0
and hence L(E) ∼= X. By lemma 4.2.10 and by assumption we obtain
ker(L) = ⊥(im(M)) = im(N) such that L(A) = 0 implies that there is
an A′ ∈ T R such that N(A′) = A, turning (4.23) into the exact triangle

E
g→M(X)→ N(A′)

+→ .

Now applying R to this we obtain the exact triangle

R(E)→ X → A′
+→ (4.24)

via R ◦M ∼= idT R ∼= R ◦ N , using the fully-faithfulness of M and N . We
have

Hom≤0
T R(R(E), A′) = Hom≤0

T̃ R
(E,N(A′)) = Hom≤0

T̃ R
(E,A) = 0,

and therefore, by lemma 4.5.11 that R(E), A′ ∈ H. On the other hand, we
have HomT R(R(E), A′) ⊂ Hom≤0

T R(R(E), A′) = 0 and therefore – since, by
definition 4.5.8, shift by one is the Serre functor – also

HomT R(A′, R(E)[1])∗ = HomT R(R(E), A′) = 0,

giving HomT R(A′, R(E)[1]) = 0. Hence, we obtain f = 0 in the exact triangle

X → A′
f→ R(E)[1]

+→

provided by (4.24). Therefore X ∼= R(E) ⊕ A′. Since 0 6= A = N(A′)
implies A′ 6= 0, we now have R(E) = 0 via the indecomposability of X in
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H, combined with the fact that R(E), A′ ∈ H. Therefore also A′ ∼= X,
giving A ∼= N(X), the first statement of the lemma. By lemma 4.2.11 and
by assumption we obtain ker(R) = im(M)⊥ = im(P ) such that R(E) = 0
implies that there is an E ′ ∈ T R such that P (E ′) = E. We obtain

X = L(E) = L(P (E ′)) ∼= E ′ (4.25)

using the fully faithfulness of P . Applying P to (4.25) gives E ∼= P (X),
which finishes the proof.

We will use additional language for the following.

Definition 4.5.15. Let T R be a triangulated category and P be a slicing
on T R. We say that an object A ∈ T R is ”slicy” if there is a φ ∈ R such
that A ∈ P(φ). Furthermore denote this φ by φA.

Remark 4.5.16. In the following we will in situations were a slicing is given –
but not necessarily a central charge – refer to the filtration of definition 2.5.1
as a Harder-Narashiman filtration (HNF for short).

Lemma 4.5.17. Assume that D is 1-Calabi-Yau. Let X be indecomposable in
the heart H of a bounded t-structure (D≤0,D≥1) on D. Assume furthermore
that P is a slicing on D↑ and that i1(X) is not slicy, then i2(X) is slicy.

Proof. Since i1(X) /∈ P(φ) for all φ ∈ R, i1(X) has a non-trivial Harder-
Narashiman filtration and – in particular – there is an exact triangle

E
g→ i1(X)→ A

+→ (4.26)

the ”last” triangle in the HNF given by the slicing P (note, that this implies
that there is a ν ∈ R such that A ∈ P(ν) and A 6= 0). Moreover, φ−(E) >
φ−(i1(X)) = φ(A) and hence Hom≤0

D↑(E,A) = 0. By lemma 4.5.9, we obtain

Hom≤0
D (λ1(E), λ1(A)) = 0 and by lemma 4.5.13 that g 6= 0. We can hence

apply lemma 4.5.14. To do so let

P = ∆, L = λ1,M = i1, R = K, N = i2[1].

We have ∆ a λ1 a i1 a K a i2[1] by lemma 4.3.1, the fully faithfulness of i1, i2
and ∆ by lemmas 3.2.18 and 3.2.28 and im(i1)⊥ = im(∆) by corollary 4.2.14,
which at the same time provides us with im(i2[1]) = ⊥(im(i1)) if combined
with the fact that im(i2) is closed under shift and hence im(i2[1]) = im(i2).
We obtain that A = i2(X) which finishes the proof.
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Lemma 4.5.18. Assume that D is 1-Calabi-Yau. Let X be indecomposable in
the heart H of a bounded t-structure (D≤0,D≥1) on D. Assume furthermore
that P is a slicing on D↑ and that i2(X) is not slicy, then ∆(X) is slicy.

Proof. Since D has a Serre functor SD, by theorem 4.2.19, D↑ also has a
Serre functor SD↑ . Since i2(X) /∈ P(φ) for all φ ∈ R, i2(X) has a non-trivial
Harder-Narashiman filtration and – in particular – there is an exact triangle

F
g→ i2(X)→ B

+→, (4.27)

the ”last” triangle in the HNF (note, that this implies that there is a ν ∈ R
such that B ∈ P(ν) and B 6= 0). Moreover, φ−(F ) > φ−(i2(X)) = φ(B) and
hence Hom≤0

D↑(F,B) = 0. By lemma 4.5.9, we obtain Hom≤0
D (K(F ),K(B)) =

0 and by lemma 4.5.13 that g 6= 0. We can hence apply lemma 4.5.14. To
do so let

P = i1[−1], L = K[1],M = i2, R = ρ2, N = ∆

and use lemmas 3.2.18 and 3.2.28 and corollary 4.2.14 in a similar way as
it was done in lemma 4.5.17. We see that B = ∆(X) which finishes the
proof.

Lemma 4.5.19. Assume that D is 1-Calabi-Yau. Let X be indecomposable in
the heart H of a bounded t-structure (D≤0,D≥1) on D. Assume furthermore
that P is a slicing on D↑ and that ∆(X) is not slicy, then i1(X) is slicy.

Proof. We proceed similar to the proves of lemmas 4.5.17 and 4.5.18. We are
now working with the exact triangle

G
g→ ∆(X)→ C

+→, (4.28)

using lemmas 4.5.9, 4.5.13 and 4.5.14.

Proposition 4.5.20. Assume that D is 1-Calabi-Yau. Let X be indecom-
posable in the heart H of a bounded t-structure (D≤0,D≥1) on D. Assume
furthermore that P is a slicing on D↑. Let the ordered triple (F,G,H) be
equal to either of the ordered triples (i1[−1], i2,∆), (i2,∆, i1) or (∆, i1, i2[1]).
If G(X) is not slicy, then F (X) and H(X) are slicy and φF (X) > φH(X) + 1.

Proof. Note that the condition of being slicy is stable under shift. Hence,
making use of the previous lemmas, we get the following.

1. Assume that (F,G,H) equals to (i1[−1], i2,∆). By lemma 4.5.17 we
directly obtain i2(X) ∈ P(φ̄) and moreover, since by lemma 4.5.19,

∆(X) /∈ P(φ̃) for all φ̃ ∈ R would imply the existence of a φi1(X) ∈ R
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such that i1(X) ∈ P(φi1(X)) which contradicts the assumption, we also
have the existence of a φ∆(X) ∈ R such that ∆(X) ∈ P(φ∆(X)). To see
that φ∆(X) > φi2(X) + 1, consider the exact triangle

∆(X)→ i1(X)→ i2(X)[1]
+→

that we obtain from (4.26) since, by lemma 4.5.14, we have E ∼= ∆(X)
and A ∼= i2(X)[1]. Since (4.26) is the last triangle in the HNF of i1(X)
we therefore obtain that φ∆(X) > φi2(X)[1] and hence

φ∆(X) > φi2(X)[1] = φi2(X) + 1.

2. Assume that (F,G,H) equals to (i2,∆, i1). This case is similar to 1,
using lemmas 4.5.18 and 4.5.17. Then use the exact triangle

i1(X)[−1]→ i2(X)→ ∆(X)
+→

provided by (4.27) and – as above – lemma 4.5.14 to see that φi1(X)−1 >
φ∆(X).

3. Assume that (F,G,H) equals to (∆, i1, i2[1]). This case is similar to 1,
using lemmas 4.5.19 and 4.5.18. Then use the exact triangle

i2(X)→ ∆(X)→ i1(X)
+→

provided by (4.28) and – as above – lemma 4.5.14 to see that φi2(X) >
φi1(X).

In other words, at this point we can also give an exact description of the
HNFs of the three embeddings.

Corollary 4.5.21. Assume that D is 1-Calabi-Yau. Let X be indecomposable
in the heart H of a bounded t-structure (D≤0,D≥1) on D. Assume further-
more that P is a slicing on D↑,

1. If i1(X) is not slicy, then it’s HNF is given by

0→ ∆(X)→ i1(X)

with slicy quotients ∆(X) and i2(X)[1].
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2. If i2(X) is not slicy, then its HNF is given by

0→ i1(X)[1]→ i2(X)

with slicy quotients i1(X)[1] and ∆(X).

3. If ∆(X) is not slicy, then its HNF is given by

0→ i2(X)→ ∆(X)

with slicy quotients i2(X) and i1(X).

Proof. This corollary simply sums up the proof of proposition 4.5.20.

We can also use proposition 4.5.20 to prove the following.

Lemma 4.5.22. Assume that D is 1-Calabi-Yau. Let P be a slicing on
D↑. Let X1 be indecomposable in the heart H1 of a bounded t-structure
(D≤0

1 ,D≥1
1 ) on D and X2 be indecomposable in the heart H2 of a bounded

t-structure (D≤0
2 ,D≥1

2 ) on D such that HomD(X1, X2) 6= 0. Let the ordered
triple (F,G,H) be equal to either of the ordered triples (i1[−1], i2,∆), (i2,∆, i1)
or (∆, i1, i2[1]). Assume that G(X1) is not slicy. Then F (X2) and H(X2)
are slicy.

Proof. There are six cases for which we must prove a contradiction – that is
assuming that

1. i1(X1),∆(X2) or

2. i2(X1), i1(X2) or

3. ∆(X1), i2(X2) or

4. i1(X2),∆(X1) or

5. i2(X2), i1(X1) or

6. ∆(X2), i2(X1)

both aren’t in a slice. Let’s assume, that this is the case for i1(X1),∆(X2).
By proposition 4.5.20, i2(X1),∆(X1), i1(X2) and i2(X2) are each in a slice.
We also obtain by proposition 4.5.20 that φi2(X1)+1 < φ∆(X1). Next, consider

HomD↑(∆(X1), i1(X2)) ∼= HomD(X1, λ1(i1(X2)))

= HomD(X1, id(X2)) = HomD(X1, X2) 6= 0
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which forces φ∆(X1) ≤ φi1(X2). Again by proposition 4.5.20 we obtain φi1(X2) <
φi2(X2). Finally, we have SD = [1] which gives

HomD↑(i2(X2), i2(X1)[1]) = HomD(X2, X1[1])

= HomD(X2, SD(X1)) = HomD(X1, X2) 6= 0.

and therefore forces φi2(X2) ≤ φi2(X1) + 1. In other words, via

φi2(X1) + 1 < φ∆(X1) ≤ φi1(X2) < φi2(X2) ≤ φi2(X1) + 1 (4.29)

we obtain the contradiction φi2(X1) < φi2(X1).
The statement for the situation where i2(X1) and i1(X2) aren’t assumed

to be in a slice and the situation where ∆(X1) and i2(X2) are not in a slice
are now similar. In fact they are dealt with by using the fact that the proof
is ”stable” under the application of the Serre functor SD↑ . In other words,
applying SD↑ to everything will provide the analogous inequalities – and
hence a similar contradiction – applying once will deal with the situation
where i2(X1) and i1(X2) are not assumed to be in a slice and the situation
where ∆(X1) and i2(X2) are not in a slice is dealt with by applying SD↑
again. Finally, we can prove the contradiction in the case of the situation
where i1(X2) and ∆(X1) are not assumed to be in a slice by the inequality

φi2(X2) + 1 < φ∆(X2) < φi1(X1) + 1 ≤ φi2(X1) + 1 ≤ φi2(X2) + 1

where the first inequality is provided by proposition 4.5.20, the second by ap-
plying SD↑ to HomD↑(∆(X1),∆(X2)) 6= 0, the third one again by proposition
4.5.20 and the last one by HomD↑(i2(X1), i2(X2)) = HomD(X1, X2) 6= 0. The
last two situations now – again – can be lead to a contradiction by applying
SD↑ .

We can extend this by putting more conditions on D.

Lemma 4.5.23. Assume that D is 1-Calabi-Yau. Let P be a slicing on
D for which we have HomD(A,B) 6= 0 if A ∈ PD(ϕ), B ∈ PD(ψ) with
ϕ < ψ < ϕ + 1, ϕ, ψ ∈ R and A,B non-zero. Let PD↑ be a slicing on D↑
and let the ordered triple (F,G,H) be equal to either of the ordered triples
(i1[−1], i2,∆), (i2,∆, i1) or (∆, i1, i2[1]). Furthermore let X be indecompos-
able in the heart H1 of a bounded t-structure (D≤0

1 ,D≥1
1 ) on D and Y be

indecomposable in the heart H2 of a bounded t-structure (D≤0
2 ,D≥1

2 ) on D.
Let X, Y be slicy such that φY − φX /∈ Z. If G(X) is not slicy, then F (Y )
and H(Y ) are slicy.
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Proof. We have φY − φX = m + α where m ∈ Z and 0 < α < 1. Hence, by
assumption, HomD(X[m], Y ) 6= 0 and since, again by assumption X[m], Y
are indecomposable in their respective hearts (shifted by [m] in the case of
X[m]), we can apply proposition 4.5.20 combined with lemma 4.5.22, where
X1 = X[m] and X2 = Y . We obtain ι, ζ ∈ R such that F (Y ) ∈ PD↑(ι) and
H(Y ) ∈ PD↑(ζ).

We will give an improved version of our result in the special case of an
elliptic curve C. We need the following technical lemma. We include a proof
of this – well known – result which is based on [2].

Lemma 4.5.24. Let X be a µ-stable object in Db(Coh(C)) where C is an
elliptic curve. Then rank(X) and deg(X) are coprime.

Proof. Let E be a stable vector bundle, then E is simple by [20, Section 2.4].
This implies that E is indecomposable. Assume that h = gcd(r, d) > 1 where
r = rank(E) and d = deg(E). By [2, Theorem 10], since E is indecomposable
we have E ∼= EA(r, d)⊗L, where L is a line bundle. Since a vector bundle F
is stable if and only if F ⊗L′ is stable for a line bundle L′, we obtain EA(r, d)
stable. By [2, Lemma 24] however, EA(r, d) ∼= EA(r′, d′)⊗Fh where Fh is the
Atiyah bundle from [2, Theorem 5] and r′ = r

h
and d′ = d

h
. By [2, Theorem

5] we obtain an exact sequence

0→ OC → Fh → Fh−1 → 0, (4.30)

which implies that the structure sheaf OC is a subbundle of Fh. In other

words, we obtain an embedding OC
i
↪→ Fh. Since tensoring vector bundles

with vector bundles is an exact functor, we obtain from applying ⊗EA(r′, d′)

to (4.30) that EA(r′, d′)⊗OC
EA(r′,d′)⊗i
↪−→ EA(r′, d′)⊗ Fh is still an embedding.

Since EA(r′, d′)⊗ Fh ∼= EA(r, d) (and since OC is the neutral element in the
Picard-group), we obtain EA(r′, d′) ⊂ EA(r, d). This gives

µ(EA(r, d)) =
d

r
=
d′

r′
= µ(EA(r′, d′))

which is a contradiction because EA(r, d) is stable. Hence, h = 1 and the
proof is finished.

Lemma 4.5.25. Assume that D = Db(Coh(C)) where C is an elliptic curve.
Let σ = (PD↑ , Z) ∈ Stab(D↑). There are F,H ∈ {i1, i2,∆}, F 6= H, such
that F (X), H(X) is σ-semistable for any stable X ∈ D.
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Proof. Let the ordered triple (F,G,H) be equal to either of the ordered
triples (i1[−1], i2,∆), (i2,∆, i1) or (∆, i1, i2[1]). For X ∈ Pµ(φX) given (note
that on Db(Coh(C)) we only need to consider Pµ), there are, by proposition
4.5.20, F,H ∈ {i1, i2,∆}, F 6= H such that F (X), H(X) are σ-semistable
and φσH(X) + 1 < φσF (X). We must prove that for any stable object D ∈ D,

F (D) H(D) are σ-semistable. Let Y ′ ∈ (Pµ)D(φ′Y ), we must prove that
F (Y ′), H(Y ′) are σ-semistable. If φY ′ 6= φX +n for any n ∈ Z, we obtain the
result by lemma 4.5.23, since for a suitable shift of Y ′, the Hom vanishing
condition is fulfilled by [20, Corollary 4.4]. If, on the other hand, we have
φY ′ = φX + n for n ∈ Z, we obtain Y ∈ (Pµ)D(φX) for Y = Y ′[−n]. There
is a ξ ∈ R with ξ 6= φX + m for any m ∈ Z such that (Pµ)D(ξ) 6= ∅. Hence
there is a non-zero Z ′ ∈ (Pµ)D(ξ) and we set Z = Z ′[d] ∈ (Pµ)(ξ + d) such
that ξ + d ∈ (φX , φX + 1). We obtain that F (Z), H(Z) are σ-semistable by
lemma 4.5.23. Assume now that F (Y ′) is not σ-semistable, then – since this
condition is invariant under shift – so is F (Y ) and proposition 4.5.20 provides
that H(Z) and, in particular G(Z) are σ-semistable where φσG(Y ) +1 < φσH(Y ).
From the exact sequence

F (Z)→ G(Z)→ H(Z)
+→

we obtain the inequality

φσF (Z) ≤ φσG(Z) ≤ φσH(Z) ≤ φσF (Z) + 1.

From HomD(X,Z) 6= 0 we obtain HomD↑(F (X), F (Z)) 6= 0 since F is a fully-
faithful, which provides us with φσF (X) ≤ φσF (Z). Since, again by assumption,

HomD(Y, Z) 6= 0, we obtain HomD(Y, Z)∗ 6= 0. Since G is fully-faithful, this
gives

HomD↑(G(Z), G(Y [−n+ 1])) = HomD(Z, Y [−n+ 1])

= HomD(Z, SD(Y )) = HomD(Y, Z)∗ 6= 0

and hence φσG(Z) ≤ φσG(Y ) + 1. Since C is an elliptic curve, we have that

Coh(C) = Pµ(0, 1] and there is an a ∈ Z such that Pµ(φ + a) ⊂ Pµ(0, 1]
which implies X[a], Y [a] ∈ Coh(C). Additionally, we have the equation

deg(Y [a])

rank(Y [a])
= µ(Y [a]) = tan((φX + a)π) = µ(X[a]) =

deg(X[a])

rank(X[a])

using the concept of µ-stability. Since X and Y are simple objects, they are
stable by [20, 2.4] and hence so are X[a] and Y [a]. By lemma 4.5.24 this
implies deg(Y [a]) = deg(X[a]) and rank(Y [a]) = rank(X[a]). Since σ is a
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numerical stability condition, the central charge Z of the stability condition
σ is given by Z(A) = Z(rank(λ1(A)), deg(λ1(A)), rank(ρ2(A)), deg(ρ2(A)))
for A ∈ Coh(C). Therefore Z(J(Y [a])) = Z(J(X[a])) for any J ∈ {i1, i2,∆}.
This implies the equality exp(iπφσH(X[a])) = exp(iπφσH(Y [a])), in other words

cos(φσH(X[a])) + i sin(φσH(X[a])) = cos(φσH(Y [a])) + i sin(φσH(Y [a])) and from this
we now obtain φσH(X[a]) = φσH(Y [a]) + 2f where f ∈ Z and therefore φσH(X) =

φσH(Y [−n]) + 2f . However, for B ∈ {X, Y [−m]}, we have HomD(B,Z) 6= 0
which provides

HomD↑(H(B), H(Z)) 6= 0 (4.31)

via the fully-faithfulness of H. This implies that HomD(B,Z)∗ 6= 0 as well.
We hence have HomD(Z,B[1]) = HomD(Z, SD(B)) = HomD(B,Z)∗ 6= 0,
that is, again using the fully-faithfulness of H,

HomD↑(H(Z), H(B[1])) 6= 0. (4.32)

While (4.31) provides us with φσH(B) ≤ φσH(Z), we obtain φσH(Z) ≤ φσH(B) + 1.

But since we have that Z, and therefore H(Z) is non-zero, we obtain from
this, that [φσH(X), φ

σ
H(X) + 1] ∩ [φσH(Y [−m]), φ

σ
H(Y [−m]) + 1] 6= ∅, which can be

rephrased as H(X) ∈ [φσH(Y [−m])− 1, φσH(Y [−m]) + 1]. Hence, f = 0 and we get
φσH(Y ) = φσH(X). Summing up, we obtain

φσG(Z) ≤ φσG(Y ) + 1 < φσH(Y ) = φσH(X) < φσF (X) ≤ φσF (Z) ≤ φσG(Z)

which is a contradiction. Hence, F (Y ) is σ-semistable. To see that H(Y ) too
is semistable, repeat the argument swapping X and Y and replacing (F,G)
by (G,H).

Expressing this in a more suitable – topological – language we define

Notation 4.5.26. Let pre Stab(D↑) denote the space of pre-stability condi-
tions on D↑.
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Definition 4.5.27. Define

Θ̃12 =

{σ ∈ pre Stab(D↑) | i1(X), i2(X)σ-semistable for all X ∈ D with X stable}
Θ12 =

{σ ∈ pre Stab(D↑) | i1(X), i2(X)σ-stable for all X ∈ D with X stable}
Θ̃31 =

{σ ∈ pre Stab(D↑) | i1(X),∆(X)σ-semistable for all X ∈ D with X stable}
Θ31 =

{σ ∈ pre Stab(D↑) | i1(X),∆(X)σ-stable for all X ∈ D with X stable}
Θ̃23 =

{σ ∈ pre Stab(D↑) | i2(X),∆(X)σ-semistable for all X ∈ D with X stable}
Θ23 =

{σ ∈ pre Stab(D↑) | i2(X),∆(X)σ-stable for all X ∈ D with X stable}

Corollary 4.5.28. Assume that D = Db(Coh(C)) where C is an elliptic
curve, then

pre Stab(D↑) = Θ̃12 ∪ Θ̃13 ∪ Θ̃23.

Proof. This is simply a version of lemma 4.5.25 using the language of defini-
tion 4.5.27.

However, it is possible to say more.

Theorem 4.5.29. Assume that D = Db(Coh(C)) where C is an elliptic
curve, then

pre Stab(D↑) = Θ12 ∪Θ31 ∪Θ23.

Proof. We provide the exemplary proof that i1(X) not σ-semistable gives
∆(X) σ-stable. Everything follows the same way as we have previously
seen throughout this section. We assume ∆(X) is not σ-stable and hence
consider its JHF, that is, all its σ-stable factors Ai have the same phase φ. We
assume that HomD↑(Ai0 ,∆(X)) 6= 0 for a σ-stable factor Ai0 . Therefore by
[38, Exercise 1.6] and the fact that i1(X) was assumed to be non-semistable,
arguing as before, we have that all the stable factors of ∆(X) are isomorphic
to Ai0 . Hence, [∆(X)] = n[Ai0 ], where n is the number of stable factors.
Since C is an elliptic curve, rank(X) and deg(X) are coprime which implies
that the vector [∆(X)] = (a, b, c, d) is non-divisible. Therefore we must have
n = 1, in other words, ∆(X) is isomorphic to a stable object and therefore
stable.
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To obtain the equivalent of lemma 4.5.25 we now obtain the analogous
statement of lemma 4.5.22 (that was the key to proving lemma 4.5.25)
because the inequality (4.29) is still strict despite the fact that if i1(X1)
is semistable, the two strict inequalities that were then provided by the
HNF are now given by the JHF and are therefore equalities. To correct
for this we can now prove that φ∆(X1) < φi1(X2). To see this consider
the fact that φi1(X1) < φi1(X2) given via the fact that equality would im-
ply both objects in the same slice, therefore violating the locally finiteness
of the slicing. Since HomD↑(∆(X1), i1(X1)) 6= 0 we have φ∆(X1) ≤ φi1(X1)

such that φ∆(X1) ≤ φi1(X1) < φi1(X2). If, on the other hand, i1(X1) is not
semistable, we obtain ∆(X2) semistable by lemma 4.5.25, then providing us
with φ∆(X1) < φ∆(X2) ≤ φi1(X2) by the same reasoning as before.

For the sake of completeness we shall add the following.

Corollary 4.5.30. Let Θ′ij be like Θij where now we assume σ ∈ Stab(D↑)
instead of pre Stab(D↑), then we have

Stab(D↑) = Θ′12 ∪Θ′31 ∪Θ′23.

Proof. This is an obvious consequence of theorem 4.5.29.

Before we continue our discussion we will provide the following useful
lemma.

Lemma 4.5.31. If A = Coh(C) for an elliptic curve C, σ ∈ pre Stab(D↑)
and X stable, then

• i1(X) strictly σ-semistable implies that it has a Jordan-Hölder filtration
given by

0→ ∆(X)→ i1(X),

• i2(X) strictly σ-semistable implies that it has a Jordan-Hölder filtration
given by

0→ i1(X)→ i2(X)

and

• ∆(X) strictly σ-semistable implies that it has a Jordan-Hölder filtration
given by

0→ i2(X)→ ∆(X).

Proof. This is a a by-product of the proof of theorem 4.5.29.
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We will combine the fundamental lemma 4.5.25 with a fact provided by
the following lemmas.

Lemma 4.5.32. Assume that D = Db(Coh(C)) where C is an elliptic curve.
Let X, Y ∈ D such that X ∈ Pµ(φX), Y ∈ Pµ(φY ). Let F be a faithful triangle
functor F : D ↪→ D↑ for which for any t ∈ R there is a t′ ∈ R and a slicing
P on D↑ such that F (Pµ(t)) ⊂ P(t′) . Let r, s ∈ R such that F (X) ∈ P(r)
and F (Y ) ∈ P(s). If φY − 1 < φX < φY , then s− 1 ≤ r ≤ s.

Proof. From φX − 1 < φY − 1 < φX < φY , we obtain

HomD(X, Y ) 6= 0 6= HomD(Y [−1], X)

by [20, Corollary 4.4]. Since F is faithful, this implies

HomD↑(F (X), F (Y )) 6= 0 (4.33)

and
HomD↑(F (Y [−1]), F (X)) 6= 0. (4.34)

Now, (4.33) gives r ≤ s and (4.34) gives s− 1 ≤ r.

Lemma 4.5.33. Assume that D = Db(Coh(C)) where C is an elliptic curve.
Let non-zero X, Y ∈ D such that X ∈ Pµ(φX), Y ∈ Pµ(φY ). Let F be a
faithful triangle functor F : D ↪→ D↑ for which for any t ∈ R there is a
t′ ∈ R and a locally finite slicing P on D↑ such that F (Pµ(t)) ⊂ P(t′) . Let
r, s ∈ R such that F (X) ∈ P(r) and F (Y ) ∈ P(s). If φY − 1 < φX < φY
and there is a σ ∈ pre Stab(D↑) such that σ = (P , Z), then s− 1 < r < s.

Proof. We have s − 1 ≤ r ≤ s by lemma 4.5.32. If we assume r = s,
we obtain Z(F (Pµ(φX))) = Z(F (Pµ(φY ))) ⊂ P(r). This implies both
Z(F (Pµ(φX))) ⊂ R+ exp(iπr) and Z(F (Pµ(φX))) ⊂ R+ exp(iπr). How-
ever, φY − 1 < φX < φY implies that K(D) = 〈[X], [Y ]〉. This gives
F (K(D)) ⊂ R+ exp(iπr), which, on the other hand, implies that for any
ϕ ∈ R there is an n ∈ Z such that F (Pµ(ϕ)) ⊂ P(r)[n]. Since it is part of
the definition of a slicing P ′ that P ′(a + m) = P ′(a)[m] for a ∈ R,m ∈ Z
and moreover F is a triangle functor (e.g. commutes with shift), we can
conclude that there is an α ∈ R such that F (Pµ(α, α + 1)) ⊂ P(r). If α
is irrational, then Pµ(α − bαc, α − bαc + 1) is not noetherian as a direct
implication of [54, Proposition 3.1]. Hence Pµ(α, α+ 1) is not noetherian as
this property does not change under shift. If, on the other hand, α ∈ Q, we
first consider the case where α = 0. Then Pµ(α, α + 1) = Coh(C) which is
not an artinian category seen from the non-stabilising descending sequence
of subobjects O ⊃ O(−1) ⊃ O(−2) ⊃ . . . . For a non-zero α consider the
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S̃L(2,Z)-action under which Pµ(α, α+1) can be deformed into Coh(C). Since
taking subobjects is stable under this action, Pµ(α, α + 1) is not artinian.

But F is a triangle functor and hence preserves both monomorphisms and
epimorphisms in the abelian category F (Pµ(α, α + 1)). Hence there either
is a non-stabilising descending or a non-stabilising ascending sequence S of
subobjects such that S ∈ F (Pµ(α, α + 1)) ⊂ P(r) ⊂ P(r − η, r + η) for any
η ∈ R+. Therefore, the quasi-abelian category P(r− η, r+ η) is not of finite
length for any η ∈ R+, since it has an abelian subcategory that is not of
finite length. This provides a contradiction to the assumption of P being
locally finite. The proof for s− 1 < r is similar.

Lemma 4.5.34. Assume that D = Db(Coh(C)) where C is an elliptic curve
and let σ = (P , Z) ∈ pre Stab(D↑).

1. If i1(X) and i2(X) are σ-semistable for all stable X ∈ D then there are
α, β ∈ R with α ≥ β − 1 such that we have i1(Pµ(α, α + 1]) ⊂ P(0, 1]
and i2(Pµ(β, β + 1]) ⊂ P(0, 1].

2. If i1(X) and ∆(X) are σ-semistable for all stable X ∈ D then there are
α, β ∈ R with α ≥ β such that we have ∆(Pµ(α, α + 1]) ⊂ P(0, 1] and
i1(Pµ(β, β + 1]) ⊂ P(0, 1].

3. If i2(X) and ∆(X) are σ-semistable for all stable X ∈ D then there are
α, β ∈ R with α ≥ β such that we have i2(Pµ(α, α + 1]) ⊂ P(0, 1] and
∆(Pµ(β, β + 1]) ⊂ P(0, 1].

Proof. To see that we have i1(Pµ(α, α+1]) ⊂ A and i2(Pµ(β, β+1]) ⊂ A with
α ≥ β−1 whenever i1(X) and i2(X) are σ-semistable for all stable X ∈ D, it
is enough to proof this for stable X. We obtain α and β from lemma 4.5.33.
To see α ≥ β − 1 assume α < β − 1. Then there is a stable Y ∈ D such
that i1(Y ) ∈ P(0, 1] and i2(Y )[n] = i2(Y [n]) ∈ P(0, 1] for an n ∈ Z≥2 This
gives Hom−n+1

D↑ (i1(Y ), i2(Y )[n]) = Hom−nD (Y, Y [n]) = HomD(i1(Y ), i2(Y )) 6=
0 because Y stable implies Y 6= 0. This is a contradiction to 2.5.29 since
−n+ 1 < 0. The proof for the other cases is similar.

Corollary 4.5.35. Assume that D = Db(Coh(C)) where C is an elliptic
curve and let σ = (P , Z) ∈ pre Stab(D↑). Either

1. there are α, β ∈ R with α ≥ β− 1 such that we have i1(Pµ(α, α+ 1]) ⊂
P(0, 1] and i2(Pµ(β, β + 1]) ⊂ P(0, 1]

2. or there are α, β ∈ R with α ≥ β such that we have ∆(Pµ(α, α+ 1]) ⊂
P(0, 1] and i1(Pµ(β, β + 1]) ⊂ P(0, 1]
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3. or there are α, β ∈ R with α ≥ β such that we have i2(Pµ(α, α+ 1]) ⊂
P(0, 1] and ∆(Pµ(β, β + 1]) ⊂ P(0, 1].

Proof. We combine lemma 4.5.25 with lemma 4.5.34.

This gives the following preliminary result.

Proposition 4.5.36. Assume that D = Db(Coh(C)) where C is an elliptic
curve and let σ = (P , Z) ∈ pre Stab(D↑). Either σ is obtained by CP-gluing
via the semiorthogonal decompositions 〈D1,D2〉, 〈D3,D1〉 or 〈D2,D3〉 or it
fulfils at least one of the following conditions.

1. There are β > α, β ∈ R with α ≥ β − 1 such that i1(Pµ(α, α + 1]) ⊂
P(0, 1] and i2(Pµ(β, β + 1]) ⊂ P(0, 1]

2. or there are β + 1 > α, β ∈ R with α ≥ β such that ∆(Pµ(α, α+ 1]) ⊂
P(0, 1] and i1(Pµ(β, β + 1]) ⊂ P(0, 1]

3. or there are β + 1 > α, β ∈ R with α ≥ β such that i2(Pµ(α, α+ 1]) ⊂
P(0, 1] and ∆(Pµ(β, β + 1]) ⊂ P(0, 1].

Proof. Using corollary 4.5.35 we have to investigate the situations where
α ≥ β (or α ≥ β+ 1 respectively). If we have both i1(Pµ(α, α+ 1]) ⊂ P(0, 1]
and i2(Pµ(β, β+1]) ⊂ P(0, 1] with α ≥ β then this does indeed imply that the
set H = {X ∈ D↑ | λ1(X) ∈ Pµ(α, α + 1], ρ2(X) ∈ Pµ(β, β + 1]} is a subset
of P(0, 1]. But by theorem 3.2.36, H is the heart of a bounded t-structure
obtained by CP-gluing via the semiorthogonal decomposition 〈D1,D2〉. Since
a heart of a bounded t-structure cannot contain another heart of a bounded t-
structure as a proper subset, we obtain H = P(0, 1], which gives the required
statement. The proof for 〈D3,D1〉 and 〈D2,D3〉 is similar.

4.6 Shape of the Serre functor on D↑

A particularly nice implication of theorem 4.5.5 is, that we are now able to
give a complete description of the Serre functor on D↑, as well as being able
to conjecture that D↑ is fractional Calabi-Yau where we can also conjecture
on the associated fraction (see [39] for more insights on Calabi-Yau and frac-
tional Calabi-Yau categories and their construction). However, in addition
to being interesting with regard to the understanding of D↑, this chapter also
provides an important finding with regard to the further study of Stab(D↑),
given by lemma 4.6.7.
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Lemma 4.6.1. If M : T R → T R is an equivalence of triangulated categories
and T R = 〈T Ra, T Rb〉 with decomposition triangle

Ab → A→ Aa
+→,

then the distinguished triangle

M(Ab)→M(A)→M(Aa)
+→,

is the decomposition triangle of M(A) for the semiorthogonal decomposition
T R = 〈M(T Ra),M(T Rb)〉.
Proof. Since Hom(Ab, Aa) = 0 for any Aa ∈ T Ra and Ab ∈ T Rb, this follows
from [32, Lemma 6].

Lemma 4.6.2. The decomposition triangles I, II and III defined in lemma
4.5.1 are related to each other via the Serre functor by the formulas

SD↑(I)A = (II)SD↑ (A), SD↑(II)A = (III)SD↑ (A) and SD↑(III)A = (I)S}DT (A).

Proof. Apply lemma 4.6.1 and the equations

SD↑ ◦ i1 = i2[1] ◦ SD, SD ◦ λ1 = K ◦ SD↑ ,
SD↑ ◦ i2 = ∆ ◦ SD, SD ◦ ρ2 = λ1 ◦ SD↑ ,
SD↑ ◦∆ = i1 ◦ SD and SD ◦K = ρ2 ◦ SD↑

(4.35)

related to the Serre functor.

Lemma 4.6.3. If A = (A1
ϕ→ A2) ∈ D↑ and SD↑(A) = (B1

ψ→ B2), then

B1 = λ1(SD↑(A)) = SDρ2(A) and B2 = ρ2(SD↑(A)) = SDK(A)[1].

Proof. This is a consequence of (4.35).

Theorem 4.6.4. If A = (A1
ϕ→ A2) ∈ D↑, SD↑(A) = (B1

ψ→ B2) and t2 as in
4.5.2 (b), then [ψ] ∼= SD(t2) : SDρ2(A)→ SDK(A)[1] as a morphism in D.

Proof. From lemma 4.6.2 and one of the equations provided in (4.35), we
obtain

λ1(III)SD↑ (A)
∼= λ1SD↑(II)A ∼= SDρ2(II)A.

Using lemma 4.5.2 this translates into the statement that the two exact
triangles

KSD↑(A)→ λ1SD↑(A)
[ϕ]→ ρ2SD↑(A)

+→

SDλ1(A)
SD([ϕ])→ SDρ2(A)

SD(t2)→ SDK(A)[1]
+→

are isomorphic to each other in D. Hence [ψ] ∼= SD(t2) as a morphism in
D.
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Corollary 4.6.5. We have SD↑(A) ∼= (SD(A2)
SD(τ)→ SD(Cone(ϕ))) where

τ : A2 → Cone(ϕ) assumes the role of the canonical mapping given by the
mapping cone (see the diagram of definition 5.2.2 in which τ assumes the
role of the morphism iF ).

Proof. This is a consequence of theorem 4.6.4 since [τ ] ∼= [t2].

Corollary 4.6.6. If D is 1-Calabi-Yau and X ∈ D, we obtain

• SD↑(i1(X)) = SD↑(X → 0) = 0[1]→ X[1][1] = i2(X)[2],

• SD↑(i2(X)) = SD↑(0→ X) = X[1]
idX [1]−−−→ X[1] = ∆(X)[1] and

• SD↑(∆(X)) = SD↑(X
idX−−→ X) = X[1]→ 0[1] = i1(X)[1].

Proof. Let A equal to either i1(X), i2(X) or ∆(X) in the formula provided
in corollary 4.6.5 using that SD = [1] since D is 1-Calabi-Yau.

The following result allows us to generalise statements about one of the
Θij to the others.

Lemma 4.6.7. The Serre functor SD↑ acts by circularly mapping the Θij

into one another as the following diagram demonstrates:

Θ23

SD↑

}}

Θ31

SD↑ // Θ12

SD↑

aa

Proof. This follows from corollary 4.6.6, combined with the fact that, for
any Serre functor, we have HomD↑(A,B) = HomD↑(SD↑(A), SD↑(B)) and
therefore, using lemma 4.5.31 the stability of the respective embedded objects
is preserved.

The following – if proven – would be a nice result that could add to the
understanding of D↑ further.

Definition 4.6.8. A triangulated category T R is called ”a
b

fractional Calabi-
Yau” for a, b ∈ Z if T R has a Serre functor ST R and

SbT R = [a].

Conjecture 4.6.9. If D is 1-Calabi-Yau, D↑ is fractional Calabi-Yau where
the associated fraction is 3

4
.

Remark 4.6.10. Conjecture 4.6.9 is based on corollary 4.6.5, which proves the
statements as far as objects in D↑ are concerned.
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4.7 Application of tilting to D↑

Tilting traces back to two articles by Bernstein, Gelfand and Ponomarev (see
[1] for further reading) and operates on the heart of a bounded t-structure
using a torsion pair to obtain a new heart – in other words, an essential
ingredient of a stability condition. To perform tilting, one needs to make use
of torsion pairs, originally introduced in [24]. Following [33] we provide

Definition 4.7.1. A ”torsion pair” (T ,F) on an abelian category A consists
of full subcategories T and F such that

1. HomA(T, F ) = 0 for any T ∈ T and F ∈ F .

2. For any E ∈ A there are T ∈ T and F ∈ F such that

0→ T → E → F → 0

is an exact sequence in A.

Remark 4.7.2. Recalling definition 2.1.6 one can think of a torsion pair as
the abelian equivalent of a semiorthogonal decomposition.

Lemma 4.7.3. The category F is closed under subobjects and the category
T closed under quotients.

Proof. Let E ∈ F and U ⊂ E Let

0→ UT
iUT−−→ U → UF → 0

be an exact triangle with UT ∈ T and UF ∈ F . Let i : U → E be the
embedding of U into E. We have that i ◦ iUT ∈ Hom(UT , E) = 0 since
UT ∈ T and E ∈ F . Since iUT is an embedding as well as i, so is i ◦ iUT and
hence UT = 0. This provides U ∼= UF .

Analogously we obtain the dual statement for T .

Lemma 4.7.4. Let P be a slicing on D with A = P(0, 1]. Let φ ∈ (0, 1],
then (T1,F1) = (P(φ, 1],P(0, φ]) and (T2,F2) = (P [φ, 1],P(0, φ)) are torsion
pairs on A.

Proof. This follows from definition 4.7.1.

The motivating example to be explained next ties in with the theory
outlined in lemma 4.7.4.
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Example 4.7.5. Let A = Coh(C), where C is a smooth projective curve and
consider the stability condition (Zµ,A). Using the torsion pair described in
lemma 4.7.4 gives

T = P(1) = {torsion sheaves on X}
and F = P(0, 1) = {torsion-free sheaves on X}

if we let φ = 1.

Remark 4.7.6. The torsion pair provided in lemma 4.7.4 is the most prevalent
construction of a torsion pair in a situation where a slicing is available.

We now have the following lemma that gives this subsection its meaning.

Lemma 4.7.7. Let H be the heart of a bounded t-structure on a derived
category D. Assume there is a torsion pair (T ,F〉) on H. Then the full
subcategory

H] = {E ∈ D | H i
H(E) = 0 if i /∈ {−1, 0}, H−1

H (E) ∈ F and H0
H(E) ∈ T }

is the heart of a bounded t-structure on D.

Proof. See [33, Proposition 2.1].

Remark 4.7.8. The technique of obtaining new hearts provided by lemma
4.7.7 is often in the literature – and will be here – referred to as ”tilting”.
Note that in some articles it is referred to as ”left tilting” whereas left tilting
combined with [−1] is then referred to as ”right tilting”.

Lemma 4.7.9. The pair (F [1], T ) is a torsion pair on H].

Proof. This obvious fact is, for example, mentioned in [16, Section 5.2].

The theory we just introduced allows us to compute hearts of t-structures.
Equipping a heart like this with a suitable stability function will subsequently
provide a stability condition. For the construction that we are planning we
have to radically restrict our category A to a smooth projective curve as
otherwise we do not have the necessary concepts available.

Remark 4.7.10. Note that for A = Coh(C), where C is a smooth projective
curve, the category D has a Serre functor and – hence – so does D↑.

Definition 4.7.11. Let Y ∈ A↑, where A = Coh(C), C a smooth projective
curve, C1 ∈ R and D1 ∈ R<0. We define a group homomorphism Zλ :

N (A↑)
∼=−→ Z4 → C by

Zλ(Y ) =

D1 deg(λA1 (Y )) + (C1 − 1) rank(λA1 (Y )) + i(rank(λA1 (Y )) + rank(ρA2 (Y )))
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and

λ(Y ) = (1/π) arg(Zλ([Y ])) ∈ (0, 1]

if Y 6= (0→ T ) where T ∈ A is a torsion sheaf.

Lemma 4.7.12. The group homomorphism Zλ is a weak stability function
on A↑.

Proof. Since =(Zλ) = rank(λA1 (Y )) + rank(ρA2 (Y )) ≥ 0 this follows from
definition 2.4.3.

Definition 4.7.13. Let A = Coh(C), where C is a smooth projective curve.
An object Y 6= (0 → T ) where T ∈ A is a torsion sheaf, is λ-semistable if
λ(Y ) ≥ λ(U) for any subobject U ⊂ Y with U 6= (0 → T ′) where T ′ ∈ A is
a torsion sheaf.

Lemma 4.7.14. Let 0→ A→ B → C → 0 be a short exact sequence where
A,B,C ∈ A↑ and A,B,C 6= 0→ T, where T is a torsion sheaf, then

λ(A) < λ(B) if and only if λ(B) < λ(C),

λ(A) > λ(B) if and only if λ(B) > λ(C) and

λ(A) = λ(B) if and only if λ(B) = λ(C)

Proof. Since the Z used to define λ is a weak stability function by 2.4.3 and
Zλ(A) 6= 0, Zλ(B) 6= 0 and Zλ(C) 6= 0 we obtain that λ(A), λ(B) and λ(C)
are defined and finally the result by lemma 2.4.22.

Definition 4.7.15. An object X ∈ A↑, A = Coh(C), C a smooth projective
curve, is ”torsion-free” if λA1 (X) and ρA2 (X) are torsion-free in A.

Remark 4.7.16. Note that this implies, that λ of definition 4.7.11 is defined
for all torsion-free X ∈ A↑.

Lemma 4.7.17. Let Y ∈ A↑, where A = Coh(C), C a smooth projective
curve. If Y is λ-semistable and there is non-zero torsion-free object Q ∈ A↑

such that there is an epimorphism Y
q
� Q, then λ(Y ) ≤ λ(Q).

Proof. The surjectivity of q provides the short exact sequence

0→ ker(q) ↪→ Y
q
� Q→ 0

where we have λ(ker(q)) ≤ λ(Y ) provided by the λ-semistability of Y , such
that we obtain λ(Y ) ≤ λ(Q) by lemma 4.7.14.
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In order to prove the existence of a HNF for torsion-free objects with
regard to λ, provided by lemma 4.7.20, we adapt [42, Proposition 5.4.2] and
as to do so give an enhanced version of [42, Lemma 5.4.1], provided by lemma
4.7.18. In classical textbooks, such as [42] or [34], one finds the Riemann-
Roch formula

χ(L) = deg(L) + rank(L) · (1− g)

for vector bundles L on a smooth projective curve C of genus g. On an
elliptic curve this – hence – simplifies to

χ(L) = deg(L).

However, we define deg(F ) = deg(L) + χ(T ) for a coherent sheaf F where T
is the torsion-subsheaf of F and L the quotient L = F/T which is torsion-
free – and on a smooth projective curve therefore also locally free. Since
χ(F ) = χ(T ) + χ(L) provided by the additivity of χ on exact sequences we
obtain deg(F ) = χ(F ).

Lemma 4.7.18. Let E be a coherent sheaf on an elliptic curve C. Then the
degree of its subsheaves F ⊂ E is bounded above.

Proof. We generalise [52, Corollary 10.9] with regard to non-locally-free sheaves.
Let F ⊂ E be a coherent subsheaf. This means there is an exact sequence

0→ F → E → F/E → 0

and applying the (left exact) functorH0 to it hence provides us withH0(F ) ↪→
H0(E). This implies h0(F ) ≤ h0(E). Which gives

deg(F ) = h0(F )− h1(F ) ≤ h0(F ) ≤ h0(E)

and the proof is finished.

Corollary 4.7.19. Let A ∈ A↑ where A = CohC and C is an elliptic curve.
Assume that non-zero A is torsion-free. There is a torsion-free X ⊂ A such
that λ(X) ≥ λ(Y ) for any torsion-free Y ⊂ A.

Proof. If max{λ(Y ) | Y ⊂ A, Y torsion-free} = λ(A), we can take X = A.
Otherwise {λ(Y ) | Y ⊂ A, Y torsion-free, λ(Y ) > λ(A)} 6= ∅ and max{λ(Y ) |
Y ⊂ A, Y torsion-free, λ(Y ) > λ(A)} = max{λ(Y ) | Y ⊂ A, Y torsion-free}
if a maximum exists. It therefore suffices to consider the set {λ(Y ) | Y ⊂
A, Y torsion-free, λ(Y ) > λ(A)}. Firstly, observe that Y ⊂ A forces

0 ≤ rank(λA1 (Y )) ≤ rank(λA1 (A)) and

0 ≤ rank(ρA2 (Y )) ≤ rank(ρA2 (A)),
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implying finiteness of {(C1−1) rank(λA1 (Y ))+i(rank(λA1 (Y ))+rank(ρA2 (Y )) |
Y ⊂ A, Y torsion-free} as well as the inequality

0 ≤ =(Zλ(Y )) = rank(λA1 (Y )) + rank(ρA2 (Y ))

≤ rank(λA1 (A)) + rank(ρA2 (A)) =: R.

Since {deg(λA1 (Y )) | Y ⊂ A, Y torsion-free} is bounded above by lemma
4.7.18, the expression D1(deg(λA1 (Y ))) is bounded below, since D1 < 0. Since
the expression (C1 − 1) rank(λA1 (Y )) takes only finitely many values, this
implies that <(Z(Y )) = D1(deg(λA1 (Y ))) + (C1− 1) rank(λA1 (Y )) is bounded
below by a D ∈ R. Boundaries for {Zλ(Y ) | Y ⊂ A, Y torsion-free, λ(Y ) >
λ(A)} in the complex plain are therefore given by the enclosed area

6

-� �
�
�
�
�
�
�
�
�

Zλ(Y )

<

=

D

λ(A)

Ri

0

We have that |deg(λA1 (Y ))| � 0 implies |D1 deg(λA1 (Y ))| � 0. Since Zλ
is given by the formula

Zλ(Y ) = D1 deg(λA1 (Y ))+(C1−1) rank(λA1 (Y ))+i(rank(λA1 (Y ))+rank(ρA2 (Y )))

and we have already seen that the set {(C1−1) rank(λA1 (Y ))+i(rank(λA1 (Y ))+
rank(ρA2 (Y )) | Y ⊂ A, Y torsion-free} is finite, |deg(λA1 (Y ))| � 0 would
therefore imply that |<(Zλ(Y ))| � 0. This however – as we can see from
the diagram – provides a contradiction. Hence, we obtain that the set
{deg(λA1 (Y )) | Y ⊂ A, Y torsion-free, λ(Y ) > λ(A)} is bounded. Since
{deg(λA1 (Y )) | Y ⊂ A, Y torsion-free, λ(Y ) > λ(A)} ⊂ Z and is therefore
discrete, it is hence finite. This – on the other hand – implies that the set
{D1 deg(λA1 (Y )) | Y ⊂ A, Y torsion-free, λ(Y ) > λ(A)} is finite too. We
conclude that {Z(Y ) | Y ⊂ A, Y torsion-free, λ(Y ) > λ(A)} too is finite.
Therefore there is a Zλ(Y ) ∈ {Zλ(Y ) | Y ⊂ A, Y torsion-free, λ(Y ) > λ(A)}
such that arg(Zλ(Y )) is maximal. Hence there is a Y such that λ(Y ) =
arg(Zλ(Y ))/π is maximal.

This provides us with a HNF for torsion-free objects.
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Lemma 4.7.20. Let X ∈ A↑ and A = Coh(C) where C is an elliptic curve,
assume that X is torsion free. There is a unique sequence

0 = X0 ⊂ X1 ⊂ · · · ⊂ Xn = X

where Xi is a torsion-free object such that

• λ(Ai) ≥ λ(U) for any U ⊂ Ai and

• λ(Ai−1) > λ(Ai)

with Ai = Xi/Xi−1 for i ∈ {1, . . . n} and the quotients Ai are also torsion-
free.

Proof. We adapt the proof of [42, Proposition 5.4.2]. Using corollary 4.7.19
pick an torsion-free X1 ⊂ X such that λ(X1) is the maximum of {λ(Y ) |
Y ⊂ X, Y torsion-free} and that additionally rank(λA1 (X1)) + rank(ρA2 (X1))
is maximal amongst the torsion-free subsheaves of maximal λ. If X/X1 is not
torsion-free, this means that Q1 = ρA2 (X)/ρA2 (X1) or Q2 = λA1 (X)/λA1 (X1)
are not torsion free. Note, that quotients are taken componentwise (regarding
the λA1 and the ρA2 component). Consider, on one hand, the exact sequence

0→ X1 → X → Q→ 0,

where Q = Q1
ς→ Q2 and ς is the induced map on the Quotients. Consider,

on the other hand, the exact sequence

0→ Tors(Q)→ Q
f→ Q/Tors(Q)→ 0 (4.36)

that, combining them, provide us with the diagram

0 −−−→ X1 −−−→ X −−−→
q

Q −−−→ 0y=

yf
0 −−−→ H −−−→

k
X −−−→

f◦q
Q′ −−−→ 0

where Q′ = Q/Tors(Q) and H ∈ A↑ the kernel of f ◦ q with k being its
canonical embedding. The canonical completion of this diagram provides us
with a map g : X1 → H. By the snake lemma this map is injective and
moreover we have coker(g) = ker(f). On the other hand, we see from (4.36)
that ker(f) = Tors(Q) which means that the canonical sequence

0→ ker(g)→ X1
g→ H → coker(g)→ 0
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for the morphism g becomes

0→ X1
g→ H → Tors(Q)→ 0

and since rank(λA1 (Tors(Q))) = rank(ρA2 (Tors(Q))) = 0 provided by the fact
that both λA1 (Tors(Q)) and ρA2 (Tors(Q)) are torsion sheaves, we obtain that
rank(λA1 (X1)) = rank(λA1 (H)) and rank(ρA2 (X1)) = rank(ρA2 (H)) using the
additivity of rank on exact sequences. Furthermore, the exact sequence

0→ λA1 (X1)→ λA1 (H)→ λA1 (Tors(Q))→ 0

gives deg(λA1 (H)) = deg(λA1 (X1)) + deg(λA1 (Tors(Q))) and moreover we have
deg(λA1 (Tors(Q))) ≥ 0 since λA1 (Tors(Q)) is torsion, which – as we will prove
following – implies that we must have λ(H) ≥ λ(X1) using D1 < 0 and, since
λ(X1) was chosen to be maximal therefore λ(H) = λ(X1). If λ(H) < λ(X1),
this would imply deg(λA1 (H)) < deg(λA1 (X1)), since other then on the ranks,
which, as we have previously seen are equal, λ only depends on the degree of
the λA1 -component. We can therefore replace X1 by H which is a maximal
torsion-free subobject that has a torsion-free quotient Q′ = Q/Tors(Q). This
allows us to conclude in the same way in which it is done in the proof of [42,
Proposition 5.4.2].

Definition 4.7.21. Let X ∈ A↑ where A = Coh(C) and C is an elliptic
curve and assume that X is torsion free. Then define λ+(X) = λ(A1) and
λ−(X) = λ(An) where Ai are the HN-factors introduced in lemma 4.7.20.

We are now ready to provide the data we need to tilt. First we need to
introduce new terminology.

Lemma 4.7.22. Let A = Coh(C) where C is a smooth projective curve. Let

E1
ϕ→ E2 ∈ A↑. There is a short exact sequence

0 −−−→ T (E)1 −−−→ E1 −−−→ F (E)1 −−−→ 0y yt ϕ

y yf y
0 −−−→ T (E)2 −−−→ E2 −−−→ F (E)2 −−−→ 0

with T (E)i torsion and F (E)i torsion-free for i ∈ {1, 2} in A↑.

Proof. We obtain t via HomA↑(T (E)1, T (E)2) ∼= HomA↑(T (E)1, E2) from
HomA↑(T (E)1, F (E)2) = 0, since T (E)1 is a torsion and F (E)2 a torsion-
free sheaf. Then, f is well-known to exist as a morphism in the abelian
category A and hence as an object in A↑. Or, in the more abstract language
of triangulated categories that we choose to follow whenever possible, f is
given by [32, Section 1.1, (TR3)].
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This allows us to introduce

Definition 4.7.23. Let A = Coh(C) where C is a smooth projective curve
and E ∈ A↑. Set

T (E) = T (E)1
t→ T (E)2

F (E) = F (E)1
f→ F (E)2

from lemma 4.7.22.

As well as

Definition 4.7.24. Let A = Coh(C) where C is an elliptic curve and set
φ = 3/4. Define T and F to be the full subcategories of A↑ given by:
E ∈ T if the HN-factors Ai of F (E) (see lemma 4.7.20) satisfy λ(Ai) > φ
and K(E) ∈ A. Moreover E ∈ F if λ1(E) is torsion-free and the HN-factors
Ai of F (E) satisfy λ(Ai) ≤ φ.

In each of these cases we assume that the condition on the HN -factors is
automatic if F (E) = 0.

Lemma 4.7.25. If for (X
f−→ Y ) ∈ A↑ the functor K exists and K(X

f−→
Y ) ∈ A, then and only then f is an epimorphism in A.

Proof. The assumptionK(X
f−→ Y ) ∈ A provides that all objects in the exact

triangle

K(X
f−→ Y )→ X

f−→ Y
+−→ (4.37)

are in A. Therefore 4.37 provides us with the short exact sequence

0→ K(X
f−→ Y )→ X

f−→ Y → 0

in A, making f an epimorphism.
If, on the other hand, f is an epimorphism, then

ker(X
f−→ Y )→ X

f−→ Y
+−→

is an exact triangle, providing K(X
f−→ Y ) ∼= ker(X

f−→ Y ) ∈ A.

Remark 4.7.26. We obtain the analogous statement for f a monomorphism

and K(X
f−→ Y )[1] ∈ A.

We are going to use the following fact throughout the subsection.

Lemma 4.7.27. For any E ∈ A = Coh(C) where C is an elliptic curve, we
have that λ1(E) = 0 implies E ∈ F .
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Proof. Assuming λ1(E) = 0, any subobject S of E fulfils λ1(S) = 0. This
implies, that every HNF-factor H of E must fulfil λ1(H) = 0 too. Therefore
Z(H) = i rank(ρ2(H)) which gives λ(H) = 1/2 ≤ 3/4 = φ. Therefore, by
definition 4.7.24, we have E ∈ F .

Remark 4.7.28. We therefore obtain an equivalent definition to the one of
definition 4.7.24, given by E ∈ F if λ1(E) is torsion-free and the HN-factors
Ai of F (E) satisfy λ(Ai) ≤ φ or if λ1(E) = 0.

Lemma 4.7.29. The subcategories (T ,F) from definition 4.7.24 form a tor-
sion pair on A↑.

Proof. At first we prove the Hom-vanishing of definition 4.7.1. We will
demonstrate that HomA↑(E,F ) = 0 for E ∈ T and F ∈ F if E,F torsion-
free. It suffices to prove this under the additional assumption that E,F are
λ-semistable as the result follows then via the HNF . We hence have λ(U) ≤
λ(E) for any subobject U ↪→ E with Z(U) 6= 0 by definition of λ-stability.
By lemma 4.7.14 we now too obtain λ(V ) ≥ λ(E) for any quotient E � V
of E with Z(E) 6= 0. For ξ : E → F we obtain E � im(ξ) and im(ξ) ↪→ F .
Hence ξ = 0 as otherwise im(ξ) 6= 0 and since im(ξ) ⊂ F is torsion-free,
λ(im(ξ)) is defined and from E � im(ξ) we obtain λ(E) ≤ λ(im(ξ)) as well
as λ(im(ξ)) ≤ λ(F ) such that

λ(E) ≤ λ(im(ξ)) ≤ λ(F ) < λ(E)

where λ(F ) < λ(E) is given by E,F torsion-free and E ∈ T , F ∈ F .
If we drop the assumption of E,F torsion-free, consider for an object

E = E1
ϕ→ E2 ∈ T and G = G1 → G2 ∈ F , the short exact sequences

0→ T (E)→ E → F (E)→ 0

and

0→ T (G)→ G→ F (G)→ 0

provided by lemma 4.7.22. The definition of F provides F (G) ∈ F and λ1(G)
torsion-free, which implies λ1(T (G)) = 0. Therefore we only have to consider
the case where G = (0 → H) with H ∈ A and the case where G1, G2 are
torsion-free.

Assuming G1 and G2 to be torsion-free and hence G1 → G2 ∈ F , we
see that HomA↑(F (E), G) = 0 since λ−(F (E)) > λ+(G). Since we too have
HomA↑(T (E), G) = 0 provided by the fact that G is torsion-free, we now
obtain HomA↑(E,G) = 0.
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If, on the other hand, G = (0→ H), we obtain

HomD↑(E,G) = HomD↑(E, i2(ρ2(G))) = HomD(K(E)[1], ρ2(G))

= HomD(K(E), ρ2(G)[−1]) ⊂ HomD(A,A[−1]) = 0.

As a result of the consideration these two cases we obtain HomD↑(E,G) = 0.
We now have to find the short exact sequence from definition 4.7.1 for

an arbitrary E ∈ A. We will use that – by the slope phase correspondence
(lemma 2.4.8) – any non-zero E ∈ T satisfies

−<(Z(F (E)))

=(Z(F (E)))
=
−D1d1 − (C1 − 1)r1

r1 + r2

> − cot(3π/4) = 1

or, in other words,
−D1d1 − C1r1 − r2 > 0 (4.38)

where di = deg(F (E)i) and ri = rank(F (E)i) for i ∈ {1, 2}.
We will first prove the existence of the short exact sequence from definition

4.7.1 for a torsion-free object E. By 4.7.20, there is a short exact sequence
0 → T̃ → E → F̃ → 0, with T̃ torsion-free such that λ−(T̃ ) > 3/4 and

F̃ = F1
f ′→ F2 ∈ F is also torsion-free and λ+(F̃ ) ≤ 3/4. At first we will

prove that if T̃ = T1
t′→ T2 is not surjective, then coker(t′) is a torsion sheaf.

By lemma 4.7.20, it suffices to prove the statement for a λ-semistable object
T̃ with λ(T̃ ) > 3/4. If coker(t′) 6= 0, then we also have t′ 6= 0, because, as
T2 6= 0 for t′ not surjective, t′ = 0 would yield that 0→ T2 is a subobject and
a quotient of T̃ , which, by the λ-semistability of T̃ and lemma 4.7.17 would
imply λ(T̃ ) ≤ λ(0 → T2) = 1/2 < 3/4 < λ(T̃ ). This is a contradiction.
Now, this implies im(t′), coker(t′) 6= 0, and as a consequence we obtain the
morphisms

T1
// //

t′

��

T1

0
��

T2
// // coker(t′)

and T1
� � //

t′

��

T1

t′

��

im(t′) �
�

// T2

in A↑. Now, if rank(coker(t′)) > 0, then by λ-semistability of T̃ , we obtain
via T2 � coker(t′) � F (coker(t′)) that

T1
// //

t′

��

0

��

T2
// // F (coker(t′))

.

We use lemma 4.7.17 once again to see that λ(T̃ ) ≤ 1/2 < 3/4 < λ(T̃ ), which
gives us a contradiction. Therefore, we have that coker(t′) is a torsion sheaf.



127

Now, consider the short exact sequence

0 −−−→ T1 −−−→ E1 −−−→ F1 −−−→ 0y yt′ ϕ

y y y
0 −−−→ im(t′) −−−→ E2 −−−→ F ′2 −−−→ 0.

(4.39)

We will prove T ′ = T1
t′→ im(t′) ∈ T , which means proving the condition

on the λ-semistable factors of T1
t′→ im(t′) ∈ T . Let us consider the last

short exact sequence in its HN-decomposition 0 → S → T ′ � A → 0
with A = A1 → A2 λ-semistable and torsion-free. We want to show that
λ(A) > 3/4. Note that S is also a subobject of T̃ , as a consequence we

consider the short exact sequence 0 → S → T̃ → T̃ /S → 0. We have that

T̃ /S is a quotient of T̃ and therefore λ(F (T̃ /S)) > 3/4 by lemma 4.7.17, such

that we obtain 3/4 < λ(F (T̃ /S)) = λ(A) via the fact that λ1(T̃ /S) = λ1(A)

and rank(ρ2(T̃ /S)) = rank(ρ2(A)) provided by coker(t′) torsion. Therefore,

we have T1
t′→ im(t′) ∈ T by lemma 4.7.25. Moreover, we prove that F̃ is the

torsion-free part of F1
f ′→ F ′2 by considering the diagram

0 −−−→ im(t′) −−−→ E2 −−−→ F ′2 −−−→ 0yi =

y α

y
0 −−−→ T2 −−−→ E2 −−−→ F2 −−−→ 0.

where i is the canonical embedding of the image. Applying the snake lemma
we obtain the exact sequence

0→ coker(t′)→ F ′2
α−→ F2 → 0.

Since F2 torsion-free and coker(t′) either torsion or 0, we obtain F (F ′2) =

F2 and T (F ′2) = coker(t′). This implies that F1
f ′→ F ′2 ∈ F . Therefore, if

E1 → E2 is torsion-free, the triangle (4.39) gives us the decomposition of E
in (T ,F).

We are now in a position to prove the existence of the short exact sequence
from definition 4.7.1 for an arbitrary E = E1

ϕ→ E2 ∈ A. Our main tool is
the snake lemma. Consider the short exact sequence

0→ T (E)→ E → F (E)→ 0



128

from lemma 4.7.22. We obtain the commutative diagram

0 0y y
0 −−−→ T (E) −−−→ Ẽ −−−→ T ′ −−−→ 0y ∥∥∥ c

y y y
0 −−−→ T (E) −−−→ E −−−→ F (E) −−−→ 0.y y

E/Ẽ
∼=−−−→ F ′y y

0 0

(4.40)

with exact rows and columns in A↑, where T ′ ∈ T , F ′ ∈ F . The object

Ẽ = Ẽ1
ϕ̃→ Ẽ2 is the fibre-product of E and T ′ over F (E) such that the

exactness of
0→ T (E)→ E → F (E)→ 0

provides the morphism T (E)→ Ẽ and subsequently the exactness of

0→ T (E)→ Ẽ → T ′ → 0.

The snake lemma then provides the exactness of

0→ Ẽ
c−→ E → E/Ẽ → 0

as well as E/Ẽ ∼= F ′. Now define T̃ = Ẽ1
ϕ̃→ im(ϕ̃) and F̃ = Ẽ/T̃ = 0 →

coker(ϕ̃), which means that

0→ T̃ → Ẽ → F̃ → 0 (4.41)

is exact. We will now prove that T̃ ∈ T . Consider the diagram

0 −−−→ T (T̃ ) −−−→ T̃ −−−→ F (T̃ ) −−−→ 0y yα y yβ y
0 −−−→ T (E)

b1−−−→ Ẽ −−−→ T ′ −−−→ 0

(4.42)

of exact sequences in A↑, where we obtain α, β via the fact that T, F are
functors. By the snake lemma we obtain the exact sequence

0→ ker(β)
l→ coker(α)

m→ F̃
n→ coker(β)→ 0. (4.43)



129

Since ker(β) is torsion-free and coker(α) is torsion we obtain l = 0. The
snake lemma provides us with the key diagram

0 −−−→ T (E)1 −−−→ Ẽ1 −−−→ T ′1 −−−→

t

y ϕ̃

y t′

y
0 −−−→ T (E)2

a3−−−→ Ẽ2 −−−→ T ′2 −−−→
a1

y a4

y y
coker(t)

a2−−−→ coker(ϕ̃) −−−→ 0

(4.44)

with exact rows and columns – note that the surjectivity of t′ is provided by
T ′ ∈ T . Since a1, a2 and hence a2 ◦ a1 is surjective, so is a4 ◦ a3. Now, letting
b2 : Ẽ → F̃ be the morphism provided by (4.41) we see from ρ2(T̃ ) = im(ϕ̃)

that ρA2 (b2◦b1) = a4◦a3 making ρA2 (b2◦b1) surjective. Since F̃1 = Ẽ1/Ẽ1 = 0,
we also obtain λA1 (b2 ◦ b1) and therefore b2 ◦ b1 surjective. The canonical

morphism T (E)
η−→ coker(α) fulfils m ◦ η = b2 ◦ b1, we obtain that m is

surjective. This gives n = 0.
Now we obtain from the exactness of (4.43) combined with l = 0 that

ker(β) = 0 and with n = 0 that coker(β) = 0 as well. Hence, β is an

isomorphism, providing us with F (T̃ ) ∼= T ′ ∈ T . Since F (T̃ ) ∈ T , the

condition on the HN-factors of T̃ is met by definition. Since moreover Ẽ1
ϕ̃→

im(ϕ̃) is clearly surjective, we obtain T̃ ∈ T .

It is now our task to prove the existence of an F̃ ′ ∈ F such that

0→ T → E → F̃ ′ → 0

is exact. The surjectivity of a4 ◦ a3 in (4.44) provides us with an additional
fact – since T (E)2 is by definition a torsion sheaf, so is coker(ϕ̃). Hence,

by definition of T , F̃ = (0 → coker(ϕ̃)). From the application of the snake
lemma to the commutative diagram

0 −−−→ T̃ −−−→ Ẽ −−−→ F̃ −−−→ 0y ∥∥∥ c

y γ

y y
0 −−−→ T̃ −−−→ E −−−→ F̃ ′ −−−→ 0

of exact sequences (where F̃ ′ = E/T̃ and γ is provided by [32, Section 1.1,
(TR3)]), we obtain coker(c) = coker(γ). Moreover, we have coker(c) ∼= F ′

by (4.40) and therefore F ′ = coker(γ). Since F ′ ∈ F , we have that λ1(F ′)

is torsion-free. Now, as λ1(F̃ ) = 0 we have λ1(F̃ ′) ∼= λ1(F ′) and therefore
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λ1(F̃ ′) torsion-free. Since, moreover, F̃ is torsion, we have F (F̃ ′) = F (F ′)
which implies that the condition on the Harder-Narashiman factors is met.
Therefore, we obtain F̃ ′ ∈ F and the proof is finished.

Lemma 4.7.30. Let A = Coh(C) where C is an elliptic curve. The set

H(C1, D1) = {E ∈ D↑ | H i(E) = 0 if i /∈ {1, 0}, H1(E) ∈ T and H0(E) ∈ F}

is the heart of a bounded t-structure on D↑.

Proof. This follows from the combination of lemmas 4.7.7, 4.7.29 and the
application of the shift-functor to the resulting heart.

We complete the data that we need for a stability condition.

Lemma 4.7.31. Let A = Coh(C) where C is an elliptic curve. Let M =[
−A1 B1

−D1 C1

]
, det(M) > 0, det(M + I) > 0, A1, B1 ∈ R and C1, D1 are the

same as in definition 4.7.11. The group homomorphism Z : Z4 → C

Z(Y ) = A1 deg(λ1(Y )) +B1 rank(λ1(Y ))− deg(ρ2(Y ))

+i(D1 deg(λ1(Y )) + C1 rank(λ1(Y )) + rank(ρ2(Y )))

is a stability function on H(C1, D1).

Proof. We need to prove that the image of E ∈ H(C1, D1) under Z lies in
the strict upper half plane H ∪R<0. By virtue of lemma 4.7.9 we let E ∈ T
and consider the short exact sequence 0 → T (E) → E → F (E) → 0, where
F (E) ∈ T . Indeed, because of the right exactness of coker(−) we obtain that
K(E) ∈ Coh(C) implies that K(F (E)) ∈ Coh(C).

We prove now that Z(E[−1]) ∈ H ∪ R<0. To that end, we will first
show that Z(F (E)[−1]) ∈ H ∪ R<0. We only need to prove this for F (E)
λ-semistable – it is seen from the fact that (4.38) holds for F (E), which
implies that we obtain =(Z(F (E)[−1])) > 0. Additionally we see that
Z(T (E)[−1]) ∈ H ∪R<0. Indeed, as rank(T (E)1) = rank(T (E)2) = 0, then
deg(T (E)1) ≥ 0. If T (E)1 6= 0 we have deg(T (E)1) > 0 and moreover that
=(Z((T (E)[−1])) = − deg(T (E)1)D1 > 0, since D1 < 0. If deg(T (E)1) = 0
then T (E1) = 0, and F (E1) ∼= E1, thus =(Zr(F (E)[−1])) = =Z(E[−1]) > 0.
Since Z is additive with respect to short exact sequences, we obtain that
Z(E[−1]) ∈ H ∪R<0.

We now show that Z(E) ∈ H∪R<0 holds for E ∈ F as well. As λ1(E) is
a torsion-free sheaf, we have λ1(T (E)) = 0 and therefore T (E) = 0→ T (E)2,
where T (E)2 is a torsion sheaf. By lemma 4.7.27, T (E) ∈ F and F (E) ∈ F ,
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which means that we only have to prove the statement for T (E) and F (E).
Clearly Z(T (E)) = − deg(T (E)2) < 0, as T (E)2 is a torsion sheaf, or, if
deg(T (E)2) = 0, we have E ∼= F (E) anyway.

Now consider λ-semistable F (E) = F (E)1
f−→ F (E)2 ∈ F . If λ(F (E)) <

3/4, then we obtain D1(deg(F (E)1)) + C1(rank(F (E)1)) + rank(F (E))2 >
0 in analogy to (4.38) and Z(E) lies in H ∪ R<0. We therefore have to
consider the case where λ(F (E)) = 3/4, in other words where we now have
the equation D1(deg(F (E)1)) + C1(rank(F (E)1)) + rank(F (E))2 = 0 for a
λ-semistable object F (E). We set deg(F (E))i = di and rank(F (E))i = ri
and aim to prove that A1d1 + B1r1 − d2 < 0. First note that if F (E)1 = 0,
then 0 = D1d1 + r1C1 + r2 = r2 which implies F (E) = 0. If F (E)2 = 0,
then D1d1 + r1C1 = 0 and A1d1 +B1r1 − d2 = A1d1 +B1r1 < 0 given by the
condition det(M) > 0.

Therefore, we must now conduct our proof for F (E)1 and F (E)2 6= 0.
However, this implies rank(coker(f)) = 0. To see this, consider the short
exact sequence

0 //

��

F (E)1
id //

f
��

F (E)1
//

f
��

0

��

// 0

��

0 // im(f) // F (E)2
// coker(f) // 0.

If rank(coker(f)) 6= 0, then by lemma 2.4.22 and by the λ-semistability of
F (E), we obtain the contradiction 3/4 = λ(F (E)) ≤ 1/2. This implies on
one hand that λ(F (E)1 → im(f)) = λ(F (E)) which gives E1 → im(f) ∈
F since E1 → im(f) ∈ F is a subobject of F (E) and on the other hand
that [F (E)] = [F (E)1 → im(f)] + (0, 0, 0, d′′2) in the numerical Grothendieck
group, where d′′2 = deg(coker(f)) ≥ 0. If we let d′′1 = deg(im(f)), we see that

A1d1 +B1r1 − d2 = A1d1 +B1r1 − d′′1 − d′′2 ≤ A1d1 +B1r1 − d′′1

and can therefore reduce our investigation to objects F (E)1
f−→ F (E2) ∈ F

with coker(f) = 0. In other words, we have F (E) = F (E)1 � F (E)2 and
hence obtain r1 = rank(F (E)1) ≥ rank(F (E)2) = r2.

Since K = i1(K(F (E))) = ker(f)→ 0 is a subobject of F (E) in A↑ and
F is closed under subobjects by lemma 4.7.3, we see that K ∈ F . Since
[i1(K(E))] = [K] = (r1 − r2, d1 − d2, 0, 0), it follows from K ∈ F that
=(Z(K)) = D1(d1 − d2) + C1(r1 − r2) ≥ 0 and hence that −D1(d1 − d2) −
C1(r1−r2) ≤ 0. Since D1d1 +r1C1 +r2 = 0, we obtain −D1(d1−d2)−C1(r1−
r2) + D1d1 + r1C1 + r2 ≤ 0 and therefore D1d2 ≤ −(C1 + 1)r2. Moreover,
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D1d1 + r1C1 + r2 = 0 obviously implies d1 = r2+C1r1
−D1

and we obtain

A1d1 +B1r1 − d2 = (
1

−D1

)(A1r2 + r1A1C1 − r1B1D1 +D1d2).

Since −D1 > 0, we must show that A1r2 + r1A1C1− r1B1D1 +D1d2 < 0.
We have

A1r2 + r1A1C1 − r1B1D1 +D1d2 ≤ A1r2 + r1A1C1 − r1B1D1 − (C1 + 1)r2

= r2(A1 − C1 − 1)− r1(det(M))

≤ r2(A1 − C1 − 1)− r2(det(M))

= r2(−Tr(M)− 1− det(M))

= r2(− det(M + I)) < 0,

using that −r1 ≤ −r2, det(M) > 0 and det(M + I) > 0.
Since Z is additive with respect to short exact sequences, we obtain that

Z(E) ∈ H ∪ R<0 for E ∈ F and, since we have seen earlier that this holds
true for E ∈ T [−1] also, we obtain Z(E) ∈ H ∪ R<0 for arbitrary E ∈
H(C1, D1).

The following lemma is based on ideas of [17, Proposition 7.1].

Lemma 4.7.32. Let A = Coh(C) where C is an elliptic curve. If we have
A1, B1, C1, D1 ∈ Q and Z as in lemma 4.7.31.Then the pair (Z,H(C1, D1))
is a pre-stability condition on D↑.

Proof. By [7, Proposition B.2], in order to see that the HN-property is ful-
filled, we – on one hand – need to prove that {=(Z(E)) | E ∈ H(C1, D1)} is
a discrete subgroup of R. But since C1, D1 ∈ Q, we have D1 = α

m
, C1 = β

m

for α, β ∈ Z and suitable m ∈ Z.Therefore

D1 deg(λ1(E)) + C1 rank(λ1(E)) + rank(ρ2(E)) =

α deg(λ1(E)) + β rank(λ1(E)) +m rank(ρ2(E))

m

and since deg(λ1(E)), rank(λ1(E)), rank(ρ2(E)) ∈ Z we therefore obtain that
α deg(λ1(E)) + β rank(λ1(E)) +m rank(ρ2(E)) ∈ Z. Hence, since m is given
by C1, D1 and therefore fixed, the subgroup {=(Z(E))} is indeed discrete.

Moreover, we must prove for E ∈ H(C1, D1) and an ascending sequence

0 ⊂ L1 ⊂ L2 . . . ⊂ Li ⊂ . . . ⊂ E

of subobjects of E, where Li belongs to the full subcategory P ′(1) of objects
with phase one, the sequence stabilises (note that P ′(1) only becomes a slice
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as a result of this lemma). To prove that the sequence stabilises, we show
that P ′(1) ⊂ A↑ which is noetherian by lemma 2.2.2, giving the desired
result. As Li ∈ H(C1, D1) = 〈F , T [−1]〉, applying lemma 4.7.9, we can use
the exact sequence

0→ Fi → Li → Ti[−1]→ 0, (4.45)

with Fi ∈ F and Ti ∈ T . Now, since Fi and Ti[−1] are in H(C1, D1), we
obtain that Z(Fi) and Z(Ti[−1]) are in the upper half plane which provides
=Z(Fi) ≥ 0 and =Z(Ti[−1]) ≥ 0. Since =Z(Li) = 0 we obtain =Z(Ti[−1]) =
0 (and of course =Z(Fi) = 0 also), by the exact sequence (4.45), which gives
Ti = 0. To see this use the torsion pair from lemma 4.7.22. Note that
=Z(T (Ti)) ≤ 0 with equality holding only if T (Ti) = 0 and =Z(F (Ti)) ≤ 0
with equality holding only if F (Ti) = 0 provided by (4.38) since F (Ti) is
a quotient of Ti. This gives =Z(Ti) < 0 and hence a contradiction, unless
Ti = 0. Therefore P ′(1) ⊂ F ⊂ A↑, which finishes the proof.

Lemma 4.7.33. Let A = Coh(C) where C is an elliptic curve. Let σ =
(Z,H(C1, D1)) be a pre-stability condition defined in 4.7.31. Then we obtain
that i1(C(x))[−1],∆(C(x))[−1] and i2(C(x)) are in H(C1, D1) and i2(C(x))
is stable of phase one.

Proof. Since Z(i2(C(x))) = −1, and i2(C(x)) is a simple object in F , i2(C(x))
is σ-stable of phase one. We have i1(C(x))[−1],∆(C(x))[−1] ∈ H(C1, D1)
by lemmas 4.7.7 and 4.7.9, since i1(C(x)),∆(C(x)) ∈ T .

We now define a torsion pair that we are going to need subsequently.

Lemma 4.7.34. Let A = Coh(C) where C is an elliptic curve. The pair
(Z1,A) with Z1(E) = D1 deg(E) + (C1 − 1) rank(E) + i rank(E) for C1, D1

like in definition 4.7.11 is a stability condition on D.

Proof. The corresponding Matrix is

(
−D1 C1 − 1

0 1

)
(and hence det(M) =

−D1 > 0) for which we choose the unique f such that f(0) = 0 providing us

with an element g ∈ G̃L
+

2 (R)which finishes the proof.

Definition 4.7.35. Let A = Coh(C), Coh(C) a smooth projective curve.
Define T1 = P1(3

4
, 1] and F1 = F1(0, 3

4
) where P1 is the slicing that corre-

sponds to the stability condition (Z1,A) with Z1(E) = D1 deg(E) + (C1 −
1) rank(E) + i rank(E) for C1, D1 like in definition 4.7.11.

Remark 4.7.36. Note, that equivalently B ∈ T1 if the HN-factors of its
torsion-free part with regard to Z1(E) = D1 deg(E) + (C1 − 1) rank(E) +
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i rank(E) satisfy

−<(Z1(B))

=(Z1(B))
=
−D1 deg(B)− (C1 − 1) rank(B)

rank(B)
> − cot(3π/4) = 1

and B ∈ F1 if it is a torsion-free sheaf, whose HN-factors satisfy

−<(Z1(B))

=(Z1(B))
=
−D1 deg(λ1(B))− (C1 − 1) rank(λ1(B))

rank(λ1(B))
≤ − cot(3π/4) = 1.

Lemma 4.7.37. The pair (T1,F1) defined in 4.7.35 is a torsion pair on A.

Proof. As mentioned in Remark 4.7.6, this is a standard-construction of tor-
sion pair.

We use this to obtain the following important lemma after introducing
new notation.

Definition 4.7.38. On D = Db(A) for A = Coh(C), C a smooth projective
curve, define Ar := Pµ(r, r + 1].

Lemma 4.7.39. Let A = Coh(C) where C is an elliptic curve. We have
that

i2(A) ⊂ H(C1, D1), i1(Ar) ⊂ H(C1, D1) and ∆(Ar3) ⊂ H(C1, D1), (4.46)

where cot(rπ) = C1

D1
, cot(r3π) = C1+1

D1
with r, r3 ∈ (−1, 0) such that Ar =

〈F1, T1[−1]〉.

Proof. Since λ1 ◦ i2 = 0 we have i2(A) ⊂ F ⊂ H(C1, D1) by lemma 4.7.27.
The strategy to prove that both other inclusions hold is to make use of the

torsion-pair defined in 4.7.35. We will prove i1(T1) ⊂ T as well as i1(F1) ∈ F .
We proceed similarly for ∆(Ar) ⊂ H(C1, D1), using a torsion pair analogous

to (T1,F1) (the corresponding matrix is now

(
−D1 C1 − 1

0 2

)
).

To see that i1(Ar) ⊂ H(C1, D1), let E ∈ Ar be a µ-semistable object.
Without loss of generality we may assume E to be torsion-free as otherwise
we would simply work with F (i1(E)). If i1(E) had a λ-destabilising subobject
S, we would obtain

−D1 deg(E)− (C1 − 1) rank(E)

rank(E)
<
−D1 deg(S)− (C1 − 1) rank(S)

rank(S)

and since −D1 > 0, hence

deg(E)

rank(E)
<

deg(F )

rank(F )
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which provides a contradiction implying that i1(E) is λ-semistable also.
Moreover, since Z1 of definition 4.7.35 fulfils Z1 = Zλ ◦ i1, E ∈ P1(t) im-
plies λ(i1(E)) = t.

If A ∈ T1, note that K(i1(A)) = A ∈ A. Now consider its HNF
A1, . . . , An. Since A1, . . . , An are µ-semistable and in T1 we have A1, . . . , An ∈
P1(3

4
, 1] and hence λ(i1(A1)), . . . , λ(i1(An)) ∈ (3

4
, 1]. Since A1, . . . , An are also

torsion-free However, T is extension closed and we obtain A ∈ 〈A1, . . . , An〉 ⊂
T .

Let now A ∈ F1. Since P1(1) ⊂ T1 in A, the torsion-free criterion on
the objects in i1(F1) is fulfilled – if A = λ1(i1(A)) was not torsion-free, then
there would be a non-zero morphism from a torsion subobject S ∈ P1 ∈ T1

onto A ∈ F1 which is impossible. Now consider the HNF A1, . . . , An of A
and repeat the argument used in the case of T1.

Therefore we obtain i1(T1) ⊂ T and i1(F1) ⊂ F . This implies i1(Ar) ⊂
H(C1, D1).

To see that ∆(Ar3) ⊂ H(C1, D1), we consider a torsion pair given by
(T3,F3) = (P(r3+1, 1],P(0, r3+1]), φ ∈ R onA, such thatAr3 = 〈F3, T3[−1]〉.
Let E ∈ Ar3 be a µ-semistable object. Note that we can assume µ-semistability
without loss of generality because otherwise we only consider its last or, re-
spectively, its first HN-factor. We can additionally assume E to be torsion-
free as otherwise we simply work with F (∆(E)). We have that K(∆(E)) =
0 ∈ A. Let Am be the last factor in the λ-HNF of ∆(E). We need to prove
that λ−(∆(E)) = λ(Am) > 3/4, that is −D1d

′
1 − C1r

′
1 − r′2 > 0 (see (4.38))

where rank((Am)i) = r′i and deg((Am)i) = d′i with Am = (Am)1 � (Am)2.
Note that the surjectivity is provided by the fact that Am is a quotient of
∆(E). Since Am being a quotient of ∆(E) also implies λ1(∆(E)) � (Am)1,
we obtain from the µ-stability of λ1(∆(E)) that

d′1
r′1

= µ((Am)1) ≥ µ(λ1(∆(E))) =
deg(λ1(∆(E)))

rank(λ1(∆(E)))

which, in combination with the fact that ∆(E) ∈ ∆(T3) and we therefore
obtain λ1(∆(E)) ∈ T3, provides

−D1d
′
1 − C1r

′
1

r′1
≥ −D1 deg(λ1(∆(E)))− C1 rank(λ1(∆(E)))

rank(λ1(∆(E)))
> 1

via d1

r1
> −C1+1

D1
. This gives −D1d

′
1−C1r

′
1− r′1 > 0 and since (Am)1 � (Am)2

implies r′1 ≥ r′2, we conclude

−D1d
′
1 − C1r

′
1 − r′2 ≥ −D1d

′
1 − C1r

′
1 − r1 > 0.
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Hence, ∆(T3) ∈ T and similarly, now using the first semistable quotient A1

in the HNF of E which – since it is the first quotient – is also a subobject of
∆(E), we obtain ∆(F3) ⊂ F which, as before, finishes the proof.

4.8 Pre-stability conditions in Θ12

This subsection aims to introduce the important result that pre-stability
conditions in σ ∈ Θij are always constructed by CP-gluing using one of
the semiorthogonal decompositions 〈D1,D2〉, 〈,D3,D1〉, 〈D2,D3〉 or by tilting
in the sense of lemma 4.7.31 up to the GL+

2 (R)-action. We will establish
theorem 4.8.36 via the investigation of Θ12.

We first characterise the hearts of the pre-stability conditions in terms of
the stability of the skyscraper sheaves, by studying pre-stability conditions
satisfying that one of the three embeddings of the skyscraper is stable of
phase one. We then distinguish between the case where one certain other
embedding is not σ-stable and one where it is. Where the non-stability of the
embedding in question will turn out to be resulting in a CP-glued pre-stability
condition, the other ones will turn out to be pre-stability conditions of the
form of lemma 4.7.31. We adapt the theory developed in [17, Proposition
10.1].

The following is a special case of the theory developed in corollary 4.2.24.

Definition 4.8.1. Define

• H12 = {E ∈ D↑ | λ1(E) ∈ A, ρ2(E) ∈ A} and therefore to be the
heart obtained by CP-gluing using two copies of A, with regard to the
semiorthogonal decomposition 〈D1,D2〉,

• H31 = {E ∈ D↑ | ρ2(E) ∈ A,K(E)[1] ∈ A} and therefore to be the
heart obtained by CP-gluing using two copies of A, with regard to the
semiorthogonal decomposition 〈D3,D1〉,

• H23 = {E ∈ D↑ | K(E) ∈ A, λ1(E) ∈ A} and therefore to be the
heart obtained by CP-gluing using two copies of A, with regard to the
semiorthogonal decomposition 〈D2,D3〉.

Remark 4.8.2. Note that H12 from definition 4.8.1 is equal to A↑.

Lemma 4.8.3. Let A = Coh(C), where C is an elliptic curve, and σ =
(Z,H) be a pre-stability condition and assume that there are exact functors
i∗ : D → D↑, j∗ : D → D↑, l∗ : D → D↑, j! : D↑ → D, l! : D↑ → D,
j∗ : D↑ → D with i∗[−1] a j∗ a j∗ a j! a l∗ a l! a i∗ where j∗ is an embedding,
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such that we have l∗(C(x)), i∗(C(x)) are σ-stable and j∗(C(x)) is σ-stable of
phase one. Assume additionally, that there are non-zero morphisms

i∗(C(x))→ j∗(C(x)[1]),

j∗(C(x))→ l∗(C(x))

and l∗(C(x))→ i∗(C(x)).

(4.47)

If E ∈ H, then Hk(j!(E)) = Hk(l!(E)) = 0, unless k ∈ {0, 1}. Also Hk(j∗(E)) =
0, unless k ∈ {−1, 0}. Moreover, H−1(j∗(E)) and H0(l!(E)) torsion-free.

Proof. First note that i∗(C(x))[−1], l∗(C(x))[−1] ∈ H. To see this, consider
the morphisms of (4.47), which provide 1 < φσ(l∗(C(x))) < φσ(i∗(C(x))) <
2.

It suffices to conduct our proof for E stable. Otherwise we consider its
JHF with last exact triangle

Ek−1 → Ek → Ak
+−→

and using the exactness of F ∈ {j!, l!, j∗, } we obtain the exact triangle

F (Ek−1)→ F (Ek)→ F (Ak)
+−→

and hence the exact sequence

H i(F (Ek−1))→ H i(F (Ek))→ H i(F (Ak))

where we obtain H i(F (Ak)) = 0 directly and H i(F (Ek−1)) = 0 by induction.
We will continuously apply [19, Proposition 5.4] and proceed as follows.

To see that Hk(j!(E)) = 0, unless k = 0, 1 we will prove that

Homj(j!(E),C(x)) = 0 for j /∈ {−1, 0} for j!(E) 6= C(x).

If j!(E) ∼= C(x) then the statement obviously holds true anyway. We have

Homj(j!(E),C(x)) = Homj(E, l∗(C(x))) which is zero if j ≤ 2

because of E ∈ H = P(0, 1] and C(x) ∈ P(1, 2) where P is the slicing of σ.
On the other hand,

Homj(j!(E),C(x)) = Hom1−j(C(x), j!(E))∗

= Hom1−j(j∗(C(x)), E)∗ = 0 if 1− j ≤ 0

and E /∈ P(1), since j∗(C(x)) ∈ P(1) by assumption. If, however E ∈
P(1), then Hom1−j(j∗(C(x)), E) 6= 0 would imply j∗(C(x)) ∼= E since E
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was assumed to be stable. Since j∗ is an embedding we obtain j!(E) ∼=
j!(j∗(C(x))) ∼= C(x)) and the statement holds true as well.

To see that Hk(l!(E)) = 0 for k /∈ {−1, 0} proceed similar as before.
However, in this case this will also imply H0(l!(E)) torsion-free since we can
prove the Hom-vanishing without the consideration of l!(E) = C(x). We
have

Homj(l!(E),C(x)) = Homj(E, i∗(C(x))) = 0 for j ≤ −2

and

Homj(l!(E),C(x)) = Hom1−j(C(x), l!(E))∗

= Hom1−j(l∗(C(x)), E)∗ = 0 for 1− j ≤ 0.

To see that Hk(j∗(E)) = 0, unless k ∈ {−1, 0} and H−1(j∗(E)) torsion-
free we use

Homj(j∗(E),C(x)) = Hom(E, j∗(C(x))) = 0 for j ≤ −1

as well as

Homj(j∗(E),C(x)) = Hom1−j(C(x), j∗(E))∗

= Hom1−j(i∗[1]C(x), E)∗ = 0 if 1− j ≤ −1,

or, in other words, 2 ≤ j.

Remark 4.8.4. We need the level of generality of lemma 4.47 to not only
obtain the first part of lemma 4.8.5 but the analogous statements for the
situation where

j∗ = λ1, j∗ = i1, j
! = K, l∗ = i2[1], l! = ρ2[−1], i∗ = ∆[1]

and the situation where

j∗ = ρ2, j∗ = ∆, j! = λ1, l∗ = i1, l
! = K, i∗ = i2[1]

because we subsequently need this to prove lemma 4.9.31.

Lemma 4.8.5. Let A = Coh(C) where C is an elliptic curve and σ =
(Z,H) ∈ Θ12 and assume that ∆(C(x)), i1(C(x)) are σ-stable and i2(C(x))
is σ-stable of phase one. Then, for E ∈ D↑ we have

1. If E ∈ H, then H i(ρ2(E)) = H i(λ1(E)) = 0, unless i = 0, 1. Also
H i(K(E)[1]) = 0, unless i = −1, 0. Moreover, H−1(K(E)[1]), H0(λ1(E))
are torsion-free.
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2. If E is stable of phase one, then either E = i2(T ), where T ∈ A a
torsion sheaf, or E ∈ H12 with H0(K(E)[1]) = 0 and we have that
λ1(E) and ρ2(E) are torsion-free.

3. H12 ⊂ Pσ(0, 2]

4. The pair T = H12 ∩ Pσ(1, 2] and F = H12 ∩ Pσ(0, 1] defines a torsion
pair of H12. Moreover, the heart H is the corresponding tilt.

Proof. There are morphisms

i1(C(x))→ i2(C(x)[1]),

i2(C(x))→ ∆(C(x))

and ∆(C(x))→ i1(C(x)),

such that we can apply lemma 4.8.3 to see that part one holds.

We now proceed to prove the second part. Let E ∈ Pσ(1) a stable object,
which is not isomorphic to i2(T ), where T is a torsion sheaf. Since φσ(E) = 1,
like the proof of lemma 4.8.3 continuously applying [19, Proposition 5.4], we
have

H i(λ1(E)) = 0 unless i = 0 and H i(ρ2(E)) = 0 unless i = 0

as well as λ1(E) and ρ2(E) torsion-free.

For the third part assume E ∈ H12 ⊂ D≤0 ∩ D≥−1, where (D≤0,D≥0) is
the standard t-structure on D↑. If F ∈ Pσ(2,∞), then, by the first part, F ∈
D≤−1. Consequently, we have 0 = Hom(D≤0,D≥1) = Hom(D≤−2,D≥−1),
therefore HomD↑(F,E) = 0. Analogously, we have that if B ∈ Pσ(≤ 0), then
B ∈ D≥1. Now, since Hom(D≤0,D≥1) = 0, then HomD↑(E,B) = 0. It follows
that E ∈ Pσ(0, 2].

We now prove the fourth part. Let E ∈ H12, by the third part of the

statement, there is an exact triangle A→ E → B
+−→, where A ∈ Pσ(1, 2] and

B ∈ Pσ(0, 1]. After applying λ1 we obtain a long exact cohomology-sequence
and by part one we have H−1(λ1(A)) = H1(λ1(B)) = 0. This implies that
λ1(A), λ1(B) ∈ A. Analogously, we have ρ2(A), ρ2(B) ∈ A and we obtain
A,B ∈ H12.

With the aid of lemmas 4.8.6 and 4.8.7, we now prove the following crucial
fact, proposition 4.8.11. We will use the stability function Zµ from definition
2.5.38.
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Lemma 4.8.6. If A = Coh(C) where C is an elliptic curve, F ∈ {i1, i2,∆}
and σ is a pre-stability condition on D↑ such that we have F (C(x)) and F (L)

are σ-stable for any line-bundle L, then there exists g ∈ G̃L
+

2 (R) such that
σg = (Z ′,H′) satisfies F (Pµ(0, 1]) = F (A) ⊂ H′ and Z ′(F (E)) = Zµ(E) for
all E ∈ D.

Proof. We have that
Hom(OC ,C(x)) 6= 0 (4.48)

and – since the Serre functor SD is equal to [1] provided by the fact that
C is elliptic – additionally that Hom(C(x),OC [1]) = Hom(OC ,C(x)) and
therefore

Hom(C(x),OC [1]) = 0. (4.49)

The assumed stability of F (C(x)) and F (OC), now provides the inequality
φσ(F (OC)) < φσ(F (C(x))) < φσ(F (OC)) + 1. Therefore, there is an orienta-
tion preserving transformation M : R2 → R2 satisfying that

(A,D) 7→ (−1, 0) and (B,C) 7→ (0, 1), (4.50)

where Z(F (C(x)) = A+Di and Z(F (OC)) = B+Ci. There is an increasing
function f : R → R that is compatible with M = T−1 and that satisfies
f(x + 1) = f(x) + 1 with f(1) = φσ(F (C(x))), f(1/2) = φσ(F (OC)). The
existence of this f is granted by the fact that M(Z(F (OC))) = (0, 1) and

M(Z(F (C(x)))) = (−1, 0). We obtain (T, f) ∈ G̃L
+

2 (R). The stability
condition σ

′
= σ(T, f) satisfies i1(A) ⊂ H′ , where σ

′
= (Z

′
,H′). Indeed, we

have

F (C(x)) ∈ P(φσ(F (C(x)))) = P(f(1)) = P ′(1),

F (L) ∈ P(φσ(F (L))) = P(f(tL)) = P ′(tL),

with tL := φσ′(F (L)) ∈ (0, 1) since (4.48) and (4.49) provide the inequality
φσ′(F (C(x)))− 1 < φσ′(F (L)) < φσ′(F (C(x))). Therefore, all point sheaves
and line bundles in A are mapped into P ′(0, 1] by F . Since any object in
A admits a filtration with quotients either isomorphic to point sheaves or to
line bundles, we obtain F (A) ⊂ H′ .

Finally we require Z ′(F (E)) = Zµ(E) for all E ∈ D. This is provided by
(4.50).

Lemma 4.8.7. Assume A = Coh(C) where C is an elliptic curve, F ∈
{i1, i2,∆} and σ = (Z,H) a pre-stability condition on D↑ such that for Z ◦
F = Zµ, F (Pµ(0, 1]) = F (A) ⊂ H and F (X) is σ-stable for all stable X ∈
Coh(C). For any (T, f) = g ∈ G̃L

+

2 (R) we have that σg = (Z ′,H′) satisfies
F (Pµ(r, r + 1]) = F (Ar) ⊂ H′, where r = f(0).
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Proof. Because F (X) is σ-stable and Z(F (X)) = Zµ(X), we get that X and
F (X) have the same phase up to the addition of an even number. But we
assumed F (Pµ(0, 1]) ⊂ H, so the phase of F (X) lies in the interval (0, 1].
As the phase of X is in the same interval, they must agree. This shows that
F (Pµ(t)) ⊂ P(t), where P is the slicing of σ. If P ′ is the slicing of σg, then
H′ = P ′(0, 1] = P(r, r + 1] and the result follows now.

For simplicities sake we introduce the following notation.

Notation 4.8.8. AssumeA = Coh(C) where C is a smooth projective curve.
Let Y ∈ A↑. Denote

d1 = deg(λ1(Y ))), r1 = rank(λ1(Y )))

d2 = deg(ρ2(Y )), r2 = rank(ρ2(Y )).
(4.51)

Definition 4.8.9. LetA = Coh(C), where C is an elliptic curve and σ ∈ Θ12.

Assume that g ∈ G̃L
+

2 (R) was applied to σ such that there are stability

conditions σ1 = σµ(T, f) = (Z1,Ar), r = f(0) > −1, (T, f) ∈ G̃L
+

2 (R) and
σ2 = (Zµ,A) ∈ Stab(D) with i1(Ar) ⊂ H, i2(A) ⊂ H, and Z

∣∣
D1

= Z1

and Z
∣∣
D2

= Zµ. We refer to the conditions above as ”normalised stability
conditions”.

Notation 4.8.10. We denote M := T−1 and M :=

(
−A B
−D C

)
.

Proposition 4.8.11. Assume A = Coh(C) where C is an elliptic curve.

1. Every G̃L
+

2 (R)-orbit on Θ12 (with Θ12 defined in 4.5.27) contains ex-
actly one normalised element σN .

2. Let (Z,H) = σ ∈ Θ12 and σ = σµ(T2, f2) = σNg2 where σN is the

normalised stability condition corresponding to the G̃L
+

2 (R)-orbit of σ
then i1(Af ′′(f2(0))) ⊂ H and i2(Af2(0)) ⊂ H where f ′′ corresponds to σN .

Proof. We will start by proving the second statement as it contains the first

as a special case if we additionally prove r > −1. Pick σ in the G̃L
+

2 (R)-

orbit. By lemma 4.8.6 where F = i1, we can pick g′ ∈ G̃L
+

2 (R) such that
i1(A) ⊂ H′ and Z ′ ◦ i1 = Zµ and Z ′′ ◦ i2 = Zµ, where σ′ ◦ g′ = σ′ =
(Z ′,H′). Now, again by lemma 4.8.6 where we now let F = i2, we can pick

g′′ ∈ G̃L
+

2 (R) such that i2(A) ⊂ H′′, where σ ◦ g′′ = σ′′ = (Z ′′,H′′). By
lemma 4.8.7, letting F = i1, we obtain i1(Ar) = i1(Pµ(r, r + 1]) ⊂ H′′ as

well. Now, considering σ′′ ◦ g2 for any g2 ∈ G̃L
+

2 (R), provides i2(Af2(0)) =
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i2(Pµ(f2(0), f2(0) + 1]) ⊂ H′′′ via lemma 4.8.7 with F = i2, where H′′′ is the
heart corresponding to σ′′ ◦ g2 = σ′ ◦ g′′ ◦ g2. Considering σ′ ◦ g′′ ◦ g2 provides
i1(Af ′′◦f2(0)) = i1(Pµ(f ′′ ◦ f2(0), f ′′ ◦ f2(0) + 1]) ⊂ H′′′ via lemma 4.8.7 with
F = i1. Letting g1 = g′ ◦ g′′ and f ′′ = f1 we obtain H′′′ = H and the result

for arbitrary g2 ∈ G̃L
+

2 (R) follows.
If, on the other hand, g2 = 1

G̃L
+

2 (R)
and hence H′′ = H′′′, we must prove

r > −1. Lemma 4.5.34 provides r ≥ −1. Therefore, all that is left to prove
is that r 6= −1. Assume that r = −1. Then if Z ′′ ◦ i1(r1, d1) = Ad1 + Br1 +
(Cr1 + Dd1)i, we get D = 0 since f ′′(0) ∈ Z is equivalent to D = 0 by the
compatibility of T and f that provides the equation exp(iπf(0)) = C+Di

|C+Di|

where T−1 = M =

(
−A B
−D C

)
. Hence Z(i1(C(x))) ∈ R such that

φσ′′(i1(C(x))) ∈ Z. (4.52)

Consider the non-zero morphism i1(C(x)) → i2(C(x))[1] which provides us
with

φσ′′(i1(C(x)) < φσ′′(i2(C(x))[1] = φσ′′(i2(C(x)) + 1 = 2. (4.53)

since we have φσ′′(i2(C(x)) = 1. Since r = −1 we obtain (r, r + 1] = (−1, 0]
such that C(x)[−1] ∈ Pµ(r, r + 1] and therefore i1(C(x)[−1]) ∈ H = P(0, 1].
This gives i1(C(x)) ∈ P(1, 2] and therefore φσ′′(i1(C(x))) > 1. Combined
with φσ′′(i1(C(x))) < 2 by (4.53) we therefore have φσ′′(i1(C(x))) /∈ Z, con-
tradicting (4.52).

Remark 4.8.12. In the following we will use the notation σ1 = σµ(T, f) and

M := T−1 =

(
−A B
−D C

)
and r = f(0) for stability conditions of the kind of

definition 4.8.9.

Proposition 4.8.11 puts us into the position to determine by which con-
struction a normalised stability condition with r ≥ 0 was obtained.

Lemma 4.8.13. Let A = Coh(C), C a smooth projective curve and σ =
(Z,H) ∈ Θ12, such that there are stability conditions

σ1 = (Z1,Ar) = σµ(T1, f1) and σ2 = (Zµ,A) ∈ Stab(D)

with i1(Ar) ⊂ H, i2(A) ⊂ H, Z
∣∣
D1

= Z1 and Z
∣∣
D2

= Zµ. If f1(0) =

r ≥ 0, then σ is obtained by CP-gluing stability conditions (σ1, σµ) via the
semiorthogonal decomposition 〈D1,D2〉.
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Proof. Since σ1 and σ2 satisfy gluing conditions f1(0) ≥ 0, (see lemma 3.2.31
where α = f1(0) and β = 0) there is a pre-stability condition σ̃ = (Hσ̃, Zσ̃)
that is obtained by CP-gluing stability conditions (σ1, σµ) via the semiorthog-
onal decomposition 〈D1,D2〉 on D↑. Because of i1(Ar) ⊂ H, i2(A) ⊂ H,
Z
∣∣
D1

= Z1, we have Hσ̃ ⊂ H and since Hσ̃ and H are hearts of bounded
t-structures this implies Hσ̃ = H. On the other hand, Z and Zσ̃ are uniquely
determined by Z1 and Zµ anyway.

We will now deal with the case where f1(0) = r < 0 broken down into a
series of lemmas.

Lemma 4.8.14. Let A = Coh(C), where C is an elliptic curve and σ =
(Z,H) ∈ Θ12, be a normalised pre-stability condition on D↑. We have r < 0
if and only if ∆(C(x)) is σ-stable.

Proof. We will start by proving that ∆(C(x)) σ-stable is equivalent to having
φσ(i1(C(x)) > 1. To see this, consider two cases.

1. If ∆(C(x)) is σ-stable, then the exact triangle

i2(C(x))→ ∆(C(x))→ i1(C(x))
+−→

provides φσ(i2(C(x))) < φσ(∆(C(x))) < φσ(i1(C(x))). And since
φσ(i2(C(x))) = 1 by assumption, we have φσ(i1(C(x))) > 1.

2. If ∆(C(x)) is not σ-stable, then the exact triangle

i2(C(x))→ ∆(C(x))→ i1(C(x))
+−→

is the JHF of ∆(C(x)) if ∆(C(x)) is σ-semistable, in which case we
have φσ(i2(C(x))) = φσ(∆(C(x))) = φσ(i1(C(x))) and the HNF if
∆(C(x)) is not σ-semistable, in which case we have 1 = φσ(i2(C(x))) >
φσ(i1(C(x))). Therefore φσ(i1(C(x)) ≤ φσ(i2(C(x)) = 1.

Hence, we have established that ∆(C(x)) σ-stable is equivalent to having
φσ(i1(C(x)) > 1.

We have i1(Pµ(r, r + 1]) ⊂ P(0, 1] and hence i1(Pµ(r + n, r + n + 1]) ⊂
P(n, n + 1] for any n ∈ Z as well. There is a unique n ∈ Z for which
we have 1 ∈ (r + n, r + n + 1]. Since we know C(x) ∈ Pµ(1), we obtain
i1(C(x)) ∈ P(n, n + 1]. This is equivalent to φσ(i1(C)(x) ∈ (n, n + 1].
However, φσ(i1(C)(x) > 1 if and only if n ≥ 1. Since 1 ∈ (r + n, r + n + 1]
we now have 1 > r + n ≥ r + 1 if and only if φσ(i1(C)(x) > 1, if and only if
r < 0.
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Lemma 4.8.15. Let A = Coh(C) where C is an elliptic curve and σ =
(Z,H) ∈ Θ12 be a normalised pre-stability condition on D↑. If we have

r = f1(0) < 0 and σ1 = σµ(T1, f1) ∈ G̃L
+

2 (R) and let M = T−1
1 , then

det(M + I) > 0.

Proof. Let M =

(
−A B
−D C

)
. If Tr(M) ≥ 0, we have det(M + I) > 0 via

det(M+I) = det(M)+Tr(M)+1 > 0. If −A+C = Tr(M) < 0, then ∆(OC)
not σ-stable would imply φσ(i1(OC)) ≤ φσ(i2(OC)). We have φσ(i2(OC)) =
1/2 since σ is normalised, such that φσ(i1(OC)) = (0, 1/2], such that B,C ≥
0. Hence, via D < 0 and −AC + BD = det(M) > 0 we obtain −AC >
0 such that −A + C > 0 contradicting the assumption. Since ∆(C(x))
is also stable, by lemma 4.8.14, we obtain φσ(∆(OC)) < φσ(∆(C(x))) <
φσ(∆(OC))+1. Since Z(∆(C(x))) = A−1+iD, Z(∆(OC)) = B+i(C+1) and
we also have Z(∆(C(x))) = m∆(C(x)) exp(iπφσ(∆(C(x)))) and Z(∆(OC)) =
m∆(OC) exp(iπφσ(∆(OC))), we therefore obtain

det(M + I) = BD − (A− 1)(C + 1)

= m∆(C(x)) cos(πφσ(∆(OC)))m∆(C(x)) sin(πφσ(∆(C(x))))−
m∆(C(x)) sin(πφσ(∆(OC)))m∆(C(x)) cos(πφσ(∆(C(x))))

= m∆(C(x))m∆(OC) sin((φσ(∆(C(x)))− φσ(∆(OC)))π) > 0

(since obviously m∆(C(x)),m∆(OC) > 0).

Lemma 4.8.16. Let A = Coh(C) where C is an elliptic curve and σ =
(Z,H) ∈ Θ12 be a normalised pre-stability condition on D↑ and assume that
∆(C(x)) is σ-stable. Then σ is given by a pair constructed in lemma 4.7.31.

Proof. Since σ is normalised in Θ12 we have that i1(C(x)) is σ-stable and
the object i2(C(x)) and i2(OC) are in H and are also σ-stable with

Z([i2(C(x))]) = −1 and Z([i2(OC)]) = i.

By proposition 4.8.11, in combination with the assumption that σ is nor-
malised, there are stability conditions σ1 = (Z1,Ar) and σ2 = (Zµ,A) ∈
Stab(D), such that i1(Ar) ⊂ H and i2(A) ⊂ H, with Z

∣∣
D1

= Z1 and Z
∣∣
D2

=

Zµ. Lemma 4.8.14 implies −1 < f1(0) < 0, where σ1 = (T1, f1)σµ ∈ G̃L
+

2 (R).
We start by noting that Z can be written in the way of lemma 4.7.31 as it
is completely determined by Z1 and Zµ and therefore, with the notation of
(4.51), has the form

Z(r1, d1, r2, d2) = Ad1 +Br1 − d2 + i(Cr1 +Dd1 + r2)).
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Let M be defined by M = T−1
1 =

[
−A B
−D C

]
. Since σ1 is a stability condi-

tion, we have that det(M) > 0. The exact triangle i2(C(x)) → ∆(C(x)) →
i1(C(x))

+−→ has all involved objects stable and therefore 1 = φσ(i2(C(x))) <
φσ(∆(C(x))) < φσ(i1(C(x))) < φσ(i2(C(x))) + 1 = 2. This implies D =
mi1(C(x)) sin(φσ(i1(C(x)))π) < 0, since, by definition, we have mi1(C(x)) > 0.

Now consider the torsion pair 〈T ,F〉 = A↑ given in lemma 4.8.5. We
are going to show that it equals the torsion pair (T ′ ,F ′) given by definition
4.7.24. It is enough to prove that T ′ ⊆ T and F ′ ⊆ F .

We take a torsion-free λ-semistable object E = E1 → E2 ∈ T ′, which
by definition satisfies λ(E) > 3/4. We have the existence of a short exact
sequence

0→ T → E → F → 0, (4.54)

with T ∈ T and F = F1 → F2 ∈ F . Since E ∈ T ′ and – hence – we have
E = (E1 � E2) such that F = (F1 � F2) via E � F , we can assume
F 6= (0 → G2), where G2 is a torsion sheaf. We apply lemma 4.7.14 to
see that the short exact sequence (4.54) gives us λ(E) ≤ λ(F ), provided
by the λ-semistability of E which implies λ(T ) ≤ λ(E), hence λ(F ) > 3

4
.

On the other hand, we have =(Z(F )) = <(Zλ(F )) + =(Zλ(F )), which is
greater or equal to zero if <(Zλ(F )) ≥ −=(Zλ(F )). The latter, however, is
equivalent to λ(F ) ≤ 3

4
, providing us with a contradiction and this implies

that F = (0→ G2) where G2 is torsion which is another contradiction such
that F = 0 and hence E ∈ T .

Taking a λ-semistable torsion-free object E = E1 → E2 ∈ F ′, we have
λ(E) ≤ 3/4 by definition. Firstly, consider the case λ(E) < 3/4. There is
a short exact sequence given by 0 → T → E → F → 0, with T ∈ T and
F ∈ F . Since T ∈ T ⊂ P(1, 2] we have =(Z(T )) ≤ 0. this is equivalent to
<(Zλ(T )) +=(Zλ(T )) such that λ(T ) ≥ 3/4. If T 6= 0, the λ-semistability of
E implies 3/4 ≤ λ(T ) ≤ λ(E) < 3/4, which gives a contradiction and hence
T = 0 and we obtain E ∈ F .

Take a torsion-free λ-semistable object E = E1
ϕ−→ E2 ∈ F ′ with λ(E) =

3/4, we consider the short exact sequence 0 → T → E → F → 0, with
T ∈ T and F ∈ F . The inequality 3/4 ≤ λ(T ) ≤ λ(E) = 3/4 holds such
that 3/4 = λ(T ). We get T [−1] ∈ P(1), where P is the slicing corresponding
to σ. This is because λ(T ) = 3

4
is equivalent to =(Z ′(T )) = 0 and since

T ∈ P(1, 2], we obtain T ∈ P(2). To see this consider that T ∈ P(1, 2]
provides T [−1] ∈ H. We have =(Z(T [−1])) = −=(Z(T )) = 0. Any HN-
factor L of T [−1] ∈ H is also in H and therefore =(Z(L)) ≥ 0. Since
T [−1] is the sum of its HN-factors in the Grothendieck group, we obtain
=(Z(L)) ≥ 0. We obtain L ∈ P(1) which is extension closed such that
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T [−1] ∈ P(1) and therefore T ∈ P(2). Moreover by lemma 4.8.5, we have
that P(1) ⊆ A↑. Hence, T [−1] ∈ A↑ and since – at the same time – we have
T ∈ A↑ this implies T = 0.

Note that for all torsion-free object E ∈ T ′ , we obtain E ∈ T via its λ-
HNF – which works analogously for E ∈ F ′ . This result extends to any object
in T and F . In consequence, T = T ′ , F = F ′ and therefore H = H(C1, D1).

We can now apply lemma 4.7.31 letting C = C1 and D = D1. This
finished the proof.

Lemma 4.8.17. Let A = Coh(C) where C is an elliptic curve and σ =
(Z,H) ∈ Θ12, such that there are stability conditions

σ1 = (Z1,Ar) = (T1, f1) and σ2 = (Zµ,A) ∈ Stab(D)

with i1(Ar) ⊂ H, i2(A) ⊂ H, Z
∣∣
D1

= Z1 and Z
∣∣
D2

= Zµ. If f1(0) = r, with
−1 < r < 0, then σ is given by a pair constructed in lemma 4.7.31.

Proof. This combines lemmas 4.8.16 and 4.8.14.

Proposition 4.8.18. Let σ be a pre-stability condition in Θ12. There is an

element g ∈ G̃L
+

2 (R) such that σg is given by a CP-glued pre-stability con-
dition or one constructed by tilting in lemma 4.7.31.

Proof. Apply proposition 4.8.11, then the result follows by lemmas 4.8.13
and 4.8.17.

We will finish this section by adding to our description of pre Stab(D↑)
provided in theorem 4.5.29, by studying which stability conditions in a given
Θij do actually belong to the subset of stability conditions glued via either
of the semiorthogonal decompositions 〈D1,D2〉, 〈D2,D3〉 or 〈D3,D1〉. The
aim – therefore – is to refine the result of proposition 4.8.18 by establishing
theorem 4.8.36.

Notation 4.8.19. For a Matrix M =

[
−A B
−D C

]
, denote

1. its characteristic polynomial x2 − Tr(M)x + det(M) (where Tr(M) is
the trace of M), by pM(x) and

2. the discriminant Tr(M)2 − 4 det(M) of p(x) by Discr(M).

Definition 4.8.20. Define
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• Θi to be the set of pre-stability conditions, for i = 1, 2 or 3, which are,

up to the action of G̃L
+

2 (R), CP-glued with respect to the semiorthog-
onal decomposition 〈Di, ⊥Di〉, and

• Γ to be the set of pre-stability conditions, which up to the G̃L
+

2 (R)-
action is given by lemma 4.7.31 with Discr(M) < 0.

By studying the discriminant of M , we will investigate if the correspond-
ing σ is in either of the Θi, for i ∈ {1, 2, 3}.

Lemma 4.8.21. We have

• Θ1 ⊂ Θ12,

• Θ2 ⊂ Θ23 and

• Θ3 ⊂ Θ31.

Proof. Firstly,
Θ1 ⊂ Θ̃12,Θ2 ⊂ Θ̃23 and Θ3 ⊂ Θ̃31

follows from [21, Proposition 2.2(3)].
For σ ∈ PreStab(D↑) assumeE ∈ A stable and i1(E) strictly σ-semistable,

then φ(i1(E)) = φ(i2(E)[1]) from the JHF (lemma 4.5.31). If σ CP-glued
from σ1 = σµ(T1, f1) and σ2 = σµ(T2, f2), then f1(0) ≥ f2(0) (condition for
CP-gluing). Now, for φ := φ(i1(E)) = φ(i2(E)) + 1, using [21, Proposi-
tion 2.2(3)], we obtain E ∈ P1(φ) = Pµ(f1(φ)) as well as E ∈ P2(φ − 1) =
Pµ(f2(φ)−1) such that f1(φ) = f2(φ)−1. Let n ∈ Z such that φ ∈ (n, n+1],
then we obtain f1(n) < f1(φ) = f2(φ)− 1 ≤ f2(n+ 1)− 1 = f2(n) such that
we now obtain f1(0) < f2(0) which is a contradiction such that i1(E) must
be σ-stable. A similar argument leads to i2(E) σ-stable such that Θ1 ⊂ Θ12.
Again by similar arguments we obtain Θ2 ⊂ Θ23 and Θ3 ⊂ Θ31.

Definition 4.8.22. For σ3 = ((M + I)−1, f3) define

f12(σ)(x) = f1(x)− x and hence also

f23(σ)(x) = x− f3(x) and

f31(σ)(x) = f3(x)− f1(x).

Definition 4.8.23. Let (A↑)l be the unique heart of a bounded t-structure
obtained by CP-gluing via 〈i1(D), i2(D)〉 from two copies of hearts Al on D =
Db(A) for A = Coh(C), C a smooth projective curve, where Al = Pµ(l, l+1]
by definition 4.7.38 with l = r.
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Lemma 4.8.24. Let σ ∈ Θ12 normalised with corresponding M . If f1(0) < 1
and we additionally assume that we have Discr(M) ≥ 0 and also the eigen-

values of M are positive, then there is g ∈ G̃L
+

2 (R) such that σg = (Z, (A↑)l),
with l ∈ R and −1 < l ≤ 1. Moreover we have σ ∈ Θ1.

Proof. The eigenvalues are assumed to be real (by the assumption that we
have Discr(M) ≥ 0), positive numbers. The same follows for T1 correspond-
ing to f1. Let λ ∈ R be an eigenvalue of T1 and v ∈ R2 ∼= C its corresponding
eigenvector, in other words, T1v = λv. We consider the polar coordinates of
v = (m cos(φ),m sin(φ)) with φ ∈ (−π, π] and m ∈ R>0 and claim that

σg ∈ Θ1, where g = (Kφ, fφ) ∈ G̃L
+

2 (R). (For the definition of Kφ see A.2.1
and lemma A.2.2 for its implications, fφ fulfils fφ(0) = φ

π
.) In other words,

we want to prove that σg is obtained by CP-gluing via the semiorthogo-
nal decomposition 〈D1,D2〉. We consider σ1g = σµ(T1Kφ, f1 ◦ fφ) where
σ1 = σµ(T1, f1).

Using the compatibility between f1 ◦ fφ and T1Kφ over S1 and the fact
that v is an eigenvector, we will now prove that f1 ◦ fφ(0) = φ/π. As a
representative for the positive real axis we choose the vector v0 = (1, 0) Since
Kφv0 is (cos(φ), sin(φ)) (Kφ is the rotation-by-φ-matrix), we therefore have
Kφv0 = 1

m
v providing us with T1Kφv0 = λ

m
v. This means that T1Kφ maps

the positive real axis onto the ray trough v, in other words, exp(iπf1fφ(0)) =
exp(iφ). This implies f1fφ(0) = φ/π + 2k for some k ∈ Z. We now have to
prove k = 0. From φ ∈ (−π, π] we obtain −1 < φ/π ≤ 1. Since f1 is an
increasing function and −1 < f1(0) this implies −2 < f1(−1) < f1(φ/π) =
φ/π+2k = f1(φ/π) ≤ f1(1) < 2. Therefore we obtain k ∈ {−1, 0, 1}. If k = 1
we obtain φ/π + 2 < 2 which implies φ/π < 0. Then f1(φ/π) < f1(0) < 1
and hence φ/π+ 2 = f(0) = f1(φ/π) < 1 which gives φ/π < −1, providing a
contradiction. Similarly, k = −1 gives a contradiction via φ/π > 1 such that
we obtain k = 0 and hence f1 ◦ fφ(0) = φ/π.

We now consider σ2g = σµ(Kφ, fφ). We obtain f12(σg)(0) = 0. By lemma
3.1.16, we obtain that σg = (Z, (A↑)l), l = φ/π ∈ (−1, 1] is glued from σ1g
and σ2g via the semiorthogonal decomposition 〈D1,D2〉.

Lemma 4.8.25. Let A = Coh(C) where C is an elliptic curve and σ =

(Z,H) ∈ pre Stab(D↑), Z◦i1 = MZµ, Z◦i2 = Zµ,M =

(
−A B
−D C

)
, det(M) >

0, det(M + I) > 0 and

i1(Pµ(r, r + 1]) ⊂ H, i2(Pµ(0, 1]) ⊂ H,∆(Pµ(r3, r3 + 1]) ⊂ H

where −1 < r < r3 < 0.
Then, for pM(x) = −Dx2 − (A+ C)x−B
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• if 0 < φµ ≤ r then i1(X), i2(X) are σ-stable and ∆(X) is σ-stable if
and only if pM(µ(X)) > 0,

• if r + 1 < φµ(X) ≤ r3 + 1 then i1(X),∆(X) are σ-stable and i2(X) is
σ-stable if and only if pM(µ(X)) > 0,

• if r3 + 1 < φµ(X) ≤ 1 then i2(X),∆(X) are σ-stable and i1(X) is
σ-stable if and only if pM(µ(X)) > 0.

Proof. For X ∈ A stable we have

i1(X)σ − stable ⇐⇒ φσ(∆(X)) < φσ(i2(X)) + 1

i2(X)σ − stable ⇐⇒ φσ(i1(X)) < φσ(∆(X)) + 1

∆(X)σ − stable ⇐⇒ φσ(i2(X)) < φσ(i1(X)).

(4.55)

Moreover recall that Z(r1, d1, r2, d2) = Ad1 + Br1 − d2 + i(Dd1 + Cr1 + r2).
To prove the first part we start with the claimed equivalence and see that
0 < φµ(X) ≤ r + 1 if and only if µ(X) ≤ C

−D if and only if −Dµ(X) ≤ C

(since−D > 0) if and only if −DdX ≤ CrX (since µ(x) = dX
rX

and rX > 0) if
and only if 0 ≤ DdX+CrX if and only if 0 ≤ =(Z(i1(X))). Now we have that
∆(X) σ-stable if and only if φσ(i2(X)) < φσ(i1(X)) (by (4.55)) if and only
if µσ(i2(X)) < µσ(i1(X)) (by the slope phase correspondence) if and only if
<(Z(i2(X)))
−=(Z(i2(X)))

< <(Z(i1(X)))
−=(Z(i1(X)))

(where we can assume =(Z(i2(X))),=(Z(i1(X))) 6=
0 as otherwise the σ-stability of ∆(X) is automatic). This now is equiva-
lent to <(Z(i2(X)))(−=(Z(i1(X)))) < <(Z(i1(X)))(−=(Z(i2(X)))), which
is equivalent to dX(DdX +CrX) < −rX(AdX +BrX), which is equivalent to
−D(dX

rX
)2 − (A + C)dX

rX
− B > 0, which is equivalent to −D(µ(X))2 − (A +

C)µ(X)−B > 0, which is equivalent to pM(µ(X)) > 0.
To prove the stability of i1(X), i2(X) on the other hand consider that

0 < φµ(X) ≤ r+1 in combination with i1(Pµ(r, r+1]) ⊂ H and ∆(Pµ(r3, r3+
1]) ⊂ H implies i1(X) ∈ H and and ∆(X) ∈ H. Moreover we obviously have
i2(X) ∈ H. Therefore φσ(∆(X)) < φσ(i2(X))+1 which implies that i1(X) is
σ-stable by (4.55) and φσ(i1(X)) < φσ(∆(X)) + 1 which implies that i2(X)
is σ-stable, again by (4.55).

To prove the second part we start with the claimed equivalence and see
that r + 1 < φµ(X) ≤ r3 + 1 if and only if C

−D < µ(X) ≤ C+1
−D if and

only if Dµ(X) + C < 0 ≤ Dµ(X) + C + 1 (since −D > 0) if and only if
DdX+CrX < 0 ≤ DdX+(C+1)rX (since µ(x) = dX

rX
and rX > 0) if and only

if =(Z(i1(X))) < 0 ≤ =(Z(∆(X))). Now we have that i2(X) is σ-stable if
and only if φσ(i1(X)) < φσ(∆(X)) + 1 (by (4.55)) if and only if µσ(i1(X)) <

µσ(∆(X)[1]) (by the slope phase correspondence) if and only if <(Z(i1(X)))
−=(Z(i1(X)))

<
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−<(Z(∆(X)[1]))
=(Z(∆(X)[1]))

= <(Z(∆(X)))
−=(Z(∆(X)))

(where we can assume =(Z(∆(X))) 6= 0 as oth-

erwise the σ-stability of i2(X) is automatic). This now is equivalent to
<(Z(i1(X)))(−=(Z(∆(X)))) < −=(Z(i1(X)))<(Z(∆(X))), which is equiv-
alent to (AdX +BrX)(−(DdX + (C+ 1)rX)) < −(DdX +CrX)(AdX +BrX),
which is equivalent to pM(µ(X)) > 0.

To prove the stability of i1(X) and ∆(X) on the other hand consider
that r + 1 < φµ(X) ≤ r3 + 1 in combination with i1(Pµ(r, r + 1]) ⊂ H
and ∆(Pµ(r3, r3 + 1]) ⊂ H implies i1(X) ∈ H[1] (such that i1(X)[−1] ∈
H) and ∆(X) ∈ H. Moreover we obviously have i2(X) ∈ H. Therefore
φσ(∆(X)) < φσ(i2(X)) + 1 which implies that i1(X) is σ-stable by (4.55)
and φσ(i2(X)) < φσ(i1(X)) which implies that ∆(X) is σ-stable, again by
(4.55).

Proving the third part, finally, is similar to the previous two cases where
we now use r3 +1 < φµ(X) ≤ 1 equivalent to C+1

−D < µ(X) which is equivalent
to =(Z(∆(X))) < 0.

Lemma 4.8.25 has the following useful implication.

Corollary 4.8.26. Let A = Coh(C) where C is an elliptic curve, σ =

(Z,H) ∈ pre Stab(D↑), Z◦i1 = MZµ, Z◦i2 = Zµ,M =

(
−A B
−D C

)
, det(M) >

0, det(M + I) > 0 and

i1(Pµ(r, r + 1]) ⊂ H, i2(Pµ(0, 1]) ⊂ H,∆(Pµ(r3, r3 + 1]) ⊂ H

where r, r3 ∈ (−1, 0).
Then Discr(M) < 0 implies that for any stable X ∈ A = Pµ(0, 1] we have

i1(X), i2(X),∆(X) σ-stable.

Proof. We have r < r3 since C + 1 + iD ∈ R>0 exp(iπf3(0)) because of
the compatibility of f3 and T3, while f1(0) = r ∈ (−1, 0) and C + iD ∈
R>0 exp(iπf1(0)) implies D < 0 such that r = f1(0) < f3(0) = r3. Therefore
lemma 4.8.25 applies and additionally D < 0 provides that pM(ξ) for the
polynomial pM of lemma 4.8.25 is positive for ξ >> 0 (the corresponding
parabola is opened above). Since Discr(M) < 0, we additionally obtain that
pM(x) has no zeroes and therefore pM(x) > 0 which by lemma 4.8.25 finishes
the proof.

Lemma 4.8.27. If A = Coh(C), C is an elliptic curve, σ = (Z,H) ∈ Θ12

a normalised pre-stability condition where we assume that the embedding
i1(P(r, r + 1]) ∈ H satisfies −1 < r < 0 and X ∈ A stable with i1(X)[−1] ∈
H, then ∆(X) is stable.
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Proof. If we assume ∆(X) not stable, lemma 4.5.31 provides us with the
HNF/JHF triangle

i2(X)→ ∆(X)→ i1(X)
+−→,

therefore with φσ(i2(X)) ≥ φσ(i1(X)), which implies φσ(i1(X))−φσ(i2(X)) ≤
0. As 0 < φσ(i2(X)) ≤ 1, this gives φσ(i1(X)) ≤ 1, contradicting our hypoth-
esis since i1(X)[−1] ∈ H implies 1 < φσ(i1(X)) ≤ 2.

Remark 4.8.28. Note that the discriminant of the quadratic polynomialDd2+
(A + C)d + B is given by (A + C)2 − 4BD = Discr(M), in other words, it
equals that of p(x).

Lemma 4.8.29. Let A = Coh(C), where C is an elliptic curve, σ = (Z,H) ∈
Θ12 a normalised pre-stability condition with corresponding M and eigenval-
ues λ1, λ2 of M . Assume r < 0 and Discr(M) ≥ 0. If X ∈ A stable,
λ1, λ2 < 0 and i1(X) ∈ H, then

−Dµ(X)2 − (A+ C)µ(X)−B > 0.

Proof. We consider the polynomial q(x) = Dx2 + (A + C)x + B. As the
discriminant of q(x) is Discr(M) ≥ 0, the polynomial q(x) has real roots
µ1, µ2 ∈ R. Assume that µ1 ≤ µ2. Since for i ∈ {1, 2} we have λi = 1

2
(C −

A±
√

Discr(M)) and µi =
−A−C±

√
Discr(M)

2D
we have µi = λi

D
− C

D
. Since λi < 0

and r < 0 provides D < 0 this implies µi > −C
D

. Since D < 0 the parabola
q(x) is opened at the bottom such that q(x) < 0 for all x < µ1 ≤ µ2. Since
we have µ(x) ≤ −C

D
by lemma 4.8.25 we have µ(x) ≤ −C

D
< µ1 such that

q(µ(X)) < 0. The proof is finished.

Corollary 4.8.30. If A = Coh(C), C is an elliptic curve, σ = (Z,H) ∈ Θ12

a normalised pre-stability condition with corresponding M and eigenvalues
λ1, λ2 of M where we assume that the embedding i1(P(r, r+ 1]) ∈ H satisfies
−1 < r < 0, λ1, λ2 < 0, then ∆(X) is σ-stable for all stable X ∈ A.
Moreover, σ is in Θ23 and Θ31.

Proof. From −1 < r < 0 we obtain that either i1(X)[−1] ∈ H, in which case
we obtain the result from lemma 4.8.27, or i1(X) ⊂ H, in which case it follows
by applying lemma 4.8.29 and after that lemma 4.8.25. Now, σ ∈ Θ23 ∩Θ31

follows by definition.

Lemma 4.8.31. If A = Coh(C), C is an elliptic curve, σ = (Z,H) a nor-
malised pre-stability condition where we assume that the embedding i1(P(r, r+
1]) ∈ H satisfies −1 < r < 0, λ1, λ2 < 0, then there is a t ∈ R with
f31(σ)(t) = 1 such that σ ∈ Θ3.



152

Proof. Assume there is a t ∈ R with f31(σ)(t) = 1. By lemma 4.8.21 we have
Θ3 ⊂ Θ31 and corollary 4.8.30 implies σ ∈ Θ31. Moreover, the assumption
is, by definition of f31 made in 4.8.9, that f3(t) − f1(t) = 1 and therefore

f1(t) = f3(t) − 1. Proving σ ∈ Θ3 means finding g ∈ G̃L
+

2 (R) such that σg

satisfies the gluing conditions in question. Let g = (Ktπ, ftπ) ∈ G̃L
+

2 (R) (see
section A.2 for the definition of Ktπ) and obtain

f1 ◦ ftπ(0) = f1(t) = f3(t)− 1 as well as f3 ◦ ftπ(0) = f3(t) which implies

f31(σg)(0) = f3 ◦ ftπ(0)− f1 ◦ ftπ(0) = f3(t)− (f3(t)− 1) = 1.

Hence, the condition for CP-gluing via the semiorthogonal decomposition
〈D3,D1〉 is fulfilled and like in the proof of lemma 4.8.13, we obtain σ ∈
Θ3.

Remark 4.8.32. Note that lemma 4.8.31 in fact is an ”if and only if”. The

general idea how to prove this is that one considers a g ∈ G̃L
+

2 (R) such that
for σg the condition for CP-gluing via the semiorthogonal decomposition
〈D3,D1〉 is fulfilled and where, since non-rotations do not change the heart,
g = (Klπ, flπ), l ∈ R can be chosen. One can subsequently prove that we
obtain f3(l) = f3 ◦ flπ(0) ≥ f1 ◦ flπ(0) = l+ 1. We have f31(σ)(0) = d < 1 by
assumption and f31(σ)(1) = e ≥ 1 which, in combination with the fact that
f31 is continuous, by the intermediate value theorem, provides a t ∈ R such
that f31(σ)(t) = 1, such that the proof is finished. However we do not need
this implication here.

Lemma 4.8.33. Let A = Coh(C), where C is an elliptic curve, σ = (Z,H) =
σµ(T, f) a normalised pre-stability condition with corresponding M and eigen-
values λ1, λ2 of M and Discr(M) ≥ 0 as well as det(M+I) > 0. If we assume
that the embedding i1(P(r, r + 1]) ∈ H satisfies −1 < r < 0, λ1, λ2 < 0, then
we have

1. if 0 > λ1, λ2 > −1, then σ ∈ Θ3.

2. if λ1, λ2 < −1, then σ ∈ Θ2.

Proof. We will prove that 0 > λ1, λ2 > −1 implies σ ∈ Θ3. The case of

σ ∈ Θ2 for λ1, λ2 < −1 is similar. Let f3 such that (T3, f3) ∈ G̃L
+

2 (R) and
f3(0) ∈ (−1, 1], σ3 = σµ(T3, f3) and β be an eigenvalue of T3 = (M + I)−1

(which exists since det(M + I) > 0 such that M + I is invertible), then
β = 1

λ+1
where λ is an eigenvalue of M . Therefore β > 1 and – in particular –

positive. Let w = m(cos(θ), sin(θ)), θ ∈ (−π, π] be an eigenvector of T3 which
has β as its eigenvalue. Then, by linearity, v = (cos(θ), sin(θ)), θ ∈ (−π, 0]
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is an eigenvector. Note that v being an eigenvector of T3 is an eigenvector

of T as well. Consider σ3g where g = (Kθ, fθ) ∈ G̃L
+

2 (R). We investigate
f3 ◦ fθ(0) = f3( θ

π
) The compatibility between Matrix and function now gives

β exp(iθ) = d exp(iπf3( θ
π
)), d ∈ R>0. Since β > 0 we obtain exp(iθ) =

exp(iπf3( θ
π
)) which gives iθ+ 2kiπ = iπf3( θ

π
) for a k ∈ Z. Define t = θ

π
such

that we have f3(t) = t+ 2k.
Now let σ1 = σµ(T, f1) and consider σ1g. Similar to before we obtain

1/λ exp(itπ) = e exp(iπf1(t)), e ∈ R>0 using Tv = 1
λ
v. Since λ < 0 we

obtain

− exp(itπ) = exp(iπf1(t)) and hence − 1 =
exp(iπf1(t))

exp(itπ)
, such that

−1 = exp(iπf1(t)− itπ). Hence − 1 = exp(iπ(f1(t)− t))

such that we now end up with f1(t) = t+ 2l + 1 for an l ∈ Z.
Hence, we now have f31(σ)(t) = f3(t) − f1(t) = 2(k − l) − 1. We obtain

from θ ∈ [π, 0) that −1 < t ≤ 0 and applying f1 and f3 to this gives, since
both are increasing functions, f1(−1) < f1(t) ≤ f1(0) as well as f3(−1) <
f3(t) ≤ f3(0). We have f1(0) = r < 0 and f1(−1) = r − 1 > −2 since
−1 < r < 0 as well as f3(0) = r3 < 0 and f3(−1) = r3 − 1 > −2 since

−1 < r3 < 0, which is seen from the fact that M+I =

(
1− A B
−D C + 1

)
such

that C+1+iD ∈ R>0 exp(iπf3(0)) because of the compatibility of f3 and T3,
while f1(0) = r ∈ (−1, 0) and C+ iD ∈ R>0 exp(iπf1(0)) implies D < 0 such
that f3(0) ∈ (−1, 1] now gives f3(0) ∈ (−1, 0). Using f1(t) = t + 2l + 1 and
f3(t) = t+ 2k we now arrive at −2 < t+ 2l+ 1 < 0 and at −2 < t+ 2k < 0,
therefore −2 − 2l − 1 < t < −2l − 1 and −2 − 2k < t < −2k. Since
−1 < t ≤ 0 we now have −1 < −2l− 1 and −2− 2l− 1 < 0, which provides
−3

2
< l < 0. Therefore l = −1 and similarly we see that k = 0. hence,

f31(σ)(t)) = 2(k − l)− 1 = 1 and by lemma 4.8.31 the proof is finished.

Lemma 4.8.34. If det(M + I) > 0 and Discr(M) ≥ 0 then for the eigenval-
ues λ1, λ2 of M with λ1, λ2 < 0 we have either λ1, λ2 < −1 or λ1, λ2 > −1.

Proof. We have λ1 = 1
2
(Tr(M) −

√
Discr(M)) as well as λ2 = 1

2
(Tr(M) +√

Discr(M)). Now, 0 < det(M + I) = det(M) + 1 + Tr(M) such that
− det(M) < 1 + Tr(M). Hence,

Discr(M) = Tr(M)2 − 4 det(M) < Tr(M)2 + 4(Tr(M) + 1)

= Tr(M)2 + 4 Tr(M) + 4 = (−Tr(M)− 2)2 = (Tr(M) + 2)2.

Since 0 ≤ Discr(M) we obtain Tr(M) 6= 2 and distinguish two cases.
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1. If
Tr(M) < −2

then −Tr(M) − 2 > 0 and
√

Discr(M) < −Tr(M) − 2 such that we
have λ1 ≤ λ2 < −1.

2. If
Tr(M) > −2

then −Tr(M) + 2 > 0 and
√

Discr(M) < Tr(M) + 2 such that we have
−1 < λ1 ≤ λ2.

Lemma 4.8.35. Let A = Coh(C) where C is an elliptic curve. We have
Γ ⊂ Θ12 ∩Θ23 ∩Θ31.

Proof. We can apply corollary 4.8.26 since for σ ∈ Γ we have Discr(M) < 0
and therefore the conditions of corollary 4.8.26 are fulfilled by lemma 4.7.39.

Theorem 4.8.36. Let A = Coh(C) where C is an elliptic curve. We have

pre Stab(D↑) = Θ1 ∪Θ2 ∪Θ3 ∪ Γ.

Proof. By theorem 4.5.29, we have that σ ∈ Θ12 ∪ Θ23 ∪ Θ31. Via (4.35) we
obtain that

SD↑(Θ12) ⊂ Θ23, SD↑(Θ23) ⊂ Θ31, SD↑(Θ31) ⊂ Θ12 (4.56)

and additionally, using (SD↑σ)g = SD↑(σg), g ∈ G̃L
+

2 (R) provided by the fact
that SD↑ is an autoequivalence, that

SD↑(Θ1) ∈ Θ2, SD↑(Θ2) ∈ Θ3, SD↑(Θ1) ∈ Θ1. (4.57)

Now, let σ′ ∈ pre Stab(D↑) = Θ12 ∪ Θ23 ∪ Θ31. If σ′ ∈ Θ12, define σ′′ := σ′.
If σ′ ∈ Θ31 define σ′′ := SD↑(σ

′). If σ′ ∈ Θ23 define σ′′ := (SD↑)
2(σ′). Hence

σ′′ ∈ Θ12 by (4.56). Let σ = σ′′g, g ∈ G̃L
+

2 (R) such that σ normalised – its
existence is granted by proposition 4.8.11. In other words, σ = (Z,H) such
that Z ◦ i1 = MZµ, Z ◦ i2 = Zµ, det(M) > 0,−1 < r and i1(P(r, r + 1]) ⊂ H
as well as i2(P(0, 1]) ⊂ H. We can reduce our investigation to these pre-
stability conditions, because the sets Θi and Γ, for i = 1, 2, 3 are defined up

to the G̃L
+

2 (R)-action. If f(0) ≥ 0, then by lemma 4.8.13, we obtain σ ∈ Θ1.
If −1 < f(0) < 0, σ is obtained by tilting – but might yet still be in any of the
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Θi also. We distinguish two cases – one where Discr(M) ≥ 0 and one where
Discr(M) < 0. If Discr(M) ≥ 0, with positive eigenvalues then by lemma
4.8.24 we get σ ∈ Θ1. If the eigenvalues are smaller than −1, then we have
that σ ∈ Θ3 by lemma 4.8.33. If the eigenvalues are between 0 and −1, which
by lemma 4.8.34 is the only remaining case then, again by lemma 4.8.33, we
obtain that σ ∈ Θ2. In other words, σ ∈ Θ1 ∪Θ2 ∪Θ3 and, applying g−1, we
have σ′′ ∈ Θ1 ∪Θ2 ∪Θ3. Therefore, by (4.57), we obtain σ′ ∈ Θ1 ∪Θ2 ∪Θ3.

Finally, if Discr(M) < 0 then by lemma 4.8.14, ∆(C(x)) is σ-stable (r <
0) and therefore by lemma 4.8.16, σ ∈ Γ, implying σ′′ ∈ Γ by the definition
of Γ. Since Γ ⊂ Θ12∩Θ23∩Θ31 by lemma 4.8.35, we have σ ∈ Θ12∩Θ23∩Θ31

which implies σ ∈ Θ12, therefore σ′′ = σ′ by definition of σ′′, in other words
σ′ ∈ Γ. The proof is finished.

We will finish this subsection by introducing the useful proposition 4.8.38
following.

Lemma 4.8.37. Let A = Coh(C) where C is an elliptic curve. Then

(Θ1 ∪Θ2 ∪Θ3) ∩ Γ = ∅.

Proof. Let σ ∈ (Θ1 ∪ Θ2 ∪ Θ3) ∩ Γ, then as σ ⊂ Γ ⊂ Θ12 ∩ Θ23 ∩ Θ31 by
lemma 4.8.35 we have σ ∈ Θ12 and can without loss of generality assume σ to

be normalised (Θ1,Θ2,Θ3 and Γ defined up to the G̃L
+

2 (R)-action). Also we
obtain from lemmas 4.8.14 and 4.8.15 that r < 0 and that det(M + I) > 0.
Hence f1, f2 and f3 are defined with M1 = M,M2 = I and M3 = M + I.

We now distinguish the cases σ ∈ Θ1, σ ∈ Θ2 and σ ∈ Θ3.

1. If σ ∈ Θ1 then there is a g ∈ G̃L
+

2 (R) such that σg has a heart
obtained by CP-gluing via 〈D1,D2〉 and hence σ1g and σ2g (where
σ1, σ2 ∈ Stab(D) are the usual stability conditions associated with σ)
satisfy the CP-gluing condition with regard to 〈D1,D2〉. Without loss
of generality we can assume g = (Kπt, fπt). Then the hearts of σ1g
and σ2g are Af1(t) and Af2(t) where fi are associated to σi. The gluing
condition is now f1(t) ≥ f2(t). We also have f1(0) = r < f2(0) = 0
(σ ∈ Γ and normalised). The continuity of f1(x) − f2(x) now implies
the existence of an s ∈ R such that f1(s) = f2(s) = s. The compatibil-

ity condition of (M−1
1 , f1) ∈ G̃L

+

2 (R) means that there is a λ ∈ R such
that

M1 exp(iπf1(s)) = λ exp(iπs)(this is Mv = λ)

and hence
M1 exp(iπs) = λ exp(iπs)(Mv = λ)
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which means that M1 has (at least) one real eigenvalue and therefore,
by definition σ /∈ Γ.

2. If σ ∈ Θ2 we proceed similar as before to obtain f2(t) ≥ f3(t) + 1.
From lemmas 4.8.16 and 4.7.39 we obtain f1(0), f3(0) ∈ (−1, 0). This
implies D < 0 and because f1(0), f3(0) are the directions of C+Di and
C + 1 +Di, respectively, we have

− 1 < f1(0) < f3(0) < 0. (4.58)

Hence 0 = f2(0) < f3(0) + 1 and and continuity of f2(x)− f3(x) gives
s ∈ R with f2(s) = f3(s)+1 such that f3(s) = s−1. The compatibility

condition of (M−1
3 , f3) ∈ G̃L

+

2 (R) means that there is a λ ∈ R such
that

M1 exp(iπf1(s)) = λ exp(iπs)(Mv = λ)

and, similar to the previous case we obtain (M + I)v = λv and hence
Mv = (−1− λ)v such that −1− λ ∈ R is an eigenvalue of M and we
argue as before.

3. If σ ∈ Θ3 we use f3(t) ≥ f1(t)+1 as well as f3(0) < f1(0)+1 from (4.58)
to obtain s ∈ R with f3(s) = f1(s) + 1. Since (M−1

3 , f3), (M−1
1 , f1) ∈

G̃L
+

2 (R) there are positive real numbers α, β such that

(M + I) exp(iπf3(s)) = α exp(iπs) and M exp(iπf1(s)) = β exp(iπs).

Writing v = exp(iπf1(s)) and λ = α
β
∈ R>0 and we obtain (M +

I)(−v) = λMv such that Mv = − 1
λ+1

M . Hence, since λ > 0 we – once
again – found a real eigenvalue of M .

We obtain σ /∈ Γ if σ ∈ Θi for i ∈ {1, 2, 3} and the proof is finished.

Proposition 4.8.38. Let A = Coh(C) where C is an elliptic curve. Then

SD↑(Γ) ⊂ Γ

Proof. Assume σ ∈ Γ. If SD↑(σ) /∈ Γ then SD↑(σ) ∈ Θ1 ∪Θ2 ∪Θ3 and hence
σ ∈ Θ1 ∪Θ2 ∪Θ3 such that σ ∈ (Θ1 ∪Θ2 ∪Θ3)∩Γ = ∅ by lemma 4.8.37, we
obtain a contradiction.
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4.9 Support property

The support property (definition 2.5.43) depends on a quadratic form. We
will now prove its holding for CP-glued pre-stability conditions. We start by
proving it for pre-stability conditions under a stronger orthogonality condi-
tion.

Lemma 4.9.1. If a pair σ = (Z,H) is a pre-stability condition on D↑ ob-
tained by CP-gluing from stability conditions σ1, σ2 with regard to 〈D1,D2〉,
satisfying that Hom≤1

D↑(i1(H1), i2(H2)) = 0 (or equivalently f(0) ≥ 1), then
it satisfies the support property and as consequence, is a Bridgeland stability
condition.

Proof. We use the notation Z1([E]) = Z1([λ1(E)]) and Z2([E]) = Z2([ρ2(E)]).
We can linearly extend Z and the homomorphism induced by the exact func-
tors λ1, ρ2 to N (D↑)⊗R ∼= R4. We define the quadratic form

Q : N (D↑)⊗R→ R as Q(v) = =(Z1(v))=(Z2(v)) + <(Z1(v))<(Z2(v)),

where <(v) and =(v) are the real and the imaginary part of Zi(v) ∈ C, i ∈
{1, 2} respectively. By the linearity of Z, it is clear that Q is a quadratic
form. We first show that it is negative definite on ker(Z) = {v ∈ R4 |
<(Z1(v)) = −<(Z2(v)) and =(Z1(v)) = −=(Z2(v))}. To see this, we now
consider Q(v) = −=(Z1(v))2 − <(Z1(v))2 ≤ 0, for v ∈ ker(Z). If, on the
other hand, Q(v) = 0, we obtain Z2(v) = Z1(v) = 0. This implies v = 0.

Let E = E1
ϕ−→ E2 ∈ H be a σ-stable object – by lemma 2.5.46 it is

enough to show that Q(E) ≥ 0 for σ-stable objects. Let [ϕ] be the morphism

in HomD(E1, E2) that is induced by the object E1
ϕ−→ E2 ∈ D↑. Since σ is

a CP-glued pre-stability condition, by the definition of a heart obtained by
CP-gluing from (H1,H2) via 〈D1,D2〉, we have that E1 ∈ H1 and E2 ∈ H2.
Since [ϕ] ∈ HomD(E1, E2) = HomD↑(i1(E1), i2(E2)[1]) and – by hypothesis
– we have HomD↑(i1(E1), i2(E2)[1]) = 0, we obtain that [ϕ] = 0. Therefore,
applying corollary 4.5.6 we have E = i1(λ1(E))⊕ i2(ρ2(E)) and this gives us
E = i1(λ1(E))⊕ i2(ρ2(E)) ∼= i1(E1)⊕ i2(E2). Since E is stable, this implies
either i1(λ1(E)) = 0 such that Z1(E) = 0 or i2(ρ2(E)) such that Z2(E) = 0
either of which provides Q = 0.

Lemma 4.9.2. Let A = Coh(C) where C is an elliptic curve. Let σ = (Z,H)
be a stability condition on D↑ obtained from CP-gluing stability conditions
σ1, σ2 with σ1 = σ2g via 〈D1,D2〉. Assume f(0) = 0. Let

d2 = −<(Z2([ρ2(E)])), d1 = −<(Z2([λ1(E)])),

r2 = =(Z2([ρ2(E)])) and r1 = =(Z2([λ1(E)])).



158

where Z2 is the stability function associated with σ2. If we have E = E1
ϕ−→

E2 ∈ H with r1 > 0, r2 > 0 a σ-stable object and [ϕ] 6= 0, then

−B ≥ (A+ C)µσ(E).

Proof. We have that ϕ is a complex-morphism over A and [ϕ] the associated
morphism in D, in other words [ϕ] ∈ HomD(λ1(E), ρ2(E)). By lemma 3.1.5
we have E1 = λ1(E) ∈ H1 and E2 = ρ2(E) ∈ H2 where H1,H2 are the
hearts associated with σ1 and σ2. Since f(0) = 0 we also have H1 = H2.
We consider a short exact sequence in H1 constructed following. Since H1

is an abelian category, we can compute ker([ϕ]), coker([ϕ]) ∈ H1 and by the
definition of H, we have morphisms

E � i1(im(ϕ)) and i2(im(ϕ)) ↪→ E. (4.59)

Let Z2(im([ϕ])) = −d′′1 + r′′1i. We have that r′′1 6= 0, as r′′1 = 0, would
imply φσ(i2(im([ϕ]))) = 1, and by the σ-stability of E we would therefore
get 1 = φσ(i2(im([ϕ]))) ≤ φσ(E) ≤ 1, giving =(Z(E)) = 0. This – on the
other hand – would imply that r1 = 0 or r2 = 0, which contradicts our
assumption.

From (4.59), combined with the correspondence between slope and phase,
we obtain

d′′1
r′′1
≤ µσ(E) and µσ(E) ≤ −Ad

′′
1 −Br′′1
Cr′′1

,

therefore, using −A,C > 0, we have µσ(E) ≤ −A
C

d′′1
r′′1
− B

C
≤ −A

C
µσ(E)− B

C
, in

other words, µσ(E) ≤ −A
C
µσ(E)− B

C
and conclude µσ(E)(A+C) ≤ −B.

Lemma 4.9.3. If, under the conditions of lemma 4.9.2 with r1 > 0, r2 > 0
and [ϕ] 6= 0, then

−Ad1 + d2 − µσ(E)(r2 − Ar1) ≤ 0.

Proof. We have

µσ(E) =
−Ad1 + d2 −Br1

Cr1 + r2

=
−Ad1 + d2

Cr1 + r2

+
−Br1

Cr1 + r2

.

By Lemma 4.9.2, we obtain

µσ(E) ≥ −Ad1 + d2

Cr1 + r2

+ (A+ C)
µσ(E)r1

Cr1 + r2

,

using r1 > 0, r2 > 0 and C > 0, which implies

µσ(E)(r2 − Ar1) ≥ −Ad1 + d2

and therefore gives the claim.
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Lemma 4.9.4. If, under the conditions of lemma 4.9.3, E = E1
ϕ−→ E2 ∈ H

with r1 > 0, r2 > 0 with [ϕ] 6= 0 is a σ-stable object, then

(r2 − r1)µσ(E) ≤ d2 − d1.

Proof. Recall our explanations regarding ϕ at the start of the proof of lemma
4.9.2. We first consider the case ker([ϕ]) = 0, providing us with the exact
sequence 0→ ∆(E1)→ E → i2(coker([ϕ]))→ 0. By the σ-stability of E, we
obtain µσ(E) ≤ d2−d1

r2−r1 , which implies the desired result given by the fact that
ker([ϕ]) = 0 implies r2 ≥ r1 and hence r2 − r1 ≥ 0.

Next, we consider the case coker([ϕ]) = 0, where we have the exact se-
quence 0→ i1(ker([ϕ]))→ E → ∆(E2)→ 0. We obtain

µσ(E) ≥ −A(d1 − d2)−B(r1 − r2)

C(r1 − r2)
=
−A(d1 − d2)

C(r1 − r2)
+
−B
C
.

Lemma 4.9.2 gives µσ(E) ≥ µσ(E) + µσ(E)A
C
− A(d1−d2)

C(r1−r2)
, Since −A,C ≥ 0,

(from f(0) = 0 and D = 0) we obtain

µσ(E) ≥ d1 − d2

r1 − r2

.

Since now r(ker([ϕ])) = r1−r2 where r(ker([ϕ])) = =(Z◦i2(ker([ϕ])) and ker([ϕ]) ∈
H, we have r1 − r2 ≥ 0 and obtain µσ(E)(r2 − r1) ≤ (d2 − d1).

It remains to consider the case where coker([ϕ]) 6= 0 and ker([ϕ]) 6= 0.

From the morphism i1(ker([ϕ])) ↪→ E we obtain
−Ad′1−Br′1

Cr′1
≤ µσ(E), where

Z2(ker([ϕ])) = −d′1 + r′1i. The previous quotient exists since r′1 6= 0, as
otherwise, if we had r′1 = 0, we would obtain φ(i1(ker([ϕ]))) = 1 and by σ-
semistability we have that 1 = φ(i1(ker([ϕ]))) ≤ φ(E) ≤ 1, which, implying
r1, r2 = 0, would give a contradiction.

Since
−Ad′1−Br′1

Cr′1
≤ µσ(E) provides

−Ad′1
Cr′1
≤ µσ(E) + B

C
, we therefore obtain

−Ad′1r1
r′1
≤ µσ(E)Cr1 +Br1. We have

µσ(E)Cr1 +Br1 ≤
−ACd1r1 −BCr2

1 + Cd2r1 +BCr2
1 +Br1r2

Cr1 + r2

≤ −ACd1r1 + Cd2r1 +Br1r2

Cr1 + r2

≤ (Cr1 + r2)(−Ad1 + d2) + Ad1r2 +Br1r2 − d2r2

Cr1 + r2

≤ −Ad1 + d2 − µσ(E)r2,
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providing
−Ad′1r1
r′1
≤ µσ(E)Cr1 +Br1 ≤ −Ad1 + d2 − µσ(E)r2. This gives

− Ad′1r1 + µσ(E)r2r
′
1 − r′1(−Ad1 + d2) ≤ 0. (4.60)

If r2 − r′′1 6= 0, then the morphism E � i2(coker([ϕ])) gives us

µσ(E) ≤ d2 − d′′1
r2 − r′′1

, (4.61)

where Z2(im([ϕ])) = −d′′1 + ir′′1 , as before.

As d′′1 = d1− d′1 and r′′1 = r1− r′1, multiplying (4.61) by −Ar1 and adding
(4.60), we obtain

Ar1(d2 − d1)− r′1(−Ad1 + d2) + µσ(E)(−Ar1(r2 − r1) + r′1(−Ar1 + r2)) ≤ 0.

By lemma 4.9.3, we have d1 − d2 + µσ(E)(r2 − r1) ≤ 0 and as a consequence

µσ(E)(r2 − r1) ≤ d2 − d1.

If r2− r′′1 = 0, then also d2− d′′1 ≥ 0. Since d′′1 = d1− d′1 and r′′1 = r1− r′1, we
obtain

−Ar1(d1 − d′1 − d2) ≤ 0.

Adding the previous inequality to (4.60) we have

µσ(E)r2r
′
1 − r′1(−Ad1 + d2)− Ar1(d1 − d2) ≤ 0.

By Lemma 4.9.3, we obtain

µσ(E)r2r
′
1 − r′1(µσ(E)(r2 − Ar1))− Ar1(d1 − d2) ≤ 0,

which, provided by −A > 0, gives µσ(E)(r2 − r1) ≤ (d2 − d1) and therefore
finishes the proof.

Lemma 4.9.5. Let σ = (Z,H) be a pre-stability condition on D↑ and assume
that σ is obtained via CP-gluing stability conditions σ1 and σ2, using the
semiorthogonal decomposition 〈D1,D2〉. Assume that σ1 = σ2g where g =

(T, f) in G̃L
+

2 (R), that satisfies f(0) = 0.

Define ri, di as in lemma 4.9.2, x = d1

r1
and y = d2

r2
.. If there is a σ-

semistable object E = E1
ϕ−→ E2 ∈ H with r2 ≥ r1 > 0 then Cy + Ax ≤ −B.

Moreover, if [ϕ] 6= 0 then y − x ≥ 0.
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Proof. Let E = E1
ϕ−→ E2 ∈ H be a σ-semistable object. Considering the

short exact sequence 0→ i2(E2)→ E → i1(E1)→ 0, the semistability of E
and the correspondence between slope and phase provides us with

d2

r2

≤ µσ(E) ≤ −Ad1 −Br1

Cr1

.

This implies Cr1d2 +Ad1r2 ≤ −Br1r2, as r1, r2, C > 0. We obtain Cy+Ax ≤
−B.

If r1 = r2 and [ϕ] = 0, we have d1 ≤ d2 by lemma 4.9.4 and therefore
y ≥ x. Now assume r2 > r1. Since [ϕ] 6= 0, lemma 4.9.4 provides us with the

inequality −Ad1−Br1+d2

Cr1+r2
≤ d2−d1

r2−r1 , hence −B ≤ Cd2r1+Ad1r2−(C+A)d1r1+d2r1−d1r2
(r2−r1)r1

.
From the inequality Cy + Ax ≤ −B, we now obtain

Cy + Ax ≤
(
Ax+ Cy + y − x− r1

r2

x(A+ C)

)
r2

r2 − r1

, implying

0 ≤ (y − x)(r2 + Cr1).

Since r2 + Cr1 > 0, we have proved y − x ≥ 0.

Lemma 4.9.5 requires the restriction r2 ≥ r1 > 0. We require to prove
the analogous statement for r1 ≥ r2 > 0 or, using the language of lemma
4.9.5, C2r1 + D2d1 ≥ C2r2 + D2d2 > 0. In order to do so, we follow ideas of
[29]. The following definition makes sense due to [37, Remark 2.51].

Definition 4.9.6. Let C be a smooth projective curve. Define

D = RHom(−,OC) : Db(Coh(C))→ Db(Coh(C))

as the right derived functor of D0 = Hom(−,OC).

It was proven in [40, Section 3.2] that D is an equivalence of categories.
Additionally we have the following.

Lemma 4.9.7. We have D2 = id.

Proof. See [40, Section 3.2].

We will discuss ”locally free” objects in A↑ in analogy to definition 4.7.15.

Definition 4.9.8. For g = (T, f) ∈ G̃L
+

2 (R) define δ(g) by

δ(g) := (CTC−1, h) ∈ G̃L
+

2 (R)

where C =

[
−1 0
0 1

]
and h(t) = −f(t).

Hence, for σ = σµg define σ∨ by

σ∨ = σµδ(g).
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Lemma 4.9.9. The map δ is a homomorphism of groups.

Proof. Let M := T−1. We have M exp(iπf(t)) ∈ R≥0 exp(iπt). Such that,
substituting −t for t we obtain M exp(iπf(−t)) ∈ R≥0 exp(iπ−t). Moreover,
C = C−1 and C exp(iπs) = − exp(−iπs) and hence MC−1 exp(−iπf(−t)) ∈
−R>0 exp(iπt) and CMC−1 exp(−iπf(−t)) ∈ R>0 exp iπt. Therefore we

have CMC−1 ∈ G̃L
+

2 (R. Since conjugation with C is a group homomorphism
on GL+

2 (R and composition with − id is a group homomorphism on the group
of bijective maps fromR toR, we obtain that δ is a homomorphism of groups.

Lemma 4.9.10. If σ = σµg is a stability condition on D with g = (T, f),M =

T−1 =

(
−A −B
D C

)
and heart Pµ(f(0), f(1)], then σ∨ = σµδ(g) with δ(g) =

(T ′, f ′),M ′ = (T ′)−1 =

(
−A −B
D C

)
has Pµ(−f(0),−f(−1)] as its heart.

Proof. Let θ = f(0). We obtain the stability function of σ∨ by conjugation
with C as defined in 4.9.8. Moreover, for Pµ(θ, θ+ 1] we obtain from h(0) =
−f(0) = −θ that σ∨ has Pµ(−θ, 1 − θ] as heart and we have Pµ(1 − θ, 2 −
θ][−1] = Pµ(−θ, 1− θ].

Lemma 4.9.11. For all t ∈ R we have DPµ(t) = Pµ(1− t).

Proof. We have D(F [n]) = D(F )[−n] for all F ∈ Coh(C) and n ∈ Z such
that we can impose the restriction t ∈ (0, 1].

If T ∈ Pµ(1) torsion we have D(T ) = T [−1] ∈ Pµ(0). If E ∈ Pµ(t) is
locally free, thenD(E) = E∨ and Zµ(D(E)) = − deg(D(E))+rank(D(E)) =

deg(E)+i rank(E) = −Zµ(E). Since E is µ-semistable if and only if E∨ is µ-

semistable we obtain E∨ ∈ Pµ(s) for some s ∈ (0, 1) determined by Zµ(E). In
other words, the complex number is mapped by a reflection on the imaginary
axis which for t ∈ (0, 1) swaps the phase t with 1− t. Hence E∨ ∈ Pµ(1− t)
and the proof is finished.

Corollary 4.9.12. We have DPµ(θ, θ + 1) = Pµ(−θ,−θ + 1).

Proof. This follows from 4.9.11 and the HNF since D is an exact functor.

Definition 4.9.13. Let σ be obtained by CP-gluing stability conditions
(σ1, σ2) on D with respect to 〈D1,D2〉 and assume H1 = H2 where Hi is
the heart corresponding to σi, i ∈ {1, 2}. We define the dual stability con-
dition σ∗ = on D↑ as the stability condition obtained via CP-gluing from
σ∨2 , σ

∨
1 with respect to 〈D1,D2〉.
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Lemma 4.9.14. Let σ = (Z,H) be a pre-stability obtained by CP-gluing
stability conditions (σ1, σ2) on D with respect to 〈D1,D2〉 such that σ1 = σ2g,
where g = (T, f) and assume H1 = H2 = Pµ(θ, θ + 1], θ ∈ R where Hi is the

heart corresponding to σi, i ∈ {1, 2}. If E = E1
ϕ−→ E2 ∈ P(0, 1) where P is

the slicing of σ then λ1(E), ρ2(E) ∈ Pµ(θ, θ + 1).

Proof. Define F θ
σ to be F and T θσ to be T from lemma 4.7.4 with φ = 1. We

obtain the short exact sequence

0→ T2 → E2 → F2 → 0 (4.62)

as well as the short exact sequence

0→ T1

f
↪→ E1 → F1 → 0 (4.63)

with T1, T2 ∈ T θσ and F1, F2 ∈ F θ
σ in H1 = H2. If T2 6= 0 then i2(T2) =

(0→ T2), using that i2(P(θ + 1)) ⊂ P(1), is a non-zero subobject of E with
φσ(i2(T2)) = φσ(0 → T2) = 1, contradicting E ∈ P(0, 1). Hence T2 = 0,
providing E2 ∈ F θ. Hence, E2

∼= F2 provides Hom(T1, E2) = 0 from the
torsion pair such that the embedding f from the short exact sequence (4.63)
provides us with the commutative diagram

T1
f−−−→ E1y yϕ

0 −−−→ E2,

in other words, with an embedding of i1(T1) = (T1 → 0) into E1
ϕ−→ E2. We

conclude – as in the previous case – that T1 = 0

Definition 4.9.15. Define D↑0 : A↑ → A↑ by

D
↑
0(E1

ϕ−→ E2) := (D0(E2)
D(ϕ)−−−→ D0(E1))

for all E = (E1
ϕ−→ E2) ∈ A↑.

We require the right derived functor of D↑0 and will now prove that it
exists.

Lemma 4.9.16. Let A = Coh(C), C a smooth projective curve. Every
bounded object E in C(A↑) is isomorphic to a complex F ∈ C(A↑) of locally
free sheaves.
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Proof. It is enough to show that for E = E1
ϕ−→ E2 ∈ A↑ there is a G ∈ A↑ of

locally free sheaves with G� E. In A, there are locally-free sheaves Fi ∈ A
and surjective morphisms Fi

πi−→ Ei for i = 1, 2, provided by [37, Remark

3.26]. Let now G = (F1
(id,0)−−−→ F1 ⊕ F2). Since F1 ⊕ F2 is also locally free,

we have constructed G to be locally free. We have a surjective morphism
G→ E in A↑ given by the diagram

F1
π1−−−→ E1y(id,0)

yϕ
F1 ⊕ F2

ϕ◦π1+π2−−−−−→ E2

and the proof is finished.

Lemma 4.9.17. Let A = Coh(C), C a smooth projective curve. The right
derived functor of D↑0 exists.

Proof. For any bounded acyclic object E ∈ C(A↑) of locally free sheaves we
have that Hom(E,OC) is acyclic. By lemma 4.9.16 the result now follows
from [37, Remark 2.51].

We are therefore able to provide the following definition.

Definition 4.9.18. Define

D↑ := RD↑0 : D↑ → D↑

to be the right derived functor of D↑0.

Lemma 4.9.19. Let A = Coh(C), C an elliptic curve and let σ = (P , Z) be
CP-glued from stability conditions (σ1, σ2) via 〈D1,D2〉. Assume that σ1, σ2

have hearts as in lemma 4.9.14. For σ∗ = (P∗, Z∗) we have that E = (E1 →
E2) ∈ P(0, 1) σ-stable implies D↑(E) ∈ P∗(0, 1) and D↑(E) σ∗-stable.

Proof. By lemma 4.9.14 we have λ1(E), ρ2(E) ∈ Pµ(θ, θ+1). Following from

the analogous identities for D↑0 and D0 we obtain

λ1 ◦D↑ = D ◦ ρ2 and ρ2 ◦D↑ = D ◦ λ1. (4.64)

Together with lemma 3.1.5 this provides D↑(E) ∈ P∗(0, 1]. In addition,
(4.64) provides, using that for a given stability condition σ, the stability
function Zσ∨ is obtained from Zσ via conjugation with the matrix C from
definition 4.9.8, that

Zσ∗(D
↑(E)) = Zσ∗(i1λ1D

↑(E)) + Zσ∗(i2ρ2D
↑(E))

= Zσ∨1 (D(E1)) + Zσ∨2 (D(E2)) = −Zσ1(E1)− Zσ2(E2)

= −(Zσ(i1λ1(E)) + Zσ(i2ρ2(E)) = −Zσ(E).

(4.65)
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This implies that Zσ∗(D
↑(E)) ∈ R if and only if Zσ(E) ∈ R if and only if

E ∈ P(1). Therefore Zσ∗(D
↑(E)) /∈ R. Hence σ∗-semistability of D↑(E)

would imply φσ∗(D
↑(E)) < 1 and hence D↑(E) ∈ P∗(0, 1).

It is therefore our task to prove D↑(E) σ∗-semistable. Let

0→ G→ D↑(E)→ Q→ 0

be an exact sequence in P∗(0, 1]. If φσ∗(Q) = 1, we have φσ∗(D
↑(E)) ≤

φσ∗(Q). If Q ∈ P∗(0, 1) then lemma 4.9.14 implies that λ1(Q), ρ2(Q) ∈
Pµ(−θ,−θ + 1). Hence, by corollary 4.9.12, D↑(Q) ∈ P(0, 1]. Because
(P∗(1),P∗(0, 1)) is a torsion pair in P∗(0, 1] and the torsion-free part in
a torsion pair is always closed under taking subobjects, we have G ∈ P∗(0, 1)
and hence D↑(G) ∈ P(0, 1] by lemma 4.9.14, arguing as before. The exact
triangle

D↑(Q)→ E → D↑(G)
+−→

therefore is an exact sequence

0→ D↑(Q)→ E → D↑(G)→ 0

in P(0, 1], using lemma 4.9.7, which implies (D↑)2 = id. The σ-stability of E
provides φσ(D↑(Q)) < φσ(E). By (4.65) this is equivalent to φσ∗(D

↑(E)) <
φσ∗(Q) (because D↑(Q), E ∈ P(0, 1] and Q,D↑(E) ∈ P∗(0, 1]). Hence, we
get that D↑(E) is σ∗-semistable. This, in turn, implies D↑(E) ∈ P(0, 1) and
even when φσ∗(Q) = 1 we obtain φσ∗(D

↑(E)) < φσ∗(Q). Therefore D↑(E) is
σ∗-stable.

The previous lemma is indeed an equivalence but we only require the
implication discussed, in order to prove the next lemma.

Lemma 4.9.20. Let A = Coh(C), C an elliptic curve and σ = (Z,H)
be a pre-stability condition on D↑ obtained by CP-gluing stability conditions

σ1, σ2 on D via 〈D1,D2〉, with σ1 = σ2g, were g = (T, f) ∈ G̃L
+

2 (R) and

T−1 =

[
−A B
0 C

]
. Assume f(0) = 0. Let E = E1

ϕ−→ E2 ∈ H be a σ-stable

object and define

d2 = −<(Z ◦ i2([ρ2(E)])), d1 = −<(Z ◦ i2([λ1(E)])),

r2 = =(Z ◦ i2([ρ2(E)])), r1 = =(Z ◦ i2([λ1(E)])),

x :=
d1

r1

and y :=
d2

r2

.
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If r1 ≥ r2 > 0 then

Cy + Ax+B ≤ 0

and if, additionally, [ϕ] 6= 0 then

x ≤ y.

Proof. We have Z(E) = Z(i1λ1(E))+Z(i2ρ2(E)) = Ar1 +Bd1−d2 + i(Cr1 +
r2). As f(0) = 0 and D = 0 we have C > 0. From r1 > 0 and r2 > 0 we
now get =(Z(E)) = Cr1 + r2 > 0, hence φσ(E) < 1. Since σ is obtained by
CP-gluing stability conditions σ1, σ2 via 〈D1,D2〉 and σ1 = σ2g, we obtain
that σ∗ is obtained by CP-gluing stability conditions σ∨1 , σ

∨
2 and therefore

from σ∨2 δ(g), σ∨2 via 〈D1,D2〉. Let g′ := δ(g)−1 and define σ′ = σ∗g′. Because
σ∨2 g

′ and σ∨ have the same heart they satisfy the CP-gluing condition so
that we can apply lemma 3.1.16 to obtain that σ′ is obtained by CP-gluing
stability conditions σ∨2 g

′, σ∨2 via 〈D1,D2〉.
Let E ′ := D(E). By lemma 4.9.19, we get E ′ ∈ P∗(0, 1) and E ′ σ∗-stable.

As σ′ = σ∗g, E ′ is σ′-stable too. Let g′ = (T ′, f ′), then M ′ = (T−1)′ =(
−A −B
0 C

)−1

= 1
−AC

(
C B
0 −A

)
=:

(
−A′ B′

0 C ′

)
. We write σ′ = (Z ′,H′)

and define

d′2 = −<(Z ′ ◦ i2([ρ2(E ′)])), d′1 = −<(Z ′ ◦ i2([λ1(E ′)])),

r′2 = =(Z ′ ◦ i2([ρ2(E ′)])), r′1 = =(Z ′ ◦ i2([λ1(E ′)])),

x′ :=
d′1
r′1

and y′ :=
d′2
r′2
.

Because, σ is obtained by CP-gluing stability conditions σ2g, σ2 on D via
〈D1,D2〉 and σ′ is obtained by CP-gluing stability conditions σ′2g

′, σ′2 on D
via 〈D1,D2〉 we obtain that Z◦i2 and Z ′◦i2 are, using that for a given stability
condition σ, the stability function Zσ∨ is obtained from Zσ via conjugation
with the matrix C from definition 4.9.8, that related by the formula

Z ′ ◦ i2D(X) = −Z ◦ i2(X) for any X ∈ D.

Using λ1(E ′) = λ1D
↑(E) = Dρ2(E) and ρ2(E ′) = ρ2D

↑(E) = Dλ1(E), we
obtain

d′1 = −d2, r
′
1 = r2, d

′
2 = −d1 and r′2 = r1.

In particular does the assumption r1 ≥ r2 > 0 translates into r′2 ≥ r′1 > 0.

Moreover x′ =
d′1
r′1

= −d2

r2
= −y and y′ =

d′2
r′2

= −d1

r1
= −x and we see that

x ≤ y if and only if y′ ≤ x′.
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Finally

Cy+Ax+B = (−AC)(−A′(−x′)−C ′(−y′)+B′) = (−AC)(C ′y′+A′y′+B′).

We have [ψ] 6= 0 where E ′ = D↑(E) = (D(E2)
ψ−→ D(E1)), to see this we

use that E σ-stable implies E ′ σ′-stable, which combined with [ϕ] = 0 would
imply E ′1 = λ1D

↑(E) = 0 or E ′2 = ρ2D
↑(E) = 0 by corollary 4.5.6. Then

r′1 = 0 or r′2 = 0 which contradicts r′2 ≥ r′1 > 0. Because −AC > 0 and,
[ψ] 6= 0, the proof is finished by applying lemma 4.9.5 to σ′ and E ′.

The previous series of lemmas now allows us to prove the support property
for yet another type of stability conditions.

Lemma 4.9.21. Let σ = (Z,H) be a pre-stability condition obtained by CP-
gluing via 〈D1,D2〉 from stability conditions σ1 = (Z1,H1), σ2 = (Z2,H2),

such that there is g = (T, f) ∈ G̃L
+

2 (R) with σ1 = σ2g and T−1 =

[
−A B
−D C

]
.

If H1 = H2, then f(0) = 0 and hence D = 0, C > 0.

Proof. Let σ2 = σµ(T2, f2), then H2 = Pµ(f2(0), f2(1)]. We have σ1 = σ2g =
σµ(T2, f2)(T, f) = σµ(T2T, f2 ◦ f). Therefore H1 = Pµ(f2(f(0)), f2(f(1))].
From H1 = H2 we obtain f2(0) = f2(f(0)) which by the injectivity of
f2, provided by the invertibility of M2 = T−1

2 gives f(0) = 0. Hence
exp(iπf(0)) ∈ R and we obtain from

exp(iπf(0)) =
C +Di

|C +Di|
. (4.66)

that D = 0. Since exp(iπf(0)) = exp(iπf(0)) = 1 > 0 and D = 0 turns
(4.66) into

exp(iπf(0)) =
C

|C|
.

such that C > 0.

Lemma 4.9.22. Let A = Coh(C) where C is an elliptic curve. Let σ =
(Z,H) be a pre-stability condition obtained by CP-gluing via 〈D1,D2〉 from
stability conditions σ1 = (Z1,H1), σ2 = (Z2,H2), such that there is g =

(T, f) ∈ G̃L
+

2 (R) with σ1 = σ2g and T−1 =

[
−A B
−D C

]
. Assume that H1 =

H2, then σ satisfies the support property and therefore it is a Bridgeland
stability condition.
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Proof. We have f(0) = 0 since H1 = H2. By lemma 4.9.21 we obtain D =

0, that is T−1 =

[
−A B
0 C

]
. Because C + iD = C ∈ R>0 exp(iπf(0)) =

R>0 we obtain C > 0. By lemma 4.9.21 H1 = H2 gives D = 0, that is

T−1 =

[
−A B
0 C

]
. Moreover, again by lemma 4.9.21 we have A = 0. Via

0 < det(M) = −AC this implies −A > 0.
Recall that CP-gluing means that H is given by the equation

H = {X ∈ D↑ | λ1(X) ∈ H1, ρ2(X) ∈ H2}

and Z1 = Z ◦ i1, Z2 = Z ◦ i2. From σ1 = σ2g we get Z1 = MZ2. For any
E ∈ D↑ we define

d2 = −<(Z ◦ i2([ρ2(E)])), d1 = −<(Z ◦ i2([λ1(E)])),

r2 = =(Z ◦ i2([ρ2(E)])) and r1 = =(Z ◦ i2([λ1(E)])).

We now obtain Zi2ρ2(E) = −d+ ir and Zi1λ1(E) = Ad1 +Br1 + iCr1 such
that

Z(E) = Ad1 +Br1 − d2 + i(Cr1 + r2).

From corollary 3.2.19 we obtain i1(H) ⊂ H as well as i2(H) ⊂ H such that
Zi1λ1(E), Zi2ρ2(E) ∈ H. In particular r2 ≥ 0 and Cr1 ≥ 0. Now C > 0
implies r1 ≥ 0 as well.

We want to show that σ fulfils the support property with regard to the
quadratic form

Q(E) := −(Ad1 +Br1)(r2 + δd2) + Cr1(r2 − d2)

for positive δ which, if B non-zero also fulfils δ ≤ −AC
B2 . Hence, we will

subsequently check the conditions of definition 2.5.43.
Firstly we must prove that Q

∣∣
ker(Z)

is negative definite. We have

ker(Z) = {v | Ad1 +Br1 = d2, Cr1 = −r2} for v ∈ N (D↑)⊗R ∼= R4

and hence Q
∣∣
ker(Z)

= −d2(r2 + δd2)− r2(r2 − d2) = −r2
2 − δd2

2 ≤ 0. If indeed

−r2
2 − δd2

2 = 0 then r2 = d2 = 0 since δ is positive and since C 6= 0 this
implies r1 = 0. Now A 6= 0 implies d1 = 0 providing v = 0 such that Q

∣∣
ker(Z)

is negative definite.
By lemma 2.5.46 we now have to prove Q(E) ≥ 0 for E = (E1

ϕ−→ E2) ∈ H
σ-stable. Note that it suffices to assume E ∈ H, since Q(E[n]) = Q(E) for
all n ∈ Z. We will conduct our proof by considering the following cases.



169

1. If [ϕ] = 0 ∈ HomD(E1, E2), then E ∼= i1(E1) ⊕ i2(E2) by corollary
4.5.6. The σ-stability of E now implies E1 = 0 or E2 = 0. Either
implies Q(E) = 0.

2. If r1 = 0, we have =(Zi1λ1(E)) = Cr1 = 0 and hence φσ(i1λ1(E)) = 1.
Consider the torsion pair 〈T ,F〉 = 〈P2(1),P(0, 1)〉 = H2 (example
4.7.5) where P2 is the slicing given by σ2 on D. By definition 4.7.1 pair
we obtain a short exact sequence

0→ T2 → E2 → F2 → 0

in H2 with T2 ∈ T = P(1) and F2 ∈ T = P(0, 1). Since i2(H) ∈ H,
this provides the short exact sequence

0→ i2(T2)→ i2(E2)→ i2(F2)→ 0

in H. On the other hand, we have i1(E1) ∈ i1(H1) ∈ H as well as
i2(E1) ∈ i2(H2) ∈ H and so the exact triangle

i2(E2)→ E → i1(E1)
+−→

in D↑ gives rise to the short exact sequence

0→ i2(E2)→ E → i1(E1)→ 0 (4.67)

in H. Hence, we obtain the chain

is(T2) ⊂ i2(E2) ⊂ E

of subobjects in H. The σ-stability of E now provides φσ(i2(T2)) <
φσ(E). By [21, Proposition 2.2(3)] we obtain i2(P2(t)) ⊂ P(t) for all
t ∈ R. Therefore we obtain φσ(i2(T2)) = 1 providing a contradiction
to φσ(E) ∈ (0, 1]. Hence, we can disregard this case.

3. If =(Zi2ρ2(E)) = r2 = 0, then φσ(i2ρ2(E)) = 1. But (4.67) combined
with the σ-stability of E implies

1 = φσ(i2(E2)) < φσ(E) ≤ 1,

a contradiction. Therefore, we can disregard this case.

4. If [ϕ] 6= 0, r1 6= 0, r2 6= 0 we have r1 > 0 and r2 > 0 and define

x :=
d1

r1

, y :=
d2

r2

and

Q(x, y) :=
1

r1r2

Q(E) = −Ax− Cy −B + C − δ(Axy +By).
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Since r1, r2 > 0 we need to show that Q(x, y) ≥ 0 and use the key
ingredients

Cy + Ax+B ≤ 0 (from lemma 4.9.5 and 4.9.20), (4.68)

x ≤ y (since [ϕ] 6= 0) and (4.69)

− A > 0, C > 0 (from before). (4.70)

(a) If y ≥ 0 then we use (4.70) to obtain 0 ≤ Cy and obtain 0 ≤
Cy ≤ −Ax − B via (4.68). Since y ≥ 0 was assumed we obtain
0 ≤ −(Axy+By) such that −δ(Axy+By) ≥ 0 since δ > 0. From
(4.68) and (4.70) we obtain−Ax−Cy−B+C > −Ax−Cy−B ≥ 0
and Q(x, y) > 0 follows.

(b) If y < 0 and Ax + B ≥ 0 we obtain Axy + By ≤ 0 and hence
−δ(Axy + By) ≥ 0 such that we can conclude as in the previous
case.

(c) If y < 0 and Ax+B < 0 then we get from (4.69) that x ≤ y < 0.
Using (4.70) this gives −Ax ≤ −Ay < 0. Hence the assumption
Ax+ B < 0 implies B < Ax+ B < 0 and B < −Ax ≤ −Ay < 0.
Multiplying these inequalities of negative numbers, we obtain

B2 > −Ay(Ax+B).

Since B < 0 we obtain B2 > 0 and using C > 0 we now have

C >
−AC
B2

(Axy +By).

Because y < 0 and Ax+B < 0 was assumed in this case, we have
Axy + By > 0. Moreover, −A > 0 and C > 0 as well as B 6= 0
imply −AC

B2 > 0. For each δ that satisfies 0 < δ < −AC
B2 we get

C > δ(Axy +By).

From (4.68) we finally obtain

−Ax− Cy −B + C ≥ C > δ(Axy +By)

and hence Q(x, y) = −Ax− Cy −B + C − δ(Axy +By) > 0.
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This concludes all cases and – hence – finishes the proof.

We will now use the discriminant as a tool to separate different cases and
– therefore – have

Notation 4.9.23. For a Matrix A =

[
w x
y z

]
, denote its trace w+z by Tr(A)

(such that Discr(A) = Tr(A)2 − 4 det(A)).

Recall that for a Matrix M =

[
−A B
−D C

]
, this implies that we have

Discr(M) = (A+ C)2 − 4BD.
We will now investigate the support property for CP-glued pre-stability

conditions with negative discriminant.

Lemma 4.9.24. Let σ = (Z,H) = (T, f) be a pre-stability condition ob-
tained by CP-gluing via 〈D1,D2〉 from stability conditions σ1, σ2 such that

Discr(M) < 0. For h ∈ G̃L
+

2 (R), we have that σh is a pre-stability condition
obtained by CP-gluing via 〈D1,D2〉 from stability conditions σ1h, σ2h.

Proof. Without loss of generality we can assume h = (Kr, fr), since the
feature of two hearts of t-structures on D to fulfil CP-gluing condition is
invariant under anything but rotation. Let σ′i = σih = (Z ′i,H′i) for i ∈ {1, 2}.
Let σ1 = σ2(T, f) and Pi the slicing of σi. Then P1(t) = P2(f(t)). If
we let P ′i be the slicing of σ′i then P ′1(t) = P1(fr(t)) = P2(f(fr(t))) and
P ′2(t) = P2(fr(t)). Letting t = 0 and t = 1 respectively and fr(0) = r we
obtain

H′1 = P2(f(r), f(r) + 1] and H′2 = P2(r, r + 1].

Since the restrictions of f and T to S1 agree and via Discr(M) < 0 the
eigenvalues of M are not inR, there is no (eigenvalue) x′ ∈ R with f(x′) = x′.
Since f(0) ≥ 0 we therefore have f(r) > r for any r ∈ R. Applying corollary
3.2.31 combined with lemma 3.1.16 proves that σh is a pre-stability condition
obtained by CP-gluing via 〈D1,D2〉 from stability conditions σ1h, σ2h.

Lemma 4.9.25. Let σ = (Z,H) be a pre-stability condition obtained by
CP-gluing via 〈D1,D2〉 from stability conditions σ1, σ2 and assume that 0 ≤
f(0) < 1 such that Discr(M) < 0. If E = E1

ϕ−→ E2 ∈ H is a σ-semistable
object with =(Z2(E1)) < 0. Then E1 ∈ H2[1].

Proof. By the definition of a heart obtained by CP-gluing (see lemma 3.1.5),
E2 ∈ H2, since E ∈ H was assumed. By lemma 4.9.24, we have that for

each h ∈ G̃L
+

2 (R), the object σh is a CP-glued pre-stability condition. As
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σ1 = σ2g, if we apply g−1, then σ′ = σg−1 is glued from stability condi-

tions σ2, σ2g
−1 = (Z ′,H′) with respect to 〈D1,D2〉. Since the G̃L

+

2 (R)-action
does not change the fact that E is σ′-semistable, this gives E ∈ H′[n] for
some n. By lemma 3.1.5, we obtain E1 ∈ H2[n], because H2 is equal to
P1(f−1(0), f−1(1)] = P2(0, 1], where Pi are the slicings of σi, for i = 1, 2.
Since 0 ≤ f(0) < 1, we obtain that H2 ⊂ P1(−1, 1], which implies n = 0, 1.
We assumed =(Z2(E1)) < 0 and therefore we get that E1 ∈ H2[1].

Lemma 4.9.26. Let A = Coh(C) where C is an elliptic curve. Let σ =
(Z,H), obtained from CP-gluing via 〈D1,D2〉 be a pre-stability condition,
where σ1 = (Z1,H1) and σ2 = (Z2,H2), such that there is g = (T, f) ∈

G̃L
+

2 (R) with σ1 = σ2g where (T, f) satisfies that M = T−1 =

[
−A B
−D C

]
with

Discr(M) < 0 and 0 < f(0) < 1.

Then σ is a Bridgeland stability condition.

Proof. By 2.5.44 we need to prove that the support property is satisfied.
Firstly, we have Z1 = Z ◦ i1 and Z2 = Z ◦ i2 such that Z1 = MZ2 and will
for an E = (E1

ϕ−→ E2) ∈ D↑ use the following notation throughout the proof

d2 = −<(Z ◦ i2([ρ2(E)])), d1 = −<(Z ◦ i2([λ1(E)])),

r2 = =(Z ◦ i2([ρ2(E)])) and r1 = =(Z ◦ i2([λ1(E)])).

We have

Z(v) = Zi1λ1(v) + Zi2ρ2(v) = MZi2λ1(v) + Zi2ρ2(v)

= M

(
−d1

r1

)
+

(
−d2

r2

)
= Ad1 +Br1 − d2 + i(Dd1 + Cr1 + r2)

such that <(Z1i1λ1(v)) = Ad1 + Br1 and =(Z1i1λ1(v)) = Dd1 + Cr1 for
v ∈ N (D↑)⊗R ∼= R4.

We will investigate the quadratic form Q(v) := d1r2− r1d2 and start with
a number of facts that will allow us to prove that the support property holds,
namely

0 < f(0) < 1 and C + iD ∈ exp(iπf(0)) implies

=(C + iD) > 0, hence D > 0,
(4.71)

Discr(M) = (A+ C)2 − 4BD < 0 implies 0 ≤ (A+ C)2 < 4BD

such that (4.71) provides B > 0,
(4.72)
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qM(d, r) := Dd2 + (A+ C)dr +Br2 has discriminante equal to

Discr(M) = (A+ C)2 − 4BD < 0

such that (4.71) and (4.72) provide

qM(d, r) > 0 for all (d, r) 6= (0, 0),

(4.73)

E ∈ H implies λ1(E) ∈ H1, ρ2(E) ∈ H2 by 3.1.5

moreover, i1(H1) ∈ H, i2(H2) ∈ H
by corollary 3.2.19, such that all objects in the exact triangle

i2ρ2(E)→ E → i1λ1(E)
+−→

are in H and it therefore provides the short exact sequence

0→ i2ρ2(E)→ E → i1λ1(E)→ 0 ∈ H,

(4.74)

if E ∈ H is σ-stable then (4.74) implies

0 < φσ(i2ρ2(E)) < φσ(E) < φσ(i1λ1(E)) ≤ 1,
(4.75)

if E ∈ H then arguing as in (4.74),

Z(E), Z(i1λ1(E)), Z(i2ρ2(E)) ∈ H, therefore

r2 = =(Z(i2ρ2(E))) ≥ 0 and if r2 = 0

then − d2 = =(Z(i2ρ2(E))) < 0

analogously Dd1 + Cr1 ≥ 0 and if

Dd1 + Cr1 = 0 then Ad1 +Br1 < 0

(4.76)

and

E ∈ H, r1 > 0, if Dd1 + Cr1 = 0 then, by (4.77),

Ad1 +Br1 < 0 and

qM(d1, r1) = d1(Dd1 + Cr1) + r1(Ad1 +Br1) < 0

contradicting (4.73), such that Dd1 + Cr1 > 0.

(4.77)

We will now prove that Q
∣∣
ker(Z)

is negative definite. Let v ∈ ker(Z),

this is the case if and only if <(Z(v)) = =(Z(v)) = 0, which is equivalent
to d2 = Ad1 + Br1 and r2 = −(Dd1 + Cr1). Hence Q(v) = d1r2 − r1d2 =
−d1(Dd1 +Cr1)− r1(Ad1 +Br1) = −qM(d1, r1) < 0 by (4.73) (if r1 = d1 = 0
then r2 = d2 = 0 and hence v = 0). Hence Q

∣∣
ker(Z)

is negative definite.

We now have to prove that E ∈ H σ-stable then Q(E) ≥ 0 and distinguish
the following cases.
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1. If r2 = 0 then φσ(i2ρ2(E)) = 1, contradicting (4.75) and we can disre-
gard this case.

2. If r1 = 0 then (4.76) provides Dd1 + Cr1 ≥ 0 such that Dd1 ≥ 0
and therefore, by (4.71), d1 ≥ 0. By (4.76) we have r2 ≥ 0 such that
Q(E) = d1r2 − r1d2 = d1r2 ≥ 0

3. If r2 > 0, r1 > 0 then (4.75) provides φσi2ρ2(E) ≤ φσi1λ1(E) which
implies µσi2ρ2(E) ≤ µσi1λ1(E), in other words

−<(Zi2ρ2(E))

=(Zi2ρ2(E))
≤ −<(Zi1λ1(E))

=(Zi1λ1(E))

in other words

d2

r2

≤ −Ad1 −Br1

Dd1 + Cr1

.

Now, (4.73) provides qM(d1, r1) > 0 such that d1(Dd1+Cr1)+r1(Ad1+Br1) >
0 and hence

−Ad1 −Br1

Dd1 + Cr1

<
d1

r1

since r1 > 0 by assumption and, by (4.77), Dd1 + Cr1 > 0 as well. Hence,

d2

r2

<
d1

r1

and since r1, r2 > 0 this implies Q(E) = d1r2 − r1d2 > 0.

If r2 > 0, r1 < 0, we obtain by lemma 4.9.25, which is applicable because r1 <
0, that λ1(E) ∈ H2[1]. Since ρ2(E) ∈ H2 we obtain [ϕ] ∈ Hom<0

D↑(H2,H2) = 0
which implies E ∼= i1(E1) ⊕ i2(E2) by corollary 4.5.6. Since E stable either
E1 = 0 or E2 = 0 which contradicts r1, r2 > 0 such that we can disregard
this case.

Lemma 4.9.27. Let σ ∈ Θ1 normalised with Discr(M) ≥ 0 for the asso-

ciated matrix M and negative eigenvalues. Then there is an h ∈ G̃L
+

2 (R)
such that σh is obtained from CP-gluing stability conditions σ1h, σ2h via the
semiorthogonal decomposition 〈D1,D2〉 with σih = (Z ′i,H′i), i ∈ {1, 2} and

Hom≤1(i1(H′1), i2(H′2)) = 0.

Proof. The existence of real eigenvalues of T is provided from that of T−1

since Discr(M) ≥ 0. Let β < 0 be an eigenvalue of T with corresponding
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eigenvector v, in other words Tv = βv. Written in polar coordinates we have
v = m(cos(φ), sin(φ)) with φ ∈ (−π, π] and m ∈ R>0. However, by linearity
we can, without loss of generality assume m = 1.

We investigate σh where h = (Kφ, fφ) ∈ G̃L
+

2 (R). Firstly we consider
gh = (TKφ, f ◦ fφ). By the correspondence between f ◦ fφ and TKφ over
S1 it is sufficient for the computation of f ◦ fφ to compute TKφv0 where
v0 = (1, 0). We have (TKφ)v0 = Tv = βv. Therefore, if we study the
induced map f : S1 → S1, where S1 = (−1, 1], as β < 0, we show f ◦fφ(0) =
f(φ/π) = φ/π + 1. We distinguish between two cases

1. If −1 < φ/π ≤ 0 we have fφ(0) = f(φ/π) = φ/π + 1 on S1, such
that f ◦ fφ(0) = f(φ/π) = φ/π + 1 + 2k, k ∈ Z. We use that f is an
increasing function to see that −1 < φ/π ≤ 0 implies

−1 < f(−1) < φ/π + 1 + 2k ≤ f(0) < 1

which forces k = 0.

2. If 0 < φ/π ≤ 1 we have fφ(0) = f(φ/π) = φ/π − 1 on S1, such that
f ◦fφ(0) = f(φ/π) = φ/π−1+2k, k ∈ Z. We use that f is an increasing
function to see that 0 < φ/π ≤ 1 implies

0 < f(0) < φ/π − 1 + 2k ≤ f(1) < 2

which forces k = 1.

In essence, the consideration of both cases reveals f ◦ fφ(0) = f(φ/π) =
φ/π + 1. Now, let P ′2 be the slicing of σ2, then

H′1 = P2(f ◦ fφ(0), f ◦ fφ(1)] = P(φ/π + 1, φ/π + 2]

and H′2 = P2(fφ(0), fφ(1)] = P(φ/π, φ/π + 1]

Hence,
Hom≤1(i1(H′1), i2(H′2)) = 0

holds and σh is indeed obtained from CP-gluing by corollary 3.2.36.

We are finally ready to give the following important proposition.

Proposition 4.9.28. Let A = Coh(C) where C is s smooth projective curve.
If

σ ∈ Θ1 ∪Θ2 ∪Θ3

then σ satisfies the support property and is therefore a Bridgeland stability
condition.
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Proof. We will prove the statement for i = 1, where i = 2 and i = 3 follow
by applying the Serre functor. This is seen from

SD↑(Θ1) ∈ Θ2, SD↑(Θ2) ∈ Θ3, SD↑(Θ1) ∈ Θ1

(see (4.57)), and lemma 2.5.55.
Let σg be normalised and note that f(0) = 0 and Discr(M) < 0 is not

possible since f(0) = 0 forces D = 0 such that Discr(M) = (A+C)2−4BD =
(A+ C)2 ≥ 0. The proof falls into the following cases:

1. If f(0) ≥ 1, we obtain the result from lemma 4.9.1.

2. If 0 ≤ f(0) < 1 and Discr(M) ≥ 0, we have the existence of real
eigenvalues λ1, λ2 ∈ R. If λ1, λ2 > 0, then, by lemma 4.8.24 we can find

g ∈ G̃L
+

2 (R) such that σg is obtained via CP-gluing of two copies of
the same heart – therefore D = 0. By lemma 4.9.22 and the fact that

the support property is stable under the G̃L
+

2 (R)-action, we have that
σ fulfils the support property. If λ1, λ2 < 0, then lemma 4.9.27 there

is h ∈ G̃L
+

2 (R), such that σh is obtained by CP-gluing from σ1h, σ2h
via the semiorthogonal decomposition 〈D1,D2〉 with σih = (Z ′i,H′i) and
Hom≤1(i1H′1, i2H′2) = 0. We hence obtain the result from lemma 4.9.1.

3. If 0 < f(0) < 1 and Discr(M) < 0, the result is obtained from lemma
4.9.26.

We will now study the support property for pre-stability conditions in Γ.
We aim at proving proposition 4.9.36 broken down into a Series of lemmas,
which will – in turn – provide a key ingredient for establishing theorem 4.9.37.

Lemma 4.9.29. Let σ = (Z,H(C1, D1)) be a pre-stability condition in Γ. If
F ∈ A = Coh(C), C an elliptic curve, is µ-semistable, then i1(F ), i2(F ) and
∆(F ) are σ-semistable.

Proof. We consider a JHF of F with respect to µ. All the µ-stable factors
Ai, for i = 0, . . . , n, have the same slope µ(F ) and by lemma 4.8.35, we
additionally obtain that i2(Ai) is σ-stable and, by lemma 4.7.39 in H, for all
i ∈ {1, . . . , n}. As Z

∣∣
i2(A)

= Zµ, we obtain from the equality of the slopes

that φ(i2(Ai)) = φ(i2(F )) = λ, with λ ∈ R. Since the category P(λ) is closed
under extensions, we obtain that i2(F ) is σ-semistable. Now since F is µ-
semistable, we can use lemma 4.7.39 to see that i1(F ) is in H or in H[1] and
∆(F ) is in H or in H[1]. Since the slope determines the phase up to addition
of 2n, n ∈ Z, the same conclusion can be drawn for i1(F ) and ∆(F ).
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Lemma 4.9.30. Let A = Coh(C), C an elliptic curve and H be the heart of
a normalised pre-stability condition in Γ. We have H ∩D2 = i2(A).

Proof. Let E ∈ H, E = E1
ϕ−→ E2. Using the description of E’s cohomology

provided by lemma 4.8.5, assuming E ∈ D2 at the same time, we obtain
H0(E1) = H1(E1) = 0. By considering the long exact cohomology-sequence

induced by the exact triangle E1
ϕ−→ E2 → Cone(ϕ)

+−→, in D, we obtain
H−1(Cone(ϕ)) = H1(E2) = 0, which implies E ∈ i2(A).

On the other hand, lemma 4.7.39 provides i2(A) ⊂ H. Since obviously
i2(A) ⊂ D2, the proof is finished.

Lemma 4.9.31. Let A = Coh(C) and C be an elliptic curve. If E = E1
ϕ−→

E2 ∈ H is σ-semistable and σ = (Z,H) where σ is a normalised pre-stability
condition in Γ then E ∈ H12 or E ∈ H12[−1] or E ∈ H23[−1] or E ∈ H31.

Proof. By lemma 4.8.35, we have that i1(C(x)), i2(C(x)) and ∆(C(x)) are

σ-stable. There are elements g1, g2 ∈ G̃L
+

2 (R) with δi = σgi = (Wi,Bi)
for i = 1, 2, such that δ1 satisfies that i1(C(x)) is δ1-stable of phase one,
i2(C(x)),∆(C(x)) are δ1-stable and δ2 satisfies that ∆(C(x)) is δ2-stable of
phase one and i2(C(x)), i1(C(x)) are δ2-stable. We can apply lemma 4.8.3
to describes the cohomology of objects in the respective hearts.

If

• E ∈ H, then the cohomology of E1, E2 and K(E)[1] vanishes except
for

H0(E1), H1(E1), H0(E2), H1(E2), H−1(K(E)[1]) and H0(K(E)[1]),

• E ∈ B1, then the cohomology of E1, E2 and K(E)[1] vanishes except
for

H−1(E1), H0(E1), H−1(E2), H0(E2), H−1(K(E)[1]) and H0(K(E)[1]),

• E ∈ B2, then all its cohomology vanishes except for

H0(E1), H1(E1), H−1(E2), H0(E2), H−1(K(E)[1]) and H0(K(E)[1]).

Additionally we see from the exact triangle E1 → E2 → K(E)[1]
+−→ that

H i = 0 for all i ∈ Z for two of the objects, then H i = 0 for all i ∈ Z for the
third one as well.

Since E is δi-semistable we have that E ∈ Bi[n], for i = 1, 2 and n ∈ Z,
where the only possible cases are n = 1, 0,−1,−2. We study the non-trivial
cases.
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1. if E ∈ H∩B1[−2] then the only non-vanishing cohomology is H1(E1) =
H0(E1[1]) and H1(E2) = H0(E2[1]) such that E1[1] ∈ A and E2[1] ∈ A
and hence E ∈ H12[−1]

2. if E ∈ H∩B1[−1]∩B2[−1] then the only non-vanishing cohomology is
H0(E1[1]), H0(K(E)[1]), such that E ∈ H23[−1]

3. if E ∈ H ∩ B1[−1] ∩ B2 then, by similar arguments as in the previous
case E ∈ H13.

4. If E ∈ H ∩ B1 then H i(E1) and H i(E2) vanishes if i 6= 0 such that
E1, E2 ∈ A and therefore E ∈ H12.

Lemma 4.9.32. If D has a Serre functor, then

SD↑(H12) = H23[1], SD↑(H23) = H31[2], SD↑(H31) = H12[1]

Proof. We obtain this from combining (4.35) with definition 4.8.1.

Lemma 4.9.33. Let A = Coh(C) and C be an elliptic curve and E = E1
ϕ−→

E2 ∈ Hij be σ-semistable in H, where (ij) is an element of the set of ordered
pairs {(12), (31), (23)} and σ = (Z,H) and σ a pre-stability condition in Γ.
Then we have HomD↑(E,E[2]) = 0.

Proof. Assume that E ∈ H12 = A↑. We have E ∈ A↑ ∩ H = F , where
H = 〈F , T [−1]〉 as in lemma 4.8.5. Additionally,

HomD↑(E,E[2]) = HomD↑(E[2], SD↑(E))∗ = Hom(E[1], E2 → Cone(ϕ))∗

and it therefore suffices to prove that Hom(E[1], E2 → Cone(ϕ)) = 0.

Consider the exact triangle i2(Cone(ϕ)) → SD↑(E)[−1] → i1(E2)
+−→

which, via applying the Hom-functor, induces a long exact sequence which
implies that it is enough to prove that HomD↑(E[1], i1(E2)) = 0 and that
HomD↑(E[1], i2(Cone(ϕ))) = 0. We obtain the first vanishing from the fact
that we have HomD↑(E[1], i1(E2)) = HomDb(C)(E1[1], E2) = 0 provided by
E1, E2 ∈ A combined with the fact that A is the heart of a t-structure on D.
We must therefore prove that HomD↑(E[1], i2(Cone(ϕ))) = 0.

1. If ker(ϕ) = 0, we obtain that Cone(ϕ) = coker(ϕ) and via K[1] a i2
this implies

HomD↑(E[1], i2(Cone(ϕ))) = HomD↑(E[1], i2(coker(ϕ)))

= HomD↑(coker(ϕ)[1], coker(ϕ)) = 0.



179

2. If ker(ϕ) 6= 0, we will obtain the Hom-vanishing by showing that φ(E)+
1 > φ+(i2(Cone(ϕ))), to which end we now compute φ+(i2(Cone(ϕ))).
By lemma 4.9.30, we have thatH∩D2 = i2(A) and hence i2(Cone(ϕ)) /∈
H. Therefore we need to consider its filtration in the t-structure induced
by H, given by

0 i2(ker(ϕ))[1] i2(Cone(ϕ))

H−1(i2(Cone(ϕ)))[1] H0(i2(Cone(ϕ)))[1]

with H−1(i2(Cone(ϕ)))[1] ∈ i2(A)[1] ⊂ H[1], H0(i2(Cone(ϕ)))[1] ∈
i2(A) ⊂ H. By definition, φ+(i2(Cone(ϕ))) = φ+(i2(ker(ϕ))) + 1. We
examine the HN-filtration 0 ⊂ H1 · · · ⊂ Hn−1 ⊂ Hn = i2(ker(ϕ))
of i2(ker(ϕ)) in H with respect to σ. Lemma 4.9.29 provides that if
F ∈ A is µ-semistable then i2(F ) is σ-semistable. Therefore, we con-
sider the HN-filtration of ker(ϕ) with respect to µ. Since i2(A) ⊂ H
and Z

∣∣
i2(A)

= Zµ, we obtain a filtration that fulfils all the condi-

tions of a HN-filtration of i2(ker(ϕ)) in H with respect to σ. By the
uniqueness of the HN-filtration, we deduce that Hi ∈ i2(A), for all
i = 0, . . . , n. Moreover, we have that H1 6= 0 is σ-semistable and
φ(H1) = φ+(i2(ker(ϕ))) = φ+(i2(Cone(ϕ)))− 1.

Let H1 = i2(F1), with F1 ∈ A. By definition we have F1 ⊂ ker(ϕ). As
ker(ϕ)→ 0 is a subobject of E in A↑ and F is closed under subobjects
we obtain F1 → 0 ∈ F ⊂ H. Since F1 is µ-semistable, we use lemma
4.9.29 to see that i1(F1) too is σ-semistable. Moreover, we have a non-
zero morphism i1(F1)→ E. As both i1(F1) and E are σ-semistable this
implies φσ(i1(F1)) ≤ φσ(E).

Let d = deg(F1) and r = rank(F1). By the definition of F , using lemma
4.8.16, we get that ker(ϕ) and therefore F1 is torsion-free, implying
r > 0. As i1(F1) ∈ F , we also have that Cr + Dd ≥ 0. Moreover,
D < 0 and Discr(M) < 0 implies that φ(H1) < φ(i1(F1)) holds true.
Therefore, we obtain φ+(i2(Cone(ϕ))) − 1 = φ(i2(F1)) < φ(E), which
is what we wanted to prove.

We obtain the statement when E ∈ H31 or E ∈ H23 by applying the
Serre functor – lemma 4.9.32 provides, in particular,

SD↑(H23) ⊂ H31[2], SD↑(H31) ⊂ H12[1]
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such that E ∈ H23 σ-semistable provides

HomD↑(E,E[2]) = HomD↑(S
2
D↑(E), S2

D↑(E[2]))

by the previous and since E is S2
D↑(σ)-semistable by lemma 2.5.54 and

S2
D↑(σ) ∈ Γ by 4.8.38, we have HomD↑(S

2
D↑(E), S2

D↑(E[2])) = 0. Similarly,
E ∈ H31 σ-semistable provides

HomD↑(E,E[2]) = HomD↑(SD↑(E), SD↑(E[2])) = 0.

Corollary 4.9.34. Let A = Coh(C) and C be an elliptic curve. If E is
σ-stable where σ is a pre-stability condition in Γ, then HomD↑(E,E[2]) = 0.

Proof. Because of lemma 4.9.31 and since stable implies semistable, lemma
4.9.33 applies – the shift does not change the vanishing of the Hom.

Lemma 4.9.35. Let A = Coh(C) and C be an elliptic curve. If E = (E1
ϕ−→

E2) ∈ D↑ is a σ-stable object, where σ is a pre-stability condition in Γ, then
−χ(E,E) = d2r1 − d1r2 ≥ 0.

Proof. The proof falls into two cases:

1. [ϕ] = 0. This implies that either E1 = 0 or E2 = 0, as otherwise,
by corollary 4.5.6, E would be a direct sum of non-zero i1(E1) and
i2(E2) and we would obtain a contradiction to the assumption that E
is σ-stable and therefore cannot be written as a direct sum of non-zero
subobjects. It follows that −χ(E,E) = 0.

2. [ϕ] 6= 0. As χ(E[n], E[n]) = χ(E,E) for all n ∈ Z we may assume
E ∈ H and since H is the heart of a bounded t-structure, we have
that HomD↑(E,E[n]) = 0 for all n < 0. By corollary 4.9.34, we have
that HomD↑(E,E[2]) = 0 and so A↑ has homological dimension 2,
which implies that H23[−1] and H31 also have homological dimension
2. Therefore, it follows that HomD↑(E,E[n]) = 0 for n ≥ 2. As a
consequence, we obtain −χ(E,E) = − homD↑(E,E)+homD↑(E,E[1]).

Since E was assumed to be σ-stable, it follows that − homD↑(E,E) =
−1. To prove our claim, it therefore suffices to show that the strict
inequality homD↑(E,E[1]) > 0 holds. We have homD↑(E,E[1]) =

hom(E[1], SD↑(E)) where SD↑(E) = E2[1]
iE [1]−−→ Cone(ϕ)[1]. We also

have homD↑(E[1], SD↑(E)) > 0 because there is a non-zero morphism
E → SD↑(E)[−1]. Therefore, −χ(E,E) = d2r1 − d1r2 > 0.
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Proposition 4.9.36. Let A = Coh(C) and C be an elliptic curve. Let
σ = (Z,H) on D↑ be a pre-stability condition in Γ, then σ satisfies the
support property and therefore it is a Bridgeland stability condition.

Proof. We will prove that σ satisfies the support property with respect to
the quadratic form Q(r1, d1, r2, d2) = d2r1− d1r2. We – using a normalised σ
combined with the fact that the group action preserves the support property
– have

ker(Z) = {(r1, d1, r2, d2) | d2 = Ad1 +Br1 and r2 = −Cr1 −Dd1}.

Let (r1, d1, r2, d2) ∈ ker(Z), then Q(r1, d1, r2, d2) = Dd2
1+(A+C)d1r1+Br2

1 <
0. Since −1 < f(0) = r < 0, we have that D < 0. Moreover, since we
have Discr(M) = (A + C)2 − 4BD < 0, we additionally obtain B < 0 and
Dd2

1 + (A + C)d1r1 + Br2
1 < 0 for all (r1, d1) ∈ R2. Hence, Q is negative

definite in ker(Z).

Now, let E = E1
ϕ−→ E2 be a σ-semistable object. By [8, Lemma A.6] it

is enough to show that Q(E) ≥ 0 for σ-stable objects. By lemma 4.9.35 we
have that d2r1 − d1r2 ≥ 0 and the proof is finished.

Theorem 4.9.37. Let A = Coh(C) where C is an elliptic curve. Then

pre Stab(D↑) = Stab(D↑).

Proof. Let σ ∈ pre StabD↑ then σ satisfies the support property and, there-
fore, is a Bridgeland stability condition. To see this apply proposition 4.9.28
for σ ∈ Θi, and proposition 4.9.36 for σ ∈ Γ. By theorem 4.8.36 these are
the only cases we need to consider.

4.10 Topological description of Stab(D↑)
It is now our purpose to study the topology of Stab(D↑) by investigating one
of it’s characterising subsets. The aim of this section is to prove that the set
S12 to be defined in 4.10.1 is an open, connected four dimensional complex
manifold. We start by introducing new language.

Definition 4.10.1. LetA = Coh(C) for a smooth projective curve C. Define
the sets

S12 = {σ ∈ Stab(D↑) | i1(C(x)), i2(C(x)), i1(OC), i2(OC) σ-stable},

S23 = {σ ∈ Stab(D↑) | i2(C(x)),∆(C(x)), i2(OC),∆(OC) σ-stable},
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and

S31 = {σ ∈ Stab(D↑) | i1(C(x)),∆(C(x)), i1(OC),∆(OC) σ-stable},

for all closed points x ∈ C.

The following lemma is a very useful – and intriguing – fact on Stab(D).
We will subsequently be able to use it with regard to Stab(D↑) also.

Lemma 4.10.2. Let A = Coh(C) for a smooth projective curve C. Let

M := {(m0,m1, φ0, φ1) ∈ R4 | φ1 < φ0 < φ1 + 1 and m0,m1 > 0}

There is a homeomorphism

ρ : Stab(D)→M
σ = (Z,H) 7→ (m0,m1, φ0, φ1)

where m0 = |Z(C(x))| and m1 = |Z(OC)|, φ0 = φσ(C(x)) and φ1 = φσ(OC).

Proof. The stability ofC(x) andOC in combination with HomA(OC ,C(X)) 6=
0 6= HomA(C(X),OC [1]) provides φ1 < φ0 < φ1 + 1. Moreover, m0,m1 > 0
by definition.

We obtain that ρ is continuous from two fact. Firstly from that, that the
operators φ−P(E) = φ−σ (E) and φ−P(E) = φ−σ (E) of [18, Section 3], considered
as functions on the set of slicings/stability conditions are equal whenever E
semistable (which is the case for E = C(x) and for E = OC) and – that
is the point – are continuous. Secondly that, that the same holds for the
mass-function m of [18, Section 5].

Next, we will prove that ρ is bijective. Identifying σ with an element

(T, f) ∈ G̃L
+

2 (R) via σ = σµ(T, f), which is possible by theorem 2.5.51, we
must prove that T and f can be reconstructed from the vector (m0,m1, φ0, φ1).
We obtain T−1 as

T−1 =

(
−A B
−D C

)
wherem0 exp(πφ0i) = A+Di andm1 exp(πφ1i) = B+Ci. On the other hand,
to reconstruct f from (m0,m1, φ0, φ1), we need to provide f : R/2Z→ R/2Z,
which is given by the formula

f(t) =

1

π
(arg(m1(sin(φ1π) cos(tπ)− cos(φ1π) sin(tπ)

+im0(m1(sin(φ1π) cos(tπ)− cos(φ1π) sin(tπ)))),
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as well as n = bf(0)c. To obtain the latter, note that applying f to

−n < φ0 = f−1(1) ≤ −n+ 1

gives
f(−n) < 1 ≤ f(−n+ 1)

which – using the fact that f is increasing – provides

f(0)− n < 1 ≤ f(0)− n+ 1

and hence n ≤ f(0) < n+1 such that n is provided by φ0, given as n = bφ0c.
Finally, to see that ρ is a local homeomorphism, consider

ν : {(m0,m1, φ0, φ1) ∈ R4 | φ1 < φ0 < φ1 + 1 and m0,m1 > 0} → GL+
2 (R)

(m0,m1, φ0, φ1) 7→
(
−m0 cos(φ0π) m1 cos(φ1π)
−m0 sin(φ0π) m1 sin(φ1π)

)−1

which makes sense because the matrix above has det > 0.The map ν is a

covering and we have ν ◦ ρ = Z, where Z : Stab(D) ∼= G̃L
+

2 (R) → GL+
2 (R)

is the universal covering. Hence, ρ is a local homeomorphism. Combining all
this, we conclude that ρ is indeed a homeomorphism.

From now on we will, throughout this chapter, freely identify the following
three topological spaces:

G̃L
+

2 (R), Stab(D) and M.

These homeomorphisms are explicitly given by the identities:

σ = σµ(T, f), T−1 = M =

(
−A B
−D C

)
,

m0 = |Zσ(C(x))|,m1 = |Zσ(OC)|, φ0 = φσ(C(x)), φ1 = φσ(OC),

A+Di = m0 exp(iπφ0), B + Ci = m1 exp(iπφ1), f(φ0) = 1,

m0 = |A+Di|,m1 = |B + Ci|, φ0 = f−1(1) and φ1 = f−1(1/2).

(4.78)

Definition 4.10.3. LetA = Coh(C) for a smooth projective curve C. Define

P12 = {(σ1, σ2) ∈ (G̃L
+

2 (R))2 | φ0 < φ2 + 1, φ1 < φ3 + 1

and if φ0 > φ2, then det(M1 +M2) > 0}

with φi, i ∈ {0, . . . , 3} as in lemma 4.10.2.
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Definition 4.10.4. Let A = Coh(C) for a smooth projective curve C. For
σ ∈ S12 define

φ0 = φσ(i1(C(x))), φ1 = φσ(i1(OC)), φ2 = φσ(i2(C(x))) and φ3 = φσ(i2(OC)).

We immediately obtain the following.

Lemma 4.10.5. Let A = Coh(C) for a smooth projective curve C. For
every σ ∈ S12, we have φ1 < φ0 < φ1 + 1 and moreover φ3 < φ2 < φ3 + 1
with φi, i ∈ {0, . . . , 3} as in definition 4.10.4.

Proof. This follows from the fact that i1(C(x)), i1(OC), i2(C(x)) and i2(OC)
are stable and the existence of non-vanishing morphisms between the respec-
tive pairs.

Lemma 4.10.6. Let A = Coh(C) for a smooth projective curve C. There is
a map

π : S12 → P12

σ 7→ ((m0,m1, φ0, φ1)(m2,m3, φ2, φ3)) = (σ1, σ2),

where we have σ = (Z,H) with m0 = |Z(i1(C(x)))|,m1 = |Z(i1(OC))|,
m2 = |Z(i2(C(x)))|, m3 = |Z(i2(OC))| and φi, i ∈ {0, . . . , 3} as in definition
4.10.4.

Proof. Since every σ ∈ S12 satisfies φ1 < φ0 < φ1 + 1 and φ3 < φ2 < φ3 + 1,
then by lemma 4.10.2 we have a unique stability condition σ1 given by
(m0,m1, φ0, φ1), where m0 = |Z(i1(C(x)))| and m1 = |Z(i1(OC))| and a
unique stability condition σ2 given by (m2,m3, φ2, φ3), where we have m2 =
|Z(i2(C(x)))| and m3 = |Z(i2(OC))|. Therefore, we obtain two stability con-
ditions σ1 = (Z1,H1) = (T1, f1) and σ2 = (Z2,H2) = (T2, f2) in Stab(D) and
define π as σ 7→ (σ1, σ2).

Lemma 4.10.7. The map π is well-defined, continuous, open and G̃L
+

2 (R)-
equivariant.

Proof. We have that G̃L
+

2 (R) acts freely on S12. As π is defined in terms

of the slicing, we obtain a G̃L
+

2 (R)-equivariant continuous map from S12 to

G̃L
+

2 (R)× G̃L
+

2 (R).
We now show that (σ1, σ2) ∈ P12. First we prove that m − n ≥ −1. Let

with φi, i ∈ {0, . . . , 3} as in definition 4.10.4. Since i1(C(x)), i2(C(x)) are
stable and we have a non-zero morphism i1(C(x)) → i2(C(x))[1], it follows
that φ0 − φ2 < 1.
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If φ0 > φ2, then by lemma 4.5.31 we get that ∆(C(x)) is stable. We show
now that in this case det(M1 +M2) > 0. By the equivariance of π we obtain

that there is g ∈ G̃L
+

2 (R) such that by acting by g we obtain a stability
condition σ

′
= σg such that π(σ

′
) = (σ1g, σµ). Let σ

′
= σ1g = (T

′
, f
′
)

and M
′

= T
′−1
. By lemma 4.8.15, we have det(M

′
+ I) > 0. Note that

M
′
= M−1

2 M1, therefore

0 < det(M−1
2 M1 + I)

= det(M−1
2 M1) + det(I) + det(M−1

2 M1) Tr(M−1
2 M1)

= det(M2)−1 det(M1) + 1 + det(M2)−1 det(M1) Tr(M−1
2 M1)

= det(M2)−1(det(M1) + det(M2) + det(M1) Tr(M−1
2 M1))

= det(M2) det(M1 +M2).

As φ3 < φ2 < φ3 +1, we obtain det(M2) > 0. This implies det(M1 +M2) > 0.
Moreover, as i1(OC) and i2(OC) are σ-stable and there is a non-zero mor-
phism i1(OC)→ i2(OC)[1], we obtain φ1 < φ3 + 1.

Since π′ : S12 → GL+(2,R)2 is a local homeomorphism, where π′ maps a
stability condition to it’s stability function, the fact that π is a local home-

omorphism follows from the fact that p ◦ π = π′, where p : G̃L
+

2 (R) →
GL+(2,R) is the universal covering.

We require some technical language in order to prepare the proof of propo-
sition 4.10.27.

Definition 4.10.8. Define

• the set

V12 = {σ ∈ S12 | π(σ) = (σ1, σ2) such that σ2 = σµ},

• furthermore

L12 = {(σ, σµ) ∈ G̃L
+

2 (R)2 | f(0) > −1, 3/2 > f−1(1/2)

and if f(0) < 0 then det(M + I) > 0},

• moreover we define

Y to be the set of all (m0,m1, φ0, φ1) where

mi > 0, φ0 < 2, φ1 <
3

2
, φ1 < φ0 < φ1 + 1

and if 1 ≤ φ0 < 2 and 0 < φ1 <
3

2
, then δ(m0,m1, φ0, φ1) > −1, where

δ : R>0 ×R>0 × (1, 2)×
(

0,
3

2

)
→ R is given by

(m0,m1, φ0, φ1) 7→ m0m1 sin((φ0 − φ1)π)−m0 cos(φ0π) +m1 sin(φ1π)
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• and finally
π0 = π

∣∣
V12
.

We prove the following lemmas for the newly-defined sets.

Lemma 4.10.9. The set Y is connected.

Proof. We denote M by M =

(
−A B
−D C

)
, and have A + Di = m0 exp(iπφ)

as well as B + Ci = m1 exp(iπφ) and set

a := cos(φ0π), d := sin(φ0π), b := cos(φ1π), c := sin(φ1π),∆ := bd− ac

such that

det(M) = BD − AC = m0m1(bd− ac) = m0m1 sin((φ0 − φ1)π) > 0

and Tr(M) = C − A = m1c−m0a.

Moerover,

δ = det(M) + Tr(M) = det(M + I)− 1 > −1 ⇐⇒ det(M + I) > 0.

Now ∆ > 0 provides δ = m0m1∆ + m1c−m0a > −1 ⇐⇒ m0m1 + m1
c
∆
−

m0
a
∆
> − 1

∆
which in turn is true if and only if m1(m0 + c

∆
)− a

∆
(m0 + c

∆
) >

− 1
∆
− ac

∆2 which holds true if and only if (m0 + c
∆

)(m1 − a
∆

) > −∆+ac
∆2 =

bd
∆2 =: R. For fixed φ0, φ1 we now consider a set (m0,m1, φ0, φ1) ∈ Y . Its
connectedness is obvious except in the case where φ1 > 0 and φ0 ≥ 1. If
in this case R ≤ 0 then we see that the set is connected. On the other
hand, this is not clear if in this case R > 0. The connectedness then is in
question if simultaneously with R > 0 we had m0 < − c

∆
and at the same

time m1 <
a
∆

and hence, using m0,m1 > 0 as well as ∆ > 0, that a > 0 and
c < 0. However, using R = bd

∆2 reveals that the very case of a > 0 and c < 0
cannot occur simultaneously with R > 0. Hence, all fibres of the projection

Y
P−→ X ∈ R2,

(m0,m1, φ0, φ1) 7→ (φ0, φ1)

where X = {(φ0, φ1) | ∃ m0,m1 such that (m0,m1, φ0, φ1) ∈ Y } are con-
nected and non-empty.

Therefore, consider S( 1
10
, 1

10
, φ0, φ1) for all (φ0, φ1) ∈ X. Since δ =

m0m1∆ +m1c−m0a we obtain

|δ| ≤ |m0m1∆|+ |m1c|+ |m0a| ≤
1

10
(|∆|+ |c|+ |a|) ≤ 3

10
< 1
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such that δ > −1. If we now take Q,Q′ ∈ Y then we obtain that S(P (Q)) and
Q are in a path-connected component of P−1(φ0, φ1) and that S(P (Q′)) and
Q′ are in a path-connected component of P−1(φ′0, φ

′
1). Since X is connected,

there is a path from P (Q) to P (Q′) and therefore from S(P (Q)) to S(P (Q′))
(note that we use that connectedness and path-connectedness is the same in
a metric space). With this, the proof is finished.

Lemma 4.10.10. Let A = Coh(C) for a smooth projective curve C. We
have π0(V12) ⊂ L12.

Proof. We consider π(σ) = (σ1, σµ) where we need to prove that the re-
strictions on σ1 = σµ(T1, f1) and σµ are fulfilled. This is seen by using the
definition of P12 in 4.10.3, where we simply have M1 = (T1)−1,M2 = I, φ2 = 1
and φ3 = 1

2
with φi, i ∈ {0, . . . , 3} as in definition 4.10.4. Subbing these into

the definition of P12 now provides the result – for instance, consider the con-
dition φ1 < φ3 + 1 = 1

2
+ 1 = 3

2
. Since f−1

1 (1
2
) = φ1 (see (4.78)) we obtain

f−1
1 (1

2
) < 3

2
.

Lemma 4.10.11. Let A = Coh(C) for a smooth projective curve C. If

σ ∈ V12 and π0(σ) = (σµg, σµ) with g = (T, f) ∈ G̃L
+

2 (R) and 0 ≤ f(0) then
σ ∈ Θ12.

Proof. Let φi, i ∈ {0, . . . , 3} as in definition 4.10.4. If ∆(C(x)) is σ-stable, its
stability provides φ2 < φ(∆(C(x))) < φ0. Let bf(0)c = n. Since φ2 = 1 we
obtain 1 < φ0 ≤ −n+1 such that −n > 0. We obtain bf(0)c = n ≤ −1 which
provides f(0) < 0 and that is a contradiction. Hence, letting X = C(x) we
have X ∈ D stable for which ∆(X) is not σ-stable such that the result follows
by theorem 4.5.29.

Lemma 4.10.12. Let A = Coh(C), for a smooth projective curve C. If

σ ∈ V12 and π0(σ) = (σµg, σµ) with g = (T, f) ∈ G̃L
+

2 (R) and 0 > f(0) > −1
then ∆(C(x)) is σ-stable.

Proof. Let φi, i ∈ {0, . . . , 3} as in definition 4.10.4. Let bf(0)c = n. If we
assume ∆(C(x)) to be not σ-stable, then we obtain by corollary 4.5.21 and
lemma 4.5.31 that φ0 ≤ φ2. Since φ2 = 1 we obtain −n < φ0 ≤ 1 such that
n > −1. We obtain f(0) ≥ bf(0)c = n ≥ 0 which is a contradiction.

Lemma 4.10.13. The map

ρ : L12 → Y ⊂ R4

(T, f) 7→ (m0,m1, f
−1(1), f−1(

1

2
))

with m0 = |A+Di|,m1 = |B + Ci| is a homeomorphism.
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Proof. Let φi, i ∈ {0, . . . , 3} as in definition 4.10.4. It suffices to prove that
Y is the image of L12 under the map defined in lemma 4.10.2. Let σ1 ∈ L12.
We have m0,m1 > 0 for start. We will cumulatively use that f is increasing.
First of all this implies that we obtain 0 > f−1(−1) from f(0) > −1. Hence
we obtain

2 > f−1(−1) + 2 = f−1(−1 + 2) = f−1(1) = φ0,

as well as

φ1 = f−1(
1

2
) < f−1(1) and

φ1 = f−1(
1

2
) < f−1(1) = φ0 = f−1(1) < f−1(

3

2
)

= f−1(
1

2
+ 1) = f−1(

1

2
) + 1 = φ1 + 1.

Additionally, we have φ1 = f−1(1
2
) < 3

2
by assumption and if f(0) ≥ 0, and

hence f(1) ≥ 1 we obtain 1 ≥ f−1(1) = φ0. If, on the other hand, f(0) < 0,
we obtain

1 < f−1(1) = φ0 = f−1(1) < 2 and 0 < f−1(
1

2
) = φ1 = f−1(

1

2
) < 2.

We now use det(M + I) > 0 together with

A+Di = m0(cos(f−1(1)π) + i sin(f−1(1)π))

B + Ci = m1(cos(f−1(
1

2
)π) + i sin(f−1(

1

2
)π))

provided by the correspondence between M and f−1, which gives

−1 < det(M + I)− 1 = δ(m0,m1, f
−1, f−1(

1

2
)).

Lemma 4.10.14. The set L12 ⊂ P12 is open and connected.

Proof. Define

U1 = {g ∈ G̃L
+

2 (R) | f(0) > 0} and

U2 = {g ∈ G̃L
+

2 (R) | 1

2
> f(0) > −1, det(M + I) > 0 and f−1(

1

2
) <

3

2
}.

The sets U1 and U2 are open in G̃L
+

2 (R) and U1 ∪ U2 ⊂ L12.
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Let g ∈ L12, if f(0) 6= 0 we have g ∈ U1 ∪ U2. If f(0) = 0 we have
−A,C ∈ R>0 which gives Tr(M) > 0, hence det(M + I) > 0 and therefore
g ∈ U2 which provides L12 ⊂ U1 ∪U2 and hence L12 = U1 ∪U2 such that L12

is open.
Since Y from definition 4.10.8 is connected, by lemma 4.10.9 we obtain

by lemma 4.10.13 that L12 too is connected.

In preparation of case 1 of the proof of proposition 4.10.27, we have the
following lemmas. We start by considering the situation where both σ1 and
σ2 have the abelian category A as their heart.

Lemma 4.10.15. Let A = Coh(C) for an elliptic curve C. Let Z1 be a stabil-
ity function on A. There is a stability condition obtained by CP-gluing from
σ1 = (Z1,A) and σ2 = σµ via the semiorthogonal decomposition 〈D1,D2〉.

Proof. We must prove the HN-property – the result then follows from 4.9.28.
In this situation CP-gluing conditions are fulfilled and the resulting heart
is A↑. Since under the conditions of this lemma we have φ0 = 1 and so
A+Di = m0 exp(iπ) = −m0. In particular, D = 0 and A = −m0 < 0.

We use [4, Corollary 3.6] to prove the HN-property. Let E = E1 → E2 ∈
A↑ and consider subobjects F = (F1 → F2) of E. Let rEi , d

E
i , r

F
i , d

F
i be

rank and degree of Ei and Fi. The class of E in the numerical Grothendieck
group is given by (rE1 , d

E
1 , r

E
2 , d

E
2 ) ∈ Z4 and we have Z(E) = AdE1 − dE2 +

BrE1 + i(CrE1 + rE2 ). We need to prove that there are only finitely many
classes (rF1 , d

F
1 , r

F
2 , d

F
2 ) coming from sub-objects F ⊂ E that satisfy AdF1 −

dF2 + BrF1 < max{0, AdE1 − dE2 + BrE1 }. Because degrees of subsheaves are
bounded above by by lemma 4.7.18, there exist integers M1,M2 that may
depend on E but not on F such that dF1 ≤M1 and dF2 ≤M2. Because A < 0
we need only concern ourselves with such F ⊂ E for which

AM1 ≤ AdF1 < max{0, AdE1 − dE2 +BrE1 }+ dF2 −BrF1 , (4.79)

in particular AM1 < max{0, AdE1 − dE2 +BrE1 }+ dF2 −BrF1 . Because F ⊂ E
provides 0 ≤ rF1 ≤ rE1 , this leads to the inequality

AM1 −max{0, AdE1 − dE2 +BrE1 }+ min{0, BrE1 } < dF2 < M2.

Now, since rF1 and dF2 are integers we obtain that there are only finitely many
pairs (rF1 , d

F
2 ) arising from subobjects F ⊂ E that satisfy the required con-

dition. We see from (4.79) that there is only a finite number of dF1 occurring
for each such pair such that the number of classes of subobjects F ⊂ E for
which <(Z(F )) < max{0,<(Z(E))} is finite and therefore the conditions for
[4, Corollary 3.6] are fulfilled and the proof finished.
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Proposition 4.10.16. Let A = Coh(C) for an elliptic curve C. If σ2 ∈
Stab(D) and σ1 = σ2(T, f) ∈ Stab(D) with f(0) ≥ 0, then there is a stability
condition obtained by CP-gluing σ1 and σ2 via the semiorthogonal decompo-
sition 〈D1,D2〉.

Proof. It is sufficient to prove that the HN-property is fulfilled – because the
support property then follows from 4.9.28. Assume Pi to be the slicing of σi.
We use

Hom≤0
D↑(i1P1(θ, θ + 1], i2P2(θ, θ + 1])

= Hom≤0
D↑(i1P2(f(θ), f(θ) + 1], i2P2(θ, θ + 1]) = 0

if and only if f(θ) ≥ θ applying lemma 3.2.30. Via [21, Theorem 3.6], this
reduces the problem to proving that there is a θ ∈ (0, 1) with f(θ) ≥ θ. Now
we consider different cases.

1. If f(0) ≥ 1 we use θ ∈ (0, 1) to see that f(θ) ≥ f(0) ≥ 1 ≥ θ.

2. If 1 > f(0) > 0 we obtain from the correspondence between f and T

(definition of G̃L
+

2 (R)) that for T−1 =

(
−A B
−D C

)
we obtain

f(θ) =
1

π
arg(C cos(θπ)−B sin(θπ) + (−A sin(θπ) +D cos(θπ)i).

From 1 > f(0) > 0 we obtain D > 0 which implies that there is a

θ ∈ (0, 1) such that cot(θπ) =
A

D
and hence −A sin(θπ) +D cos(θπ) =

0. Then D(C cos(θπ) − B sin(θπ)) = DC cos(θπ) − DB sin(θπ) =
AC sin(θπ)−DB sin(θπ) = − det(T−1) sin(θπ) such that

f(θ) =
1

π
arg(− det(T−1) sin(θπ)) = 1 > θ provided by det(T−1) ≥ 0.

3. If f(0) = 0 then σ1 and σ2 have the same heart Pµ(s, s + 1] where
s ∈ R. Apply a shift [−dse] to reduce the problem to a situation where
the (common) heart is simply Pµ(r, r + 1], r ∈ (−1, 0]. If r = 0 apply
lemma 4.10.15. Otherwise we adapt the strategy of lemma 4.10.15.
Glue two copies of Pµ(r, r + 1] (the hearts of σ1, σ2) and obtain the
heart obtained by CP-gluing Pl(r, r+1] = (A↑)l (see definition 4.8.23).
Now consider a torsion pair 〈Pl(0, r + 1],Pl(r, 0]〉 for this (abelian)
category and obtain for any E ∈ Pl(r, r + 1] an exact sequence

0→ E ′ → E → E ′′[−1]→ 0,
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where E ′ ∈ Pl(0, r+1] and E ′′ ∈ Pl(r+1, 1] and therefore E ′, E ′′ ∈ A↑.
For any subobject F ⊂ E we obtain an analogous sequence such that

0 −−−→ F ′ −−−→ F −−−→ F ′′[−1] −−−→ 0yf ′ yf yf ′′[−1]

0 −−−→ E ′ −−−→ E −−−→ E ′′[−1] −−−→ 0

(4.80)

where we obtain f ′ from Hom(F ′, E ′′[−1]) = 0 provided by the induced
torsion pair 〈Pµ(0, r + 1],Pµ(r, 0]〉 and hence f ′′ by [32, Section 1.1,
(TR3)]. Moreover f ′ is a monomorphism by the snake lemma. We use
the usual notation λ1(E) = E1, λ1(f) = f1 and ρ2(E) = E2, ρ2(f) = f2

for objects E and morphisms f and denote deg(Fi) by dFi and rank(Fi)
by rFi . In order to emulate the proof of lemma 4.10.15 we must prove
that there are only finitely many values possible for r′i and that the d′i
are bounded above. From

0→ E ′ → E → E ′′[−1]→ 0,

we obtain the equations dFi = deg(F ′i )− deg(F ′′i ) and rFi = rank(F ′i )−
rank(F ′′i ). Since f ′ is a monomorphism we have 0 ≤ rank(F ′i ) ≤
rank(E ′i). We must now prove that there are only finitely many values
for rank(F ′′i ). From the application of λ1 or ρ2 respectively to (4.80)
we firstly obtain the exact sequence

0→ K ′′i [−1]→ Q′i → Qi → Q′′i [1]→ 0 (4.81)

via the application of the snake lemma and secondly have the canonical
exact sequence

0→ K ′′i → F ′′i → E ′′i → Q′′i → 0 (4.82)

where Qi, Q
′
i and Q′′i are the cokernels of fi, f

′
i and f ′′i and K ′′i the kernel

of f ′′i . In the Grothendieck group we obtain

[K ′′i [−1]]− [Q′i] + [Qi]− [Q′′i [1]] = 0

from (4.81) and

[K ′′i ]− [F ′′i ] + [E ′′i ]− [Q′′i ] = 0

from (4.82). Adding these two equations and rearranging now provides
F ′′ = E ′′ − Q′ + Q and therefore rank(F ′′) = rank(E ′′) − rank(Q′) +
rank(Q). Since E ′′ and hence rank(E ′′) is fixed and there are only
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finitely many choices for rank(Q′) and rank(Q) there are only finitely
many choices for rank(F ′′).

To see that the dFi are bounded, we first recall that the degrees of
subsheaves of E ′i are bounded above by lemma 4.7.18. Because dFi =
deg(F ′i )−deg(F ′′i ) it is then sufficient to show that deg(F ′′i ) is bounded
below. Because there are only finitely many possible values for rank(F ′′i ),
this is equivalent to the slope of F ′′i being bounded below. That this
is indeed true follows from F ′′i ∈ Pµ(r + 1, 1] and r > −1, using
λ1(Pl(r + 1, 1]) = Pµ(r + 1, 1] = ρ2(Pl(r + 1, 1]). This finished the
proof for f(0) = 0 and hence the proof of the proposition too is fin-
ished.

Lemma 4.10.17. Let A = Coh(C) for an elliptic curve C. Let σ1, σ2, σ3 ∈
Stab(D).

1. If σ2 = σµ(T2, f2), σ3 = σµ(T3, f3) and f2(0)− f3(0) ≥ 1, then

σ23 ∈ Θ2 ⊂ Θ23 ⊂ S23 ⊂ Stab(D↑).

where σ23 is obtained by CP-gluing σ2 and σ3 via the semiorthogonal
decomposition 〈D2,D3〉.

2. If σ3 = σµ(T3, f3), σ1 = σµ(T1, f1) and f2(0)− f3(0) ≥ 1, then

σ31 ∈ Θ3 ⊂ Θ31 ⊂ S31 ⊂ Stab(D↑).

where σ31 is obtained by CP-gluing σ3 and σ1 via the semiorthogonal
decomposition 〈D3,D1〉.

Proof. We prove the first statement. We know from corollary 4.2.24 that
f2(0) − f3(0) ≥ 1 is equivalent to the CP-gluing condition for 〈D2,D3〉. We
define σ′1 = σ2[1] = σµ(−T2, f2 − 1) and σ′2 = σ3. Then A′1 = A2[−1] and
A′2 = A3. The CP-gluing condition for σ′1, σ

′
2 that produces the heart A′12

then is f2(0)− 1 ≥ f3(0), which is what we were given. We now obtain

E ∈ A′12 if and only if SD↑ [−1](E) ∈ A23.

Therefore, SD↑ [−1](σ′12) and σ23 have the same heart where σ′12 is the stability
condition obtained by CP-gluing σ′1 and σ′2 via the semiorthogonal decompo-
sition 〈D1,D2〉 and σ23 the stability condition obtained by CP-gluing σ2 and
σ3 via the semiorthogonal decomposition 〈D2,D3〉. Moreover, the stability
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functions agree as well. We therefore obtain SD↑(σ
′
12) = σ23 by applying

[21, Proposition 2.2(2)]. Proposition 4.10.16 implies now that σ23 has the
HN-property and the result follows.

For the proof of the second statement we define σ′2 = σ3, σ
′
3 = σ1 and

show that E ∈ A′23 if and only SD↑ [−1](E) ∈ A31.

Definition 4.10.18. Define

S = {OC ,C(x) | x ∈ C}.

In preparation of case 2 of the proof of proposition 4.10.27, we have the
following series of lemmas.

Lemma 4.10.19. Let A = Coh(C) for an elliptic curve C. Let (T, f) ∈ L12

satisfy f(0) < 0 and Discr(M) ≥ 0. Let λ1, λ2 be the eigenvalues of the
matrix M and let v = (cos(πθ), sin(πθ)) with θ ∈ [−1, 1) be an eigenvector
of M . Let g = (Kθ, fθ) be the rotation by πθ and let σ1 = σµ(T, f), σ2 = σµ
and σ3 = σµ(T3, f3), where T3 = (M + I)−1 and f3(0) ∈ [−1, 1).

• If λi < −1, then there is a stability condition obtained by CP-gluing σ2g
and σ3g via the semiorthogonal decomposition 〈D2,D3〉 in Stab(D↑).

• If −1 < λi < 0, then there is a stability condition obtained by CP-
gluing σ3g and σ1g via the semiorthogonal decomposition 〈D3,D1〉 in
Stab(D↑).

• If 0 < λi, then there is a stability condition obtained by CP-gluing σ1g
and σ2g via the semiorthogonal decomposition 〈D1,D2〉 in Stab(D↑).

Proof. The matrix T1 := T = M−1 has eigenvalues αi = 1/λi and the same
eigenvectors as M and the matrix T3 = (M + I)−1 has eigenvalues βi =
1/(1+λi) and the same eigenvectors asM (i ∈ {1, 2}). To maintain consistent
notation let f1(t) := f(t) and f2(t) = t.

Recall that −1 < f(0) < 0 is equivalent to 1 < φ0 < 2 implying that
A+Di = m0 exp(iπφ0) has negative imaginary part – in other words D < 0.
We obtain from the compatibility of f3 and M + I that exp(iπf3(0)) =
C+1+Di
|C+1+Di| . From D < 0 we see that −1 < f3(0) < 0 because we have assumed

f3(0) ∈ [−1, 1).
Assume λ to be the eigenvalue corresponding to the eigenvector v, α =

1/λ, β = 1/(1 + λ). then

Mv = λv, T1v = αv, T3v = βv.

We therefore have f1(θ) = θ+m where m = 2k is an even integer when α > 0
and m = 2k − 1 is an odd integer if α < 0 (k ∈ Z). A similar statement
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holds for f3(θ), but now the sign of β is determining the parity of the added
integer.

We will now prove k = 0 in all cases, that is, the added integer is in the
set {−1, 0}. We distinguish two cases. First we assume −1 ≤ θ < 0. When
h is one of the functions f1 or f3, we know that h is strictly increasing, which
means h(t+ 1) = h(t) + 1 and −1 < h(0) < 0. We therefore obtain

−2 < h(−1) ≤ h(θ) < h(0) < 0.

Using h(θ) = θ +m, we obtain

m− 1 ≤ h(θ) < m.

Combining these inequalities we get −2 < m and m−1 < 0 such that for the
integer m we now have m ∈ {−1, 0}. Now we assume 0 ≤ θ < 1 and obtain

−1 < h(0) ≤ h(θ) < h(1) < 1 as well as m ≤ h(θ) < m+ 1.

The combination of both equalities now gives −1 < m + 1 and m < 1, such
that m ∈ {−1, 0}. Considering the three different cases of the statement of
this lemma we obtain

• if λ < −1, then α, β < 0 such that f2(θ) = θ, f3(θ) = θ − 1 and hence
f2(θ)− f(θ) = 1,

• if −1 < λ < 0, then α < 0 < β < 1 such that f3(θ) = θ, f1(θ) = θ − 1
and hence f3(θ)− f1(θ) = 1 and

• if 0 < λ then 0 < α such that f1(θ) = θ, f2(θ) = θ such that f1(θ) −
f2(θ) = 0.

Writing σig = σµ(T ′i , f
′
i) gives f ′i(t) = fi(fθ(t)) = fi(t + θ) and so f ′i(0) =

fi(θ). Thus, in each case the corresponding CP-gluing condition is satisfied
for two of the three stability conditions σig which by proposition 4.10.16 and
lemma 4.10.17 finishes the proof.

Corollary 4.10.20. With the same assumptions and notation as in lemma
4.10.19, we have

• if λi < −1, then the stability condition obtained by CP-gluing σ2g and
σ3g via the semiorthogonal decomposition 〈D2,D3〉 is in S12,

• if −1 < λi < 0, then the stability condition obtained by CP-gluing σ3g
and σ1g via the semiorthogonal decomposition 〈D3,D1〉 is in S12 and
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• if 0 < λi, then the stability condition obtained by CP-gluing σ1g and
σ2g via the semiorthogonal decomposition 〈D1,D2〉 is in S12.

Proof. As above we write σi = σµ(Ti, fi) ∈ Stab(D) and let Zi denote the
stability function of σi. For i = 1, 3 we have −1 < fi(0) < 0. We obtain
1 < φσi(C(x)) < 2. Moreover Hom(OC ,C(x)) 6= 0 implies φσi(C(x)) − 1 <
φσi(OC) < φσi(C(x)) and therefore 0 < φσi(OC) < 2. This means that
φσi(OC) is determined by Zi(OC). Because the definition of L12 provides
φσ1(OC) = φ1 < 3/2, the complex number Z1(OC) is not in the fourth
quadrant. As

Z3(OC) = Z1(OC) + Z2(OC) = Z1(OC) + i,

Z3(OC) cannot be in the fourth quadrant either, in other words, this shows
0 < φσ3(OC) < 3/2.

We now study the three cases. First consider σ to be the stability condi-
tion obtained by CP-gluing σ2g and σ3g via the semiorthogonal decomposi-
tion 〈D2,D3〉. Then i2(X) is σ-stable for all X ∈ S,

φσ(i2(X)) = φσ2g(X) = f−1
θ (φσ2(X)) = φσ2(X)− θ

and φσ(∆(X)) = φσ3g(X) = f−1
θ (φσ3(X)) = φσ3(X)− θ

also. When i1(X) is not σ-stable we obtain φσ(∆(X)) ≥ φσ(i2(X)) + 1 from
the HNF/JHF, see corollary 4.5.21 and lemma 4.5.31. To prove stability of
i1(X) it hence suffices to show φσ(∆(X)) < φσ(i2(X))+1 which is equivalent
to φσ3(X) < φσ2(X) + 1.

When X = C(x) we have φσ2(X) + 1 = φσµ(C(x)) + 1 = 2. We have
seen above that φσ3(C(x)) < 2 and therefore i1(C(x)) must be σ-stable. For
X = OC we obtain the stability of i1(X) from φσ3(OC) < φσ2(OC) + 1 = 3/2
which we have seen before. This proves σ ∈ S12.

Now consider σ to be the stability condition obtained by CP-gluing σ3g
and σ1g via the semiorthogonal decomposition 〈D3,D1〉. Then i1(X) is σ-
stable for all X ∈ S,

φσ(∆(X)) = φσ3g(X) = f−1
θ (φσ3(X)) = φσ3(X)− θ

and φσ(i1(X)) = φσ1g(X) = f−1
θ (φσ1(X)) = φσ1(X)− θ

also. When i2(X) is not σ-stable we – similar as above – obtain φσ(i2(X)) ≥
φσ(∆(X)) + 1 from the HNF/JHF, again see corollary 4.5.21 and lemma
4.5.31. To prove stability of i1(X) it hence suffices to show φσ(i2(X)) <
φσ(∆(X)) + 1 which is equivalent to φσ1(X) < φσ3(X) + 1. For X = C(x)
we have seen above φσ1(C(x)) < 2 < φσ3(C(x)) + 1 such that i2(C(x)) must
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be σ-stable. For X = OC we have to show φσ1(OC) < φσ1(OC) + 1. Recall
Z1(OC) = B + iC and Z1(OC) = B + i(C + 1). When B ≥ 0, then Z1(OC)
is in the first quadrant, because 0 < φσ1(OC) = φ1 < 3/2. This puts Z3(OC)
into the first quadrant as well and hence φσ1(OC) < φσ3(OC) < φσ1(OC) + 1
implying that i2(OC) is σ-stable in this case. When B < 0, Z1(OC) and
Z3(OC) are both on the left half-plane such that 1/2 < φσ3(OC) < φσ1(OC) <
3/2. This provides us with

φσ1(OC) < 3/2 < φσ3(OC) + 1

and i2(OC) is σ-stable in this case as well. Hence we obtain σ ∈ S12.
Since Θ1 ⊂ Θ12 ⊂ S12, there is nothing to prove in the remaining case.

Corollary 4.10.21. With the same assumptions and notation as in lemma
4.10.19 we have π0(σg−1) = (T, f).

Proof. In corollary 4.10.20 we saw that each of the intervals (−∞,−1), (−1, 0)
and (0,∞) for the eigenvalues provides a different CP-gluing situation which
we will use to prove this corollary. For X ∈ S consider the three equations

Zσg−1(i1(X)) = KθZσ(i1(X)) = KθZσ1g(X) = Z1(X),

Zσg−1(i2(X)) = KθZσ(i2(X)) = KθZσ2g(X) = Z2(X)

and Zσg−1(∆(X)) = KθZσ(∆(X)) = KθZσ3g(X) = Z3(X)

and note that in each of the three CP-gluing situations, two of these three
equations hold true. In fact however we see from Z3 = Z1 +Z2 and [∆(X)] =
[i1(X)]+[i2(X)] that the third one also holds in all cases. It remains to show
that φσg−1(i1(X)) = φσ1(X) as well as φσg−1(i2(X)) = φσ1(X) for all X ∈ S.

If 0 < λi and we therefore obtain from corollary 4.10.20 that the stability
condition obtained by CP-gluing from σ1g and σ2g via the semiorthogonal
decomposition 〈D1,D2〉 is in S12, from the definition of gluing and of the

G̃L
+

2 (R)-action we obtain

φσg−1(i1(X)) = fθ(φσ(i1(X))) = fθ(φσ1g(X)) = fθf
−1
θ φσ1(X) = φσ1(X)

and

φσg−1(i2(X)) = fθ(φσ(i2(X))) = fθ(φσ2g(X)) = fθf
−1
θ φσ2(X) = φσ2(X)

for all X ∈ S.
If 0 < λi and we therefore obtain from corollary 4.10.20 that the stability

condition obtained by CP-gluing from σ2g and σ3g via the semiorthogonal
decomposition 〈D2,D3〉 is in S12, from the definition of gluing and of the

action G̃L
+

2 (R) we obtain φσg−1(i2(X)) = φσ2(X) and φσg−1(∆(X)) = φσ3(X)
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for all X ∈ S. We obtain via σ ∈ S12 that – in addition to i2(X) and ∆(X)
stable – we too have i1(X) σ-stable for X ∈ S. Hence i1(X), i2(X) and ∆(X)
are also σg−1-stable. This implies

φσg−1(i2(X)) < φσg−1(∆(X)) < φσg−1(i1(X)) < φσg−1(i2(X)) + 1

arguing in the usual way via the exact triangle i2(X)→ ∆(X)→ i1(X)
+−→.

Since φσg−1(i2(X)) = φσ2(X) ∈ {1, 1
2
} we obtain φσg−1(i2(X)) ∈ (0, 2). Be-

cause φσ1(X) ∈ (0, 2) and Zσg−1(i1(X)) = Z1(X) we obtain φσg−1(i1(X)) =
φσ1(X).

In the remaining case from corollary 4.10.20 we have φσg−1(∆(X)) =
φ3(X) and φσg−1(i1(X)) = φ1(X) for all X ∈ S. From

0 < φσ1(X)− 1 = φσg−1(i1(X))− 1

< φσg−1(i2(X)) < φσg−1(∆(X)) = φσ3(X) < 2

we obtain, as above, φσg−1(i2(X)) = φσ2(X).

In preparation of case 3 of the proof of proposition 4.10.27, we have
the following lemmas. We start with the following elementary one, that
Bridgeland uses in [17, Page 264].

Lemma 4.10.22. For η ∈ (0, 1
2
] ⊂ R and w,w′ ∈ C with |w − w′| < η|w|,

we have
|w − w′| < 2η|w′|.

Proof. Via the triangle inequality in C and |w − w′| < η|w| we obtain

|w| = |w| − |w′|+ |w′| ≤ |w − w′|+ |w′| ≤ η|w|+ |w′|,

such that (1 − η)|w| < |w′|. Since η ∈ (0, 1
2
] ⊂ R, we have η > 0, 1 − η > 0

and 0 < 1/(1− η) ≤ 2 which implies

η|w| < η

1− η
|w′| ≤ 2η|w′|.

Hence,
|w − w′| < η|w| < 2η|w′|.

Lemma 4.10.23. Let Q be a quadratic form on ΛR and W ∈ Hom(Λ,C).
The following are equivalent

1. There exists a real number CQ,W > 0 such that CQ,W ||v|| ≤ |W (v)| for
all v ∈ ΛR \ {0} that satisfy Q(v) ≥ 0.
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2. Q is negative definite on ker(W ).

Proof. To see that 1 implies 2 consider Q(v) ≥ 0 and v 6= 0, we have 0 <
CQ,W ||v|| ≤ |W (v)| such that W (v) 6= 0, hence Q(v) < 0 for all non-zero
v ∈ ker(W ).

To see that 2 implies 1 we use the fact that rank(Λ) is finite which gives
us that the unit sphere, and therefore the set K = {v | Q(v) ≥ 0, ||v|| = 1} ⊂
ΛR is compact. Since we assumed Q to be negative definite on ker(W ), K
is also disjoint to ker(W ), hence the function f(v) := |W (v)| is positive and
continuous on K and therefore attains its (positive) minimum – which we
now denote by CQ,W . We obtain CQ,W ||v|| ≤ |W (v)| for v ∈ K and hence,
by the linearity of W , for all v ∈ ΛR \ {0} that satisfy Q(v) ≥ 0. Since
CQ,W > 0 we are – indeed – finished.

Definition 4.10.24. Let W ∈ Hom(Λ,C). Define

||W ||∞ := max{|W (v)| | v ∈ ΛR, ||v|| = 1}.

The topology on Hom(Λ,C) is given by this norm. We now use lemma
4.10.22 to prove the following.

Lemma 4.10.25. Given a quadratic form Q on ΛR,W ∈ Hom(Λ,C) such
that Q

∣∣
ker(W )

< 0 and CQ,W > 0 a corresponding constant as in lemma

4.10.23. Then, for all ε ∈ (0, 1) and all W ′ ∈ Hom(Λ,C) that satisfy the

inequality ||W −W ′||∞ < sin(πε)
CQ,W

2
and all non-zero v ∈ ΛR that satisfy

Q(v) ≥ 0 we have

|W (v)−W ′(v)| < sin(πε)|W ′(v)|.

Proof. The inequality ||W −W ′||∞ < sin(πε)
CQ,W

2
implies the inequality

|W (v)−W ′(v)| < sin(πε)
CQ,W

2
||v|| (4.83)

for all v ∈ ΛR \ {0}. Lemma 4.10.23 provides us with CQ,W ||v|| ≤ |W (v)| for
all v ∈ ΛR \ {0} that satisfy Q(v) ≥ 0, such that – since the quantities in
question are positive – the inequality (4.83) extends to

|W (v)−W ′(v)| < sin(πε)
CQ,W

2
||v|| ≤ sin(πε)

|W (v)|
2

.

To this, we apply lemma 4.10.22 where we let w = W (v), w′ = W ′(v) and

η = sin(πε)
2

. We obtain |W (v)−W ′(v)| < sin(πε)|W ′(v)| for all v ∈ ΛR \ {0}
that satisfy Q(v) ≥ 0.
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Corollary 4.10.26. Given a quadratic form Q on ΛR,W ∈ Hom(Λ,C)
such that Q

∣∣
ker(W )

< 0 and CQ,W > 0 a corresponding constant as in lemma

4.10.23. Suppose σ′ ∈ Stab(D↑) satisfies the support property with respect to
Q, that ε ∈ (0, 1) and that W ′ := Z(σ′) ∈ Hom(Λ,C) satisfies the inequality

||W −W ′||∞ < sin(πε)
CQ,W

2
, then

||W −W ′||σ′ ≤ sin(πε).

Proof. If E ∈ D↑ is σ′-semistable then Q(E) ≥ 0 since σ′ satisfies the support
property with respect to Q. Therefore we can apply lemma 4.10.25 to obtain

|W (v)−W ′(v)| < sin(πε)|W ′(v)|

for all σ′-semistable objects E. This implies that ||W −W ′||σ′ ≤ sin(πε).

We are now ready to provide the crucial proposition 4.10.27 following.

Proposition 4.10.27. Let A = Coh(C), for an elliptic curve C. The map

π0 : V12 → L12

σ 7→ σ1

is a homeomorphism.

Proof. Since we have seen in lemma 4.10.7, that π is a local homeomorphism,
it remains to prove that π0 is bijective. To prove injectivity, consider σ =
(Z1,H1), τ = (Z2,H2) ∈ V12 and σ1 ∈ Stab(D) with π(σ) = σ1 = π(τ). If
0 ≤ f(0), lemma 4.10.11 provides σ, τ ∈ Θ12 and, by lemma 4.8.13, we now
obtain σ = τ . If −1 < f(0) < 0, then ∆(C(x)) is σ-stable/τ -stable by lemma
4.10.12. We now obtain σ = τ by lemma 4.8.16 via the assumed equality of
their stability functions combined with d(P ,Q) < 1, with P ,Q being their
respective slicings.

We will now prove surjectivity. We distinguish between three cases:

1. f(0) ≥ 0

2. f(0) < 0 and Discr(M) ≥ 0

3. f(0) < 0 and Discr(M) < 0.

We obtain case 1 from corollary 4.10.16 (giving us that (T, f) is in the
image of π0 for (T, f) ∈ L12, f(0) ≥ 0).

To study case 2 assume that (T, f) satisfies f(0) < 0 and Discr(M) ≥ 0
resulting in it having real eigenvalues λ1, λ2. By definition of L12 we have
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det(M) > 0 and det(M + I) > 0 which implies λ1 /∈ {−1, 0}. There are only
three possibilities, these are

λ1, λ2 < −1,

−1 < λ1, λ2 < 0

and 0 < λ1, λ2.

We can hence apply corollary 4.10.21 which concludes the proof of case 2.
To prove the result for case 3 we will use the deformation theorem of

Bridgeland. Define

LΓ
12 := {(T, f) ∈ L12 | f(0) < 0,Discr(M) < 0} ⊂ L12,

which is an open subset of L12. Suppose (T, f) ∈ LΓ
12 corresponds to (Z,A) ∈

Stab(D) and define W = Z ◦λ1 +Zµ ◦ρ2. Because f(0) < 0 gives 1 < φ0 < 2
and φ1 < φ0 < φ1 +1 now implies 0 < φ1 < 2, any (T, f) ∈ LΓ

12 is determined
by T and also by W .

For X ∈ S let θX = arg(W (i1(X)))
π

, θ′X = arg(W (∆(X)))
π

implying θX , θ
′
X ∈

[0, 2). Since −1 < f(0) < 0 is equivalent to 1 < φ0 = f−1(1) < 2 and
A+Di = m0 exp(iπφ0), we obtain D < 0 and from Discr(M) = (A+ C)2 −
4AB < 0, we get B < 0 also. Now, let ξX := φµ(X), in other words ξC(x) = 1
and ξOC = 1

2
and using [∆(X)] = [i1(X)] + [i2(X)] we obtain

ξX < θ′X < θX < ξX + 1 (4.84)

for all X ∈ S.
Let ε > 0 satisfy

ε < min{1

8
, ξX + 1− θX , θX − θ′X , θ′X − ξX | X ∈ S}.

This implies that the inequalities 4.84 remain invariant under adding or
subtracting ε to either θX or θ′X . We have seen in the proof of propo-
sition 4.9.36, where we only needed B,D < 0, that the quadratic form
Q := d2r1 − d1r2 is negative definite on ker(W ) for any W that comes from
an element (T, f) ∈ LΓ

12. Now we assume CQ,W to be a constant as in lemma
4.10.23 that corresponds to this quadratic form Q and the fixed W . There
exists (T ′, f ′) ∈ LΓ

12 such that the entries of the matrix T ′ are rational and

||W −W ′||∞ ≤ sin(πε)
CQ,W

2
,

where W ′ is obtained from (T ′, f ′) in the same manner in which W was
from (T, f). By lemma 4.7.31 in combination with proposition 4.9.36, which
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applies because Discr((T ′)−1) < 0 and supplies the support property, there is
a σ′ ∈ V12 ⊂ Stab(D↑) such that π0(σ′) = (T ′, f ′) and σ′ satisfies the support
property with respect to Q. Since we also have Z(σ′) = W ′, we obtain by
corollary 4.10.26 that

||W −W ′||σ′ ≤ sin(πε) (4.85)

and from Bridgeland’s deformation theorem, see [7, Theorem B3], we obtain
that there is a σ ∈ Stab(D↑) such that Z(σ) = W and d(σ, σ′) < ε.

We now apply lemma 4.8.35 to σ′. It provides us with i1(X), i2(X) and
∆(X) being σ′-stable for X ∈ S. Using this we will now prove that in
this situation i1(X), i2(X),∆(X) are σ-stable for X ∈ S. By our choice
of ξX , θX and θ′X , there exist integers k,m, n such that φσ(i1(X)) = θX +
2k, φσ(i2(X)) = ξX + 2m and φσ(∆(X)) = θ′X + 2n whenever these objects
are σ-stable.

(a) Suppose ∆(X) is not σ-stable. We now let θ′X = arg(W ′(∆(X)))
π

∈ [0, 2)
(without changing θX and ξX). Hence, φσ′(∆(X)) = θ′X + 2n and more-
over, by (4.85), θ′X differs from the argument of W (∆(X)) by no more
then ε such that the inequality (4.84) holds true. Via the HNF/JHF
(corollary 4.5.21 and lemma 4.5.31) we get φ+ = φσ(i2(X)) ≥ φσ(i1(X)) =
φ−, which translates into φ+ = ξX + 2m ≥ φ− = θX + 2k > ξX + 2k,
using (4.84), such that we obtain m > k. On the other hand, we have

ε > d(σ, σ′) ≥ |φσ′(∆(X))− φ+| = |2(n−m) + θ′X − ξX |.

Since we have θ′X − ξX ∈ (0, 1) by (4.84), this yields m = n. Similarly,
we obtain from

ε > d(σ, σ′) ≥ |φ− − φσ′(∆(X))| = |2(k − n) + θX − θ′X |,

in combination with θX − θ′X ∈ (0, 1) by (4.84), that k = n. Hence
k = n = m, which contradicts m > k.

(b) Suppose i1(X) is not σ-stable. We proceed similar as before, now letting

θX = arg(W ′(i1(X)))
π

∈ [0, 2) and obtain, using HNF/JHF that n > m on
one hand and using (θX − θ′X), (ξX + 1 − θX) ∈ (0, 1), that m = k = n
on the other.

(c) Suppose i2(X) is not σ-stable. We – again – proceed as before showing
that k > n. However, in this case we use φσ′(i2(X)) = φµ(X) = ξX and

φσ′(i2(X))− φ+ = ξX − θX − 2k + 1 ∈ (−2k,−2k + 1)

as well as φ− − φσ′(i2(X)) = θ′X − ξX + 2n ∈ (2n, 2n+ 1)

such that k = 0 = n.
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This concludes our investigation regarding the stability of the three em-
beddings under the given particular circumstances. We have proved that in
this situation i1(X), i2(X),∆(X) are σ-stable for X ∈ S.

Since σ ∈ S12 and ∆(X) is σ-stable for X ∈ S, we have

φσ(i2(X)) < φσ(∆(X)) < φσ(i1(X)) < φσ(i2(X)) + 1 (4.86)

for all X ∈ S. Since Z(σ) = W for any X ∈ S, the difference of φσ(X)
and the corresponding parameter value φi of (T, f) is always an even integer.
Without loss of generality we can assume φσ(i2(C(x))) = 1 and φσ(i2(OC)) =
1/2. This is possible because W (i2(C(x))) = −1 and W (i2(OC)) = i
and φσ(i2(OC)) < φσ(i2(C(x))) < φσ(i2(OC)) + 1 which is why we have
φσ(i2(C(x))) = n and φσ(i2(OC)) = n− 1/2 and can apply a suitable shift –

corresponding to an element of G̃L
+

2 (R) acting on the stability condition –
if necessary. By (4.86) we obtain

1 = φσ(i2(C(x))) < φσ(∆(C(x))) < φσ(i1(C(x))) < φσ(i2(C(x))) + 1 = 2

1

2
= φσ(i2(OC)) < φσ(∆(OC)) < φσ(i1(OC)) < φσ(i2(OC)) + 1 =

3

2
,

so in particular φσ(i1(C(x))), φσ(i2(C(x))), φσ(i1(OC)), φσ(i2(OC)) ∈ (0, 2).
Therefore they have to agree with φ0, φ1, φ2 = 1 and φ3 = 1/2 respectively,
which shows σ ∈ V12 and π0(σ) = (T, f). This proves that π0 is surjective
and therefore the proof is finished.

Corollary 4.10.28. Let A = Coh(C), for an elliptic curve C. The map

π : S12 → P12

σ 7→ (σ1, σ2).

is a homeomorphism.

Proof. This is an implication of proposition 4.10.27.

Lemma 4.10.29. The pairs σ = (Z ′,H) constructed by CP-gluing via 〈D1,D2〉
and the pairs σ = (Z,H(C1, D1)) given in lemma 4.7.31 with f−1(1

2
) < 3

2
are

Bridgeland stability conditions.

Proof. We have seen that whenever σ1 = (T1, f1) = (Z1,H1) ∈ Stab(D)
and σ2 are discrete, we obtain a Bridgeland stability condition by applying
proposition 4.9.28 after [21, Proposition 3.5]. Without loss of generality we
assume σ2 = σµ. Let σ be a pair obtained by CP-gluing via 〈D1,D2〉 from
σ1 and σ2 = σµ. As f1(0) ≥ 0, we get (σ1, σµ) ∈ L12. Therefore, there is a
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stability condition τ ∈ V12 such that π(τ) = (σ1, σµ). By lemma 4.10.11, we
obtain τ ∈ Θ12 and by Lemma 4.8.13, we have that τ is a pair obtained by
CP-gluing via 〈D1,D2〉 from σ1 and σ2. As a consequence the pair (Z,H)
gives a Bridgeland stability condition.

Let σ = (Zr,Ar). If we consider σ1 as in lemma 4.7.31 with f−1(1
2
) < 3

2
,

we obtain −1 < f1(0) < 0 and since we assumed det(M1 + I) > 0, we
have that (σ1, σµ) ∈ L12. Therefore, a stability condition τ ∈ V12 such that
π(τ) = (σ1, σ2) exists. By lemma 4.10.12, we have that ∆(C(x)) is τ -stable.
Hence, lemma 4.8.16 gives that τ is given by the construction of lemma
4.7.31. Then τ = (Zr,Ar) and as a consequence is a Bridgeland stability
condition.

Lemma 4.10.30. Let A = Coh(C) for an elliptic curve C. Let σ ∈ pre Stab
and assume that there is a g ∈ GL+

2 (R) such that σg is constructed by CP-
gluing via 〈D1,D2〉 or one of the kind of lemma 4.7.31, then σ is a Bridgeland
stability condition.

Proof. Let σ ∈ pre Stab such that there is a g ∈ GL+
2 (R) of the kind of lemma

4.7.31 such that f−1(1
2
) ≥ 3

2
. In this situation either i1(OC) or i2(OC) is not

σ-stable, in other words, σ ∈ S23 or σ ∈ S31. If φσ(∆(OC)) > 3
2

we obtain
that i2(OC) and ∆(OC) are σ-stable. On the other hand, φσ(∆(OC)) < 1

2
im-

plies that i1(OC) and ∆(OC) are σ-stable. All of this is due to non-vanishing
morphisms and HNFs/JHFs connected to the canonical exact triangle

i2(OC)→ ∆(OC)→ i2(OC)
+−→ i2(OC)[1]

in the usual way.

Theorem 4.10.31. Let A = Coh(C), for an elliptic curve C. The space of
stability conditions Stab(D↑) = S12∪S23∪S31 is a connected, four dimensional
complex manifold.

Proof. Note that Θ′ij ⊂ Sij, where Θ′ij is as in corollary 4.5.30 (it should also
be observed that Θ′ij = Θij by theorem 4.9.37). Since V12 is connected, S12 is
connected too. As, moreover, S12 ∩ S23 = S23 ∩ S31 = S12 ∩ S31 is not empty,
Stab(D↑) is indeed connected.

5 More on D↑

This section aims at the investigation of questions that have to do with the
category D↑ and are all – to some degree – related to the discussion of the
space Stab(D↑) in the previous chapter.



204

5.1 Shape of recollement t-structures

Subsection 4.3 saw the introduction of new t-structures via the technique of
recollement – the question remains however, how the resulting t-structures
in fact ”look like”, by which is meant that the question arises, if a more
intuitive understanding of them could be obtained that exceeds their purely
abstract functorial description. This – however – can only mean that we
must try to understand how the involved objects look like in terms of their
usual cohomology which will hence be the objective of this subsection.

In order to investigate the t-structures, we hence introduce the following.

Definition 5.1.1. By τ≤0
1,α,β and τ≥1

1,α,β denote the truncation functors associ-

ated to the t-structure (D≤0
1,α,β,D

≥1
1,α,β) defined in 4.3.19.

In order to conduct our investigation we also need to introduce the fol-
lowing.

Definition 5.1.2. We define an ”isomorphic arrow” in D↑ (which will be

denoted by A
∼=→ B) to be an object X ∈ D↑ for which X ∼= ∆(B) for a

B ∈ D.

We will now – broken down into a series of lemmas – provide the expla-
nation for the fact that the definition of an object to be an isomorphic arrow
in 5.1.2 matches the intuition (that is being an isomorphism in D) and that
therefore the name is well chosen.

Lemma 5.1.3. Let E ∈ D↑ such that E, viewed as a morphism in C(A) is
a quasi-isomorphism. Then and only then, E is an isomorphic arrow.

Proof. First, if we have E ∈ D↑ such that E ∈ im(i1), then E ∼= (E1 → 0)
and hence ρ2(E) = ρ2(E1 → 0) = 0 which implies E ∈ ker(ρ2). If – on the
other hand – we have E ∈ ker(ρ2) then ρ2(E) = 0 and hence E ∼= (E1 → 0)
for an E1 ∈ D. In other words E ∈ im(i1), which means im(i1) = ker(ρ2).
Since im(∆) is left admissible by lemma 4.2.2, we obtain im(∆) = (⊥ im(∆))⊥

by lemma 4.2.4. Furthermore, we obtain ⊥ im(∆) = ker(ρ2) by lemma 4.2.10
via the fact that ρ2 a ∆. Similarly we obtain (im(i1))⊥ = ker(K) from lemma
4.2.11. Hence, we have

im(∆) = (⊥ im(∆))⊥ = (ker(ρ2))⊥ = (im(i1))⊥ = ker(K).

Using the exact triangle

K(E)→ λ1(E)
µE→ ρ2(E)

+→
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we obtain that K(E) = 0 if and only if µE is an isomorphism in C(A).
The equality K(E) = 0 is just another way of saying that E ∈ ker(K)
and via ker(K) = im(∆) we hence obtain E ∈ im(∆) if and only if µE
is an isomorphism in C(A). The application of corollary 4.3.4 finishes the
proof.

Remark 5.1.4. Note that, as stated at the end of the proof of 5.1.3, an impor-
tant consequence is that µZ , viewed as an arrow in C(A) is an isomorphism
if and only if K(Z) vanishes.

We will finally require the following crucial fact on isomorphic arrows.

Corollary 5.1.5. Assume that A,F ∈ D, then

Hom(i1(A),∆(F )) = 0.

Proof. This is a special case of lemma 4.1.4.

Definition 5.1.6. We define a ”monomorphic arrow” in the abelian cat-
egory τ≤0

1,α,α(τ≥1
1,α+1,α+1(D↑)) to be an object X ∈ D↑ such that we have

X ∼= τ≤0
1,α,α(τ≥1

1,α+1,α+1(X)) and τ≤0
1,α,α(i1(K(X))) = 0 where α ∈ R.

The following definition will only be required at a later stage. However
we will provide it at this point to ensure completion.

Definition 5.1.7. We define an ”epimorphic arrow” in the abelian cat-
egory τ≤0

1,α,α(τ≥1
1,α+1,α+1(D↑)) to be an object X ∈ D↑ such that we have

X ∼= τ≤0
1,α,α(τ≥1

1,α+1,α+1(X)) and τ≥1
1,α,α(i1(K(X)[1])) = 0 where α ∈ R.

Remark 5.1.8. Note that the term ”isomorphic arrow” appears in the con-
text of the derived category D↑, in contrast to both the terms ”monomor-
phic/epimorphic arrow” that, even when ordinarily defined for objects in D↑,
belong to the abelian situation of the category τ≤0

1,α,α(τ≥1
1,α+1,α+1(D↑)). Note

that for α ∈ Z, the above definition is coherent with the vanishing of kernel
and cokernel respectively and therefore generalises the concept from A.

The term ”isomorphic arrow” is particularly well-behaved and turns out
to work well under the transition to the abelian case without the need to
change language. To illustrate this – and to hint at the difference between
the terminology – we will include the following corollary.

Corollary 5.1.9. If we assume X ∈ D↑ to be an isomorphic arrow in D↑,
then τ≤0

1,α,α(τ≥1
1,α+1,α+1(X)), considered as a morphism A

f→ B is an isomor-

phism in D and hence in τ≤0
α (τ≥1

α+1(D)) for any α ∈ R.
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Proof. As part of the proof of theorem 2.5.33, we proved, that τ≥0(Cone(f))

is the cokernel, and (τ≤−1(Cone(f)))[−1] the kernel of a morphism A
f→ B.

Hence Cone(f) = 0 implies

coker(f) = τ≥0(Cone(f)) = τ≥0(0) = 0

= (τ≤−1(0))[−1] = (τ≤−1(Cone(f)))[−1] = ker(f).

Since X = A
f→ B being an isomorphic arrow in D↑ implies Cone(f) = 0,

this finishes the proof.

We will now, broken down into the following series of lemmas prove the
theorem that fully characterises the D≥1 (and hence – since the D≤0 is known
– the t-structure) for type-1-recollement-data.

Lemma 5.1.10. For a t-structure (D≤0
1,α,β,D

≥1
1,α,β) on D↑ assume that α < β.

For an object X ∈ D≥1
1,α,β we have τ≤0

1,β,β(X) = 0.

Proof. Since α < β, we have D≤0
1,β,β ⊂ D

≤0
1,α,β. Using i≤0

1,β,β a τ
≤0
1,β,β, we obtain

HomD↑(i
≤0
1,β,β(τ≤0

1,β,β(X)), X) ∼= HomD≤0
1,β,β

(τ≤0
1,β,β(X), τ≤0

1,β,β(X)).

Again, we have α < β, the inclusion D≤0
1,β,β ⊂ D

≤0
1,α,β, introduced above pro-

vides us with (D≤0
1,α,β)⊥ ⊂ (D≤0

1,β,β)⊥ and on the other hand we have both

(D≤0
1,α,β)⊥ = D≥1

1,α,β and (D≤0
1,β,β)⊥ = D≥1

1,β,β which means D≥1
1,α,β ⊂ D

≥1
1,β,β. Since

X ∈ D≥1
1,α,β, we therefore also have X ∈ D≥1

1,β,β. Hence, we obtain the equation

HomD↑(i1,β,β(τ≤0
1,β,β(X)), X) ⊂ HomD↑(D≤0

1,β,β,D
≥1
1,β,β) = 0.

Hence HomD≤0
1,β,β

(τ≤0
1,β,β(X), τ≤0

1,β,β(X)) = 0 which means that τ≤0
1,β,β(X) = 0.

Lemma 5.1.11. For a t-structure (D≤0
1,α,β,D

≥1
1,α,β) on D↑ assume that α <

β − 1. For an object X ∈ D≥1
1,α,β we have τ≤0

1,α+1,α+1(X) is an isomorphic
arrow.

Proof. For X ∈ D≥1
1,α,β let Z = τ≤0

1,α+1,α+1(X) and consider the exact triangle

i1K(Z)→ Z → ∆ρ2(Z)
+→ . (5.1)

It is our aim to prove that i1K(Z) = 0, as this would imply Z ∼= ∆ρ2(Z),
which – by definition – would make Z an isomorphic arrow . Since i1 a K,
and K ◦∆ = 0 we obtain

Hom(i1K(Z),∆ρ2(W )) = Hom(K(Z),K∆ρ2(W )) = Hom(K(Z), 0) = 0
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for any W ∈ D↑. Letting W = Z and applying Hom(i1K(Z),−) to the exact
triangle (5.1), we obtain

Hom(i1K(Z), i1K(Z)) ∼= Hom(i1K(Z), Z).

Hence, we need to prove that Hom(i1K(Z), Z) = 0. Consider the exact
triangle

τ≤−1
1,α,α(X)→ X → τ≥0

1,α,α(X)
+→ (5.2)

and note that Z = τ≤0
1,α+1,α+1(X) = τ≤−1

1,α,α(X). Note additionally that from

τ≥0
1,α,α(X) ∈ D≥0

1,α,α we obtain

τ≥0
1,α,α(X)[−1] ∈ D≥0

1,α,α[−1] = D≥1
1,α,α.

Applying Hom(i1K(Z),−) to the exact triangle (5.2), we obtain the exact
sequence

Hom(i1K(Z), τ≥0
1,α,α(X)[−1])→ Hom(i1K(Z), Z)→ Hom(i1K(Z), X).

Hence, in order for Hom(i1K(Z), Z) to vanish, we require

Hom(i1K(Z), τ≥0
1,α,α(X)[−1]) = 0 = Hom(i1K(Z), X).

Since τ≥0
1,α,α(X)[−1] ∈ D≥1

1,α,α and X ∈ D≥1
1,α,β, this will be true if we had

both i1K(Z) ∈ D≤0
1,α,β and i1K(Z) ∈ D≤0

1,α,α. But, since α < β, we have

D≤0
1,α,β ⊂ D

≤0
1,α,α and – hence – it suffices to prove that i1K(Z) ∈ D≤0

1,α,β.
Recall that

D≤0
1,α,β = {Y ∈ D↑|λ1(Y ) ∈ D≤0

α , ρ2(Y ) ∈ D≤0
β }.

We hence need to examine the image of i1K(Z) under the functors ρ2 and
λ1. Since ρ2 ◦ i1 = 0, we have ρ2i1K(Z) = 0 ∈ D≤0

β . It remains to prove that

λ1i1K(Z) ∈ D≤0
α . First note, that by lemma 3.2.18 we have i1 fully faithful.

This, combined with the fact that λ1 a i1, implies λ1 ◦ i1
∼=→ idD. This means

that λ1i1K(Z) ∼= K(Z). Consider the exact triangle

∆ρ2(Z)[−1]→ i1K(Z)→ Z
+→ .

Applying the (exact) functor λ1 now gives the exact triangle

λ1∆ρ2(Z)[−1]→ K(Z)→ λ1(Z)
+→ .

Since Z = τ≤0
1,α+1,α+1(X) we have λ1(Z) ∈ D≤0

α+1 ⊂ D≤0
α . By lemma 3.2.28

we have ∆ fully faithful. This, combined with the fact that ∆ a λ1, implies
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idD
∼=→ λ1 ◦ ∆. This means that λ1∆ρ2(Z)[−1] ∼= ρ2(Z)[−1]. Therefore we

have

λ1∆ρ2(Z)[−1] ∼= ρ2(Z)[−1] = ρ2(τ≤0
1,α+1,α+1(X))[−1] ∈ ρ2(D≤0

1,α+1,α+1)[−1]

= D≤0
α+1[−1] = D≤0

α .

Since D≤0
α is extension closed, we obtain K(Z) ∈ D≤0

α . With this, our proof
is finished.

Lemma 5.1.12. For a t-structure (D≤0
1,α,β,D

≥1
1,α,β) on D↑ assume that α < β.

For an object X ∈ D≥1
1,α,β we have that τ≤0

1,α,α(τ≥1
1,α+1,α+1(X)) is a monomorphic

arrow in τ≤0
1,α,α(τ≥1

1,α+1,α+1(D↑)).

Proof. Let Y ∈ D↑ fulfil Y = τ≤0
1,α,α(i1(K(X))). Hence, we have chosen Y

such that Y ∈ D≤0
1,α,β. By lemma 5.1.11, there is an F ∈ D↑ such that

∆(ρ2(F ))→ X → τ≥1
1,α+1,α+1(X)

+→ (5.3)

is an exact triangle. Since ρ2(Y ) = 0 we have Y ∼= i1(λ1(Y )) and hence,
using corollary 5.1.5, we obtain

HomD↑(Y,∆(ρ2(F ))) = HomD↑(i1(λ1(Y )),∆(ρ2(F ))) = 0.

Hence, applying Hom(Y,−) to the exact triangle (5.3), provides us with

HomD↑(Y, τ
≥1
1,α+1,α+1(X)) ∼= HomD↑(Y,X) ⊂ HomD↑(D≤0

1,α,β,D
≥1
1,α,β) = 0.

We know from α < β that D≤0
1,α,β ⊂ D

≤0
1,α,α and hence Y ∈ D≤0

1,α,α. Hence, we

can use the adjunction (i≤0
1,α,α, τ

≤0
1,α,α) to obtain

HomD↑(Y, τ
≤0
1,α,α(τ≥1

1,α+1,α+1(X))) ∼= HomD↑(i
≤0
1,α,α(Y ), τ≥1

1,α+1,α+1(X))

∼= HomD↑(Y, τ
≥1
1,α+1,α+1(X)) = 0.

If we letX = A
f−→ B, we have Y = τ≤0

1,α,α(i1(K(X))) andK(X) is given by the
complex Cone(f)[−1] = B[−1]⊕A with p the canonical projection associated
to Cone(f), we obtain that p[−1]

∣∣
λ1(Y )

= p[−1]
∣∣
λ1(τ≤0

1,α,α(i1(K(X)))
= p[−1]

∣∣
A

=

0 implies Y = 0. Since there is a morphism (p[−1], 0) from i1(K(X)) to
X, we obtain (p[−1]

∣∣
λ1(Y )

, 0) ∈ HomD↑(Y, τ
≤0
1,α,α(τ≥1

1,α+1,α+1(X))). This implies

p[−1]
∣∣
λ1(Y )

= 0 and, therefore, Y = 0 which finishes the proof.
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Lemma 5.1.13. For a t-structure (D≤0
1,α,β,D

≥1
1,α,β) on D↑ assume that β−1 ≤

α < β. For an object X ∈ D≥1
1,α,β we have τ≤0

1,α,α(τ≥1
1,β,β(X)) is a monomorphic

arrow in τ≤0
1,α,α(τ≥1

1,α+1,α+1(D↑)).

Proof. The arguments that were used in the proof of lemma 5.1.12 can be
completely adapted to prove lemma 5.1.13, replacing τ≥1

1,α+1,α+1 with τ≥1
1,β,β

everywhere throughout the proof where it is applied to an object (X or
Y ).

Lemma 5.1.14. For a t-structure (D≤0
1,α,β,D

≥1
1,α,β) on D↑ assume that α < β.

For an object X ∼= τ≤0
1,β,β(X) ∈ D↑ and X = 0 we have X ∈ D≥1

1,α,β.

Proof. This is obvious.

Lemma 5.1.15. For a t-structure (D≤0
1,α,β,D

≥1
1,α,β) on D↑ assume that α < β.

For an object X ∼= τ≥1
1,β,β(τ≤0

1,α+1,α+1(X)) ∈ D↑ and X an isomorphic arrow,

we have X ∈ D≥1
1,α,β.

Proof. Let Y ∈ D≤0
1,α,β. Hence, regarding Y as an arrow Y1

f→ Y2 we obtain

ρ2(τ≥1
1,β,β(Y )) = ρ2(τ≥1

β (Y1)
τ≥1
β (f)
→ τ≥1

β (Y2))

= τ≥1
β (Y2) = τ≥1

β (ρ2(Y )).
(5.4)

Since Y ∈ D≤0
1,α,β we have ρ2(Y ) ∈ D≤0

β . Therefore τ≥1
β (ρ2(Y )) = 0. This,

combined with (5.4), implies that ρ2(τ≥1
1,β,β(Y )) = 0 and hence we obtain

(τ≥1
1,β,β(Y ) ∼= i1(λ1(τ≥1

1,β,β(Y )). Using τ≥1
1,β,β a i

≥1
1,β,β and the fact that X is an

isomorphic arrow, we obtain for an F ∈ D↑

HomD↑(Y,X) = HomD↑(Y, i
≥1
1,β,β(X)) = HomD↑(τ

≥1
1,β,β(Y ), X)

= HomD↑(i1(τ≥1
1,β,β(Y )),∆(F )) = HomD↑(τ

≥1
1,β,β(Y ),K(∆(F )))

= HomD↑(τ
≥1
1,β,β(Y ), 0) = 0.

Hence, we finally obtain X ∈ (D≤0
1,α,β)⊥ = D≥1

1,α,β.

Lemma 5.1.16. For a t-structure (D≤0
1,α,β,D

≥1
1,α,β) on D↑ assume that α <

β − 1. For an object X ∼= τ≤0
1,α,α(τ≥1

1,α+1,α+1(X)) ∈ D↑ and X a monomorphic

arrow in τ≤0
1,α,α(τ≥1

1,α+1,α+1(D↑)), we have X ∈ D≥1
1,α,β.
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Proof. Let Y ∈ D≤0
1,α,β. Since α < β this implies Y ∼= τ≤0

1,α,α(Y ). We use the

adjoint pair of functors τ≥1
1,α+1,α+1 a i

≥1
1,α+1,α+1 to obtain

HomD↑(Y,X) ∼= HomD↑(Y, τ
≤0
1,α,α(τ≥1

1,α+1,α+1(X)))

∼= HomD↑(τ
≤0
1,α,α(Y ), τ≤0

1,α,α(τ≥1
1,α+1,α+1(X)))

∼= HomD↑(τ
≤0
1,α,α(Y ), i≥1

1,α+1,α+1(τ≤0
1,α,α(τ≥1

1,α+1,α+1(X))))

∼= HomD↑(τ
≥1
1,α+1,α+1(τ≤0

1,α,α(Y )), τ≤0
1,α,α(τ≥1

1,α+1,α+1(X)))

∼= HomD↑(τ
≤0
1,α,α(τ≥1

1,α+1,α+1(Y )), τ≤0
1,α,α(τ≥1

1,α+1,α+1(X))).

Since α < β − 1, we have ρ2(τ≤0
1,α,α(τ≥1

1,α+1,α+1(Y )) = 0. Therefore g ∈
HomD↑(τ

≤0
1,α,α(τ≥1

1,α+1,α+1(Y )), τ≤0
1,α,α(τ≥1

1,α+1,α+1(X))) implies that g factors via
i1(Cone(f)[−1]) = Cone(f)[−1]→ 0 given by the fact that

HomD↑(τ
≤0
1,α,α(τ≥1

1,α+1,α+1(Y )),∆(ρ2(τ≤0
1,α,α(τ≥1

1,α+1,α+1(X)))))

= HomD↑(ρ2(τ≤0
1,α,α(τ≥1

1,α+1,α+1(Y ))), ρ2(τ≤0
1,α,α(τ≥1

1,α+1,α+1(X))))

= HomD↑(0, ρ2(τ≤0
1,α,α(τ≥1

1,α+1,α+1(X)))) = 0

(via ρ a ∆) and the canonical exact triangle

Cone(f)[−1]
p[−1]−−−→ A −−−→ By f

y idB

y +−−−→

0 −−−→ B −−−→ B

where (A
f→ B) = τ≤0

1,α,α(τ≥1
1,α+1,α+1(X)) and p the canonical projection as-

sociated with Cone(f). Since X was assumed to be a monomorphic arrow
in τ≤0

1,α,α(τ≥1
1,α+1,α+1(D↑)), we have τ≤0

1,α,α(i1(K(X))) = 0 or, in other words,

τ≤0
1,α,α(Cone(f)[−1]) = 0 and therefore g = 0. This implies that we obtain

HomD↑(X, Y ) ∼= HomD↑(τ
≤0
1,α,α(τ≥1

1,α+1,α+1(Y )), τ≤0
1,α,α(τ≥1

1,α+1,α+1(X))) = 0.

Hence, we finally see that X ∈ (D≤0
1,α,β)⊥ = D≥1

1,α,β.

Lemma 5.1.17. For a t-structure (D≤0
1,α,β,D

≥1
1,α,β) on D↑ assume that β−1 ≤

α < β. For an object X ∼= τ≤0
1,α,α(τ≥1

1,β,β(X)) ∈ D↑ and X a monomorphic

arrow in τ≤0
1,α,α(τ≥1

1,α+1,α+1(D↑)), we have X ∈ D≥1
1,α,β.

Proof. The arguments that were used in the proof of lemma 5.1.16 can be
completely adapted to prove lemma 5.1.17, replacing τ≥1

1,α+1,α+1 with τ≥1
1,β,β

everywhere throughout the proof where it is applied to an object (X or
Y ).
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Theorem 5.1.18. For a t-structure (D≤0
1,α,β,D

≥1
1,α,β) on D↑ assume that α <

β. For an object X ∈ D↑, we have X ∈ D≥1
1,α,β if and only if

1. τ≤0
1,β,β(X) = 0,

2. τ≤0
1,α+1,α+1(X) is an isomorphic arrow,

3. • if α < β − 1, then τ≤0
1,α,α(τ≥1

1,α+1,α+1(X)) is a monomorphic arrow

in τ≤0
1,α,α(τ≥1

1,α+1,α+1(D↑)),

• if β − 1 ≤ α < β, then τ≤0
1,α,α(X) is a monomorphic arrow in

τ≤0
1,α,α(τ≥1

1,α+1,α+1(D↑)),

Proof. For the ”if”-part break up X into three objects, using the truncation-
functors τ≤0

1,β,β, τ
≤0
1,α+1,α+1 and τ≥1

1,α+1,α+1(X). Apply lemmas 5.1.14, 5.1.15 and
5.1.16/5.1.17, respectively, to these objects and deduce from the fact that
D≥1 is extension closed that X ∈ D≥1.

For the ”only if”-part combine lemmas 5.1.10, 5.1.11 and 5.1.12/5.1.13.

Remark 5.1.19. Note that the second bullet point of part 3 of theorem 5.1.18
makes sense, because part 1 ensures that τ≤0

1,α,α(X) is indeed an object in the

abelian category τ≤0
1,α,α(τ≥1

1,α+1,α+1(D↑)).
We can now say, what hearts we obtain from a t-structure of the kind we

have just investigated.

Corollary 5.1.20. For a t-structure (D≤0
1,α,β,D

≥1
1,α,β) on D↑ assume that α <

β. The heart H1,α,β of (D≤0
1,α,β,D

≥1
1,α,β) is given by the following.

1. If α < β − 2 then X ∈ H1,α,β, if and only if

• τ≤0
1,β+1,β+1(X) = 0,

• τ≤0
1,β,β(τ≥1

1,β+1,β+1(X)) is an isomorphic arrow

• τ≤0
1,α+1,α+1(τ≥1

1,β,β(X)) = 0,

• ρ2(τ≤0
1,α,α(τ≥1

1,α+1,α+1(X)) = 0 and

• τ≥1
1,α,α(X)) = 0.

2. If β − 2 ≤ α < β − 1 then

• τ≤0
1,β+1,β+1(X) = 0,
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• τ≤0
1,α+1,α+1(τ≥1

1,β+1,β+1(X)) is an isomorphic arrow,

• τ≤0
1,β,β(τ≥1

1,α+1,α+1(X)) is a monomorphic arrow in the (abelian) cat-

egory τ≤0
1,β,β(τ≥1

1,β+1,β+1(D↑)),

• τ≤0
1,α+1,α+1(τ≥1

1,β,β(X)) = 0,

• ρ2(τ≤0
1,α,α(τ≥1

1,α+1,α+1(X)) = 0 and

• τ≥1
1,α,α(X)) = 0.

3. If β − 1 ≤ α then

• τ≤0
1,β+1,β+1(X) = 0,

• τ≤0
1,α+1,α+1(τ≥1

1,β+1,β+1(X)) is a monomorphic arrow in the (abelian)

category τ≤0
1,α,α(τ≥1

1,α+1,α+1(D↑)),

• ρ2(τ≤0
1,α,α(τ≥1

1,β,β(X)) = 0 and

• τ≥1
1,α,α(X)) = 0.

Proof. Combine theorem 5.1.18 with definition 2.5.27.

It will now be our task to extend our findings on t-structures that come
from type-1-recollement-data to t-structures that come from type-2-recollement-
data or type-3-recollement-data. We can rephrase corollary 4.3.17 using the
particular properties of the functors K and C.

Corollary 5.1.21. There are t-structures on D↑ given by

1.

D≤0 = {Z ∈ D↑ | ρ2(Z) ∈ D≤0
2 , λ1(Z) ∈ D≤0

1 }
D≥1 = {Z ∈ D↑ | ρ2(Z) ∈ D≥1

2 ,Cone(µZ)[−1] ∈ D≥1
1 }

2.

D≤0 = {Z ∈ D↑ | Cone(µZ)[−1] ∈ D≤0
2 , ρ2(Z) ∈ D≤0

1 }
D≥1 = {Z ∈ D↑ | Cone(µZ)[−1] ∈ D≥1

2 , λ1(Z) ∈ D≥1
1 }

3.

D≤0 = {Z ∈ D↑ | λ1(Z) ∈ D≤0
2 ,Cone(µZ) ∈ D≤0

1 }
D≥1 = {Z ∈ D↑ | λ1(Z) ∈ D≥1

2 , ρ2(Z) ∈ D≥1
1 }
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for t-structure (D≤0
1 ,D≥1

1 ) and (D≤0
2 ,D≥1

2 ) on D and µZ as in corollary
4.3.4.

Proof. Using Cone(µZ)[−1] = K = C[−1] by corollary 4.3.4 and by lemma
4.2.28, we replace K and C in corollary 4.3.17.

We will now provide analogies to theorem 5.1.18 and theorem 5.1.20 by
describing the t-structures provided by type-3-recollement-data. We have the
following observation (recall the definition of an ”epimorphic arrow” made
in 5.1.7).

Corollary 5.1.22. For a t-structure (D≤0
3,α,β,D

≥1
3,α,β) on D↑ assume that α ≤

β. Then the t-structure has a description as

D≤0 = {Z ∈ D↑ | λ1(Z) ∈ D≤0
2 , ρ2(Z) ∈ D≤0

1 }
D≥1 = {Z ∈ D↑ | λ1(Z) ∈ D≥1

2 , ρ2(Z) ∈ D≥1
1 }.

Proof. The D≤0 is unique for a given D≥1 by lemma 4.2.6.

In other words, α > β is now the interesting case.

Theorem 5.1.23. For a t-structure (D≤0
3,α,β,D

≥1
3,α,β) on D↑ assume that α > β

For an object X ∈ D↑, we have X ∈ D≤0
3,α,β if and only if

1. • if α > β + 1, then τ≤0
1,α−1,α−1(τ≥1

1,α,α(X)) is an epimorphic arrow in

τ≤0
1,α−1,α−1(τ≥1

1,α,α(D↑)),

• if β < α ≤ β + 1, then τ≥1
1,α,α(X) is an epimorphic arrow in

τ≤0
1,α−1,α−1(τ≥1

1,α,α(D↑)),

2. τ≥1
1,α−1,α−1(τ≤0

1,β,β(X)) is an isomorphic arrow,

3. τ≥1
1,β,β(X) = 0.

Proof. This is simply the dual of theorem 5.1.18 and all parts of the proof
can hence be obtained dually.

In analogy to the previous procedure, following theorem 5.1.18, we will
now explain how the hearts of the t-structures that we have just described,
look like.

Corollary 5.1.24. For a t-structure (D≤0
3,α,β,D

≥1
3,α,β) on D↑ assume that α >

β. The heart H3,α,β of (D≤0
3,α,β,D

≥1
3,α,β) is given by the following.

1. If α > β + 2 then X ∈ H3,α,β, if and only if
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• τ≤0
1,α+1,α+1(X) = 0,

• λ1(τ≤0
1,α,α(τ≥1

1,α,α(X))) = 0,

• τ≤0
1,β,β(τ≥1

1,α,α(X)) = 0,

• τ≤0
1,β,β(τ≥1

1,β+1,β+1(X)) is an isomorphic arrow and

• τ≥1
1,β,β(X) = 0.

2. If β + 1 ≤ α < β + 2 then

• τ≤0
1,α+1,α+1(X) = 0,

• λ1(τ≤0
1,α,α(τ≥1

1,α+1,α+1(X))) = 0,

• τ≤0
1,α−1,α−1(τ≥1

1,β+1,β+1(X)) is an epimorphic arrow in the (abelian)

category τ≤0
1,α−1,α−1(τ≥1

1,α,α)(D↑),

• τ≤0
1,β,β(τ1,α−1,α−1(X)) is an isomorphic arrow and

• τ≥1
1,β,β(X) = 0.

3. If β + 1 ≥ α then

• τ≤0
1,α+1,α+1(X) = 0 and

• λ1(τ≤0
1,β+1,β+1(τ≥1

1,α+1,α+1(X))) = 0

• τ≤0
1,β,β(τ≥1

1,α,α(X)) is an epimorphic arrow in the (abelian) category

τ≤0
1,α−1,α−1(τ≥1

1,α,α)(D↑) and

• τ≥1
1,β,β(X) = 0.

Proof. Combine theorem 5.1.23 with definition 2.5.27.

Remark 5.1.25. Note that by proposition 4.3.21 we have now given a coho-
mological description of the t-structures that we obtain via recollement from
the three semiorthogonal decompositions that we are working with. This
is with the exception of the small interval from remark 4.3.22, where the
situation remains unclear.

Remark 5.1.26. Like we did previously, in the description of t-structures
coming from type-1-recollement-data in theorem 5.1.18 and their hearts in
corollary 5.1.20, we are using the functors τ≤0

1,x,x and τ≥1
1,y,y to describe the

t-structures. It might seem odd, that we should use these functors again.
The point is, that they are special cases of the functors τ≤0

1,x1,x2
and τ≥1

1,y1,y2

where we let x1 = x2 and y1 = y2, belong to t-structures that simply are ”real
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shifts” of the standard t-structure on D↑ which makes them particularly nice
and hence a good basis to understand the more advanced t-structures we
were describing in 5.1.18, 5.1.20, 5.1.23 and 5.1.24.

We conclude this subsection with a few examples to illustrate our findings.
In order to focus on the essence of this subchapter we will illustrate whichever
of both categories the t-structure is composed of, that does not have the
”easy” CP-gluing description of section 3.

Example 5.1.27. Let X ∈ D≥1
1,α,β where α, β ∈ Z and α + 3 = β. Then the

cohomology of X has the form

0 0

...
...

β : 0 0

α + 2 : Xα+2 Yα+2

α + 1 : Xα+1 Yα+1

α : Xα Yα

α− 1 : Xα−1 Yα−1

...
...

∼=

∼=

Note: We are giving a description of the cohomology-complex of X, therefore
the vertical arrows in the above are 0.

Remark 5.1.28. Example 5.1.27 has a particularly nice shape because α and
β are whole numbers, and hence the abelian categories obtained by the trun-
cations in theorem 5.1.18 correspond to embeddings of A↑ into D↑. However,
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α, β /∈ Z yields a much more complicated situation as we will see in example
5.1.29.

Example 5.1.29. Let X ∈ D≥1
1,α,β where α, β ∈ R, α, β /∈ Z and α + 3 = β.

Then the cohomology of X has the form

0 0

...
...

bβc+ 1 : 0 0

bβc : Xbβc Ybβc

bαc+ 2 : Xbαc+2 Ybαc+2

bαc+ 1 : Xbαc+1 Ybαc+1

bαc : Xbαc Ybαc

bαc − 1 : Xbαc−1 Ybαc−1

...
...

c

∼=

b

a

and the objects given by a, b and c can be described by short exact sequences
in A as follows.

1. For the object given by the morphism ”a” we obtain the short exact
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sequence

0 −−−→ X1
bαc −−−→ Xbαc −−−→ X2

bαc −−−→ 0ya1

ya ya2

0 −−−→ Y 1
bαc −−−→ Ybαc −−−→ Y 2

bαc −−−→ 0

where X1
bαc

a1−→ Y 1
bαc ∈ τ

≤0
1,α,α(τ≥1

1,bαc+1,bαc+1(D↑)) is a monomorphic arrow

in the abelian category τ≤0
1,bαc,bαc(τ

≥1
1,bαc+1,bαc+1(D↑)) and X2

bαc
a2−→ Y 2

bαc ∈
τ≤0

1,bαc+1,bαc+1(τ≥1
1,α+1,α+1(D↑)).

2. For the object given by the morphism ”b” we obtain the short exact
sequence

0 −−−→ X1
bαc+1 −−−→ Xbαc+1 −−−→ X2

bαc+1 −−−→ 0yb1 yb yb2
0 −−−→ Y 1

bαc+1 −−−→ Ybαc+1 −−−→ Y 2
bαc+1 −−−→ 0

where X1
bαc+1

b1−→ Y 1
bαc+1 ∈ τ≤0

1,α+1,α+1(τ≥1
1,bαc+2,bαc+2(D↑)) is an isomor-

phic arrow and X2
bαc+1

b2−→ Y 2
bαc+1 ∈ τ≤0

1,bαc+1,bαc+1(τ≥1
1,α+1,α+1(D↑)) is a

monomorphic arrow in the category τ≤0
1,bαc+1,bαc+1(τ≥1

1,bαc+2,bαc+2(D↑)).

3. For the object given by the morphism ”c” we obtain the short exact
sequence

0 −−−→ X1
bβc −−−→ Xbβc −−−→ X2

bβc −−−→ 0yc1 yc yc2
0 −−−→ Y 1

bβc −−−→ Ybβc −−−→ Y 2
bβc −−−→ 0

where X1
bβc

c1−→ Y 1
bβc = 0 ∈ D↑ and moreover we have X2

bβc
c2−→ Y 2

bβc ∈
τ≤0

1,bβc,bβc(τ
≥1
1,β,β(D↑)) is an isomorphic arrow.

Remark 5.1.30. We choose the description via exact sequences in 5.1.29 in
order to demonstrate how the respective cohomology objects split up along
the boundaries provided by the real numbers α and β, obviously

0 −−−→ X1
bβc −−−→ Xbβc −−−→ X2

bβc −−−→ 0yc1 yc yc2
0 −−−→ Y 1

bβc −−−→ Ybβc −−−→ Y 2
bβc −−−→ 0
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is simply (Xbβc+1
c−→ Ybβc+1) ∼= (X2

bβc+1

c2−→ Y 2
bβc+1). One should think about

the three objects a, b and c as composed of the factors in the short exact
sequences with the subobject sitting on top of the quotient within the ladder
displayed at the start of example 5.1.29.

We will now provide examples for the better understanding of the situ-
ation of (D≤0

3,α,β,D
≥1
3,α,β). Since this is dual to the (D≤0

3,α,β,D
≥1
3,α,β)-case as we

pointed out before, the interesting category is now D≤0
3,α,β. The following

example is the dual of 5.1.27.

Example 5.1.31. Let X ∈ D≤0
3,α,β where α, β ∈ Z and α − 3 = β. Then the

cohomology of X has the form

...
...

α : Xα Yα

β + 2 : Xβ+2 Yβ+2

β + 1 : Xβ+1 Yβ+1

β : Xβ Yβ

β − 1 : 0 0

...
...

0 0

∼=

∼=

And finally we demonstrate the dual to example 5.1.32 with the following.

Example 5.1.32. Let X ∈ D≤0
3,α,β where α, β ∈ Z and α − 3 = β. Then the
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cohomology of X has the form

...
...

bαc+ 1 : Xbαc+1 Ybαc+1

bαc : Xbαc Ybαc

bβc+ 2 : Xbβc+2 Ybβc+2

bβc+ 1 : Xbβc+1 Ybβc+1

bβc : Xbβc Ybβc

bβc − 1 : 0 0

...
...

0 0

c

∼=

b

a

1. For the object given by the morphism ”a” we obtain the short exact
sequence

0 −−−→ X1
bβc −−−→ Xbβc −−−→ X2

bβc −−−→ 0ya1

ya ya2

0 −−−→ Y 1
bβc −−−→ Ybβc −−−→ Y 2

bβc −−−→ 0

where X2
bβc

a2−→ Y 2
bβc = 0 ∈ D↑ and moreover we have that the object

X1
bβc

a1−→ Y 1
bβc ∈ τ

≤0
1,β,β(τ≥1

1,bβc+1,bβc+1(D↑)) is an isomorphic arrow in the

category τ≤0
1,bβc,bβc(τ

≥1
1,bβc+1,bβc+1(D↑)).
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2. For the object given by the morphism ”b” we obtain the short exact
sequence

0 −−−→ X1
bβc+1 −−−→ Xbβc+1 −−−→ X2

bβc+1 −−−→ 0yb1 yb yb2
0 −−−→ Y 1

bβc+1 −−−→ Ybβc+1 −−−→ Y 2
bβc+1 −−−→ 0

where X1
bβc+1

b1−→ Y 1
bβc+1 ∈ τ≤0

1,β+1,β+1(τ≥1
1,bβc+2,bβc+2(D↑)) is an isomor-

phic arrow and X2
bβc+1

b2−→ Y 2
bβc+1 ∈ τ≤0

1,bβc+1,bβc+1(τ≥1
1,β+1,β+1(D↑)) is an

epimorphic arrow in the category τ≤0
1,β,β(τ≥1

1,β+1,β+1(D↑)).

3. For the object given by the morphism ”c” we obtain the short exact
sequence

0 −−−→ X1
bαc −−−→ Xbαc −−−→ X2

bαc −−−→ 0yc1 yc yc2
0 −−−→ Y 1

bαc −−−→ Ybαc −−−→ Y 2
bαc −−−→ 0

where X2
bαc

c2−→ Y 2
bαc ∈ τ

≤0
1,bαc,bαc(τ

≥1
1,α,α(D↑)) is an epimorphic arrow and

X1
bαc

c1−→ Y 1
bαc ∈ τ

≤0
1,α,α(τ≥1

1,bαc,bαc(D↑)).

Remark 5.1.33. This subsection was aimed at gaining a better understanding
of t-structures obtained by recollement via the type 1,2 or 3 recollement-data
(therefore linked to the semiorthogonal decompositions 〈D1,D2〉, 〈D3,D1〉
and 〈D3,D1〉 respectively). Our approach was to give a description of the in-
volved objects in terms of standard-cohomology. While we almost completely
succeeded, two interesting cases remain as demonstrated by the previous ex-
amples as the morphism a1 in 5.1.29 and the morphism b2 in 5.1.32 obtain
their characterisation as being linked to a monomorphism and an epimor-
phism respectively from categories of the form P(γ, γ+1] where γ ∈ Z (with
P(0, 1] = A↑). Since these categories are not simple shifts of A↑, we do not
obtain a connection to mono-/epimorphisms in A↑.

5.2 Connecting morphisms on D↑

An important feature of the derived category is, that it has morphisms which
are not a straightforward adaptation of those of the underlying abelian cat-
egory A (and hence of the – also abelian – category C(A)). On the other
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hand, it is via these additional morphisms that the triangulated structure is
provided.

While the first and the second horizontal arrow in the exact triangle

i2(ρ2(X))→ X → i1(λ1(X))
+→

in D↑ are obvious and are moreover taken from mor(C(A))), the connecting

morphism
+→ is less obvious and therefore interesting. Since, as an implica-

tion of [59, Tag 05QT] this morphism has to be non-zero in general, it is also
important to understand how it is constructed.

However,
+→ has proved to be of particular importance in the context of

D↑. Lemma 2.2.11 has revealed another problem that appears in this context,
provided by the question if the diagram:

A der−−−→ D
↑

y ↑

y
A↑ der−−−→ X

commutes. In other words, the question is if there is an equivalence of cat-
egories between (Db(A))↑ and D↑ provided by a trivial functor (or by any
functor at all). Both the author and others believed this to be true for while
(see [29]). However, the functor T of [29, Section 3.4] turns out not to be

faithful, since it maps
+→ to 0. We shall hence provide a description of

+→
throughout this subsection, which allows us to see why

+→ is non-zero and
hence how it is constructed.

We will require two definitions. At first recall this – well known – defini-
tion.

Definition 5.2.1. For a morphism

E
f→ F

in C(A) we define the ”mapping cone” by

Cone(f)n = En+1 ⊕ F n

(meaning that without the differential Cone(f) would simply be E[1] ⊕ F )
with (

−dn+1
E 0

fn+1 dnF

)
as differential.
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It is also well known, that with this object we obtain two canonical map-
pings F → Cone(f) and Cone(f)→ E[1].

Definition 5.2.2. For a morphism

E
f→ F

define iF and pE[1] to be the canonical mappings given by the mapping cone:

F
iF→ Cone(f)

pE[1]→ E[1].

In other words, iF embeds F into the F -component of Cone(f) and pE[1]

projects the E[1]-component of Cone(f) onto E[1].

The following lemma provides the fact that these mappings are – indeed
– useful.

Lemma 5.2.3. The maps defined in Definition 5.2.2 are maps of chain-
complexes.

Proof. To prove the lemma we must show the commutativity of the respective
map with the boundary-operator.

For iF we obtain:(
−dn+1

E 0
fn+1 dnF

)(
0
inF

)
=

(
0

dnF ◦ inF

)
=

(
0

in+1
F ◦ dnF

)
.

For pE[1] we easily check:

−dn+1
E ◦ pnE[1] = pn+1

E[1]

(
−dn+1

E 0
fn+1 dnF

)
.

Remark 5.2.4. Note that the object Cone(f) is – generally – not equal to the
direct sum of E and F , which implies, that we cannot assume the existence
of mappings pF and iE[1] in analogy to iF and pE[1]. For example would we
get

pn+1
F

(
−dn+1

E 0
fn+1 dnF

)
= (pn+1

F ◦ fn+1, pn+1
F ◦ dnF ) 6= (0, dnF ◦ pnF )

whenever f 6= 0 and at the same time F 6= 0. We refer to [56, Section 10.5]
for more details.



223

Lemma 5.2.5. Let (A
ϕ→ B) ∈ D↑. There is an exact triangle

A
idA−−−→ A −−−→ 0yϕ yiB◦ϕ y +−−−→

B
iB−−−→ Cone(idB)

pB[1]−−−→ B[1]

in D↑.

Proof. The sequence

0 −−−→ A
idA−−−→ A −−−→ 0 −−−→ 0yϕ yiB◦ϕ y

0 −−−→ B
idB−−−→ Cone(idB)

pB[1]−−−→ B[1] −−−→ 0

is exact in C(A↑).

We also have the following.

Lemma 5.2.6. Let (A
ϕ→ B) ∈ D↑, we have i1(A) ∼=D↑ (A

iB◦ϕ−→ Cone(idB)).

Proof. We have i1(A) = (A→ 0) which fits into the exact triangle

0
0−−−→ A

idA−−−→ Ay0

yϕ y0
+−−−→

B
idB−−−→ B

0−−−→ 0.

On the other hand, (A
iB◦ϕ−→ Cone(idB)) is the mapping cone of the morphism

0
0−−−→ Ay0

yϕ
B

idB−−−→ B,

in C(A↑) and combining [32, Section 1.1, (TR3)] with [32, Section 1.2, Propo-
sition], finishes the proof.

Hence, we obtain the following.
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Lemma 5.2.7. Let (A
ϕ→ B) ∈ D↑. There is an exact triangle

A

idA
vv &&

iA

��

A

ϕ

��

idA // A

iB◦ϕ

��

0

��

Cone(idA)

(ϕ[1],ϕ)ww

ϕ[1]◦pA[1]

%%

B
iB // Cone(idB) B[1]

(5.5)

in D↑.
Proof. At first note that the morphism

Cone(idA)
(ϕ[1],ϕ)→ Cone(idB)

in the diagram above is obtained as the mapping cone of the morphism

A
idA−−−→ Ayϕ yϕ

B
idB−−−→ B

and does – therefore – exist. Moreover, by lemma 5.2.6, both A
iA→ Cone(idA)

and A
iB◦ϕ→ Cone(idB) are isomorphic to i1(A), which implies that the mor-

phism induced by (idA, (ϕ[1], ϕ)) on the cohomology objects equals to (idA, 0)
– but since both Cone(idA) and Cone(idB) are acyclic, we obtain that the
map (idA, (ϕ[1], ϕ)) is a quasi-isomorphism and therefore an isomorphism in
D↑. Considering the exact triangle from lemma 5.2.5 we now obtain the
commutative (in C(A↑)) diagram

A

idA
vv &&

iA

��

A

ϕ

��

idA // A //

iB◦ϕ

��

0

��

Cone(idA)

(ϕ[1],ϕ)ww

ϕ[1]◦pA[1]

%%

B
iB // Cone(idB)

pB [1]
// B[1],

(5.6)
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and the proof is finished.

We hence conclude this section with the following theorem.

Theorem 5.2.8. Let X = (A
ϕ→ B). The connecting morphism

+→ of the
exact triangle

i2(ρ2(X))→ X → i1(λ1(X))
+→

is – up to isomorphisms – given by the chain-complex homomorphism ϕ via
the roof (5.5) described in lemma 5.2.7.

Proof. This is a consequence of lemma 5.2.7, obtained via the fact that we

have A
iB◦ϕ→ Cone(idB) isomorphic to A → 0 in D↑ by lemma 5.2.6. We

combine this with the commutativity of the diagram (5.6) which provides
the equality of both morphisms from (A→ Cone(idB)) to (0→ B[1]).

Remark 5.2.9. It should be noted, that the mathematics in this chapter also
provide a different approach to obtain the result of corollary 4.5.6. This can
be seen in the following way, assume that F = (A

ϕ→ B) such that ϕ = 0 in
HomD↑(A,B), then we have a decomposition

F = (A
iB◦ϕ−→ Cone(idB))⊕ i2(B) (5.7)

and obtain the result of corollary 4.5.6 by lemma 5.2.7.

The reason for (5.7) to be true is that by [59, Tag 05QT] we need to prove
that the morphism ξ =

A

idA
vv &&

iA

��

A

iB◦ϕ

��

0

��

Cone(idA)

(ϕ[1],ϕ)ww

ϕ[1]◦pA[1]

%%

Cone(idB) B[1]

in the exact triangle from lemma 5.2.7 equals 0 ∈ mor(D↑) for ϕ = 0 in
mor(D). Apply the functor HomD↑(−, i2(B[1])) to the (by lemma 5.2.5)
exact triangle
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A
idA−−−→ A −−−→ 0y=

yiA y +−−−→

A
iA−−−→ Cone(idA)

pA[1]−−−→ A[1]

to get a well-defined mapping

HomD↑(i2(A[1]), i2(B[1]))
−◦ν→ HomD↑(A

iA→ Cone(idA), i2(B[1]))

where ν is the morphism

A −−−→ 0yiA y +−−−→

Cone(idA)
pA[1]−−−→ A[1]

from the previous exact triangle. We obtain the well-defined mapping

HomD(A,B)
[1]→ HomD(A[1], B[1])

(0,−)→

HomD↑(i2(A[1]), i2(B[1]))
−◦ν→ HomD↑(A

iA→ Cone(idA), i2(B[1]))

which maps ϕ to ξ and hence proves that if ϕ = 0 in HomD↑(A,B), then so

is ξ in HomD↑(A
iA→ Cone(idA), i2(B[1])). As mentioned earlier, this is what

we need.

5.3 Exceptional collections

Another technique of finding hearts of bounded t-structures uses a particular
kind of objects which may or may not exist in the category one is working
with. These so called ”Exceptional objects” were used by Macŕı in [45] and
[46] to obtain new pre-stability conditions.

We will provide a short introduction into the theory of exceptional collec-
tions on triangulated categories by providing the crucial definitions required.
Following the notation of Macŕı in [46] we introduce the notion of an excep-
tional object.

Definition 5.3.1. An object E ∈ T R is called ”exceptional” if for all i 6= 0

Homi(E,E) = 0,

Hom0(E,E) = C.

We also need the following notation.
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Notation 5.3.2. For A,B ∈ T R let Hom•(A,B) =
⊕

k∈ZHomk(A,B)[−k].

We can now provide the definition of an exceptional collection.

Definition 5.3.3. A finite sequence of exceptional objects (E0, . . . , En) is
called an ”exceptional collection” in T R if for i > j we have

Hom•(Ei, Ej) = 0.

In general, the term exceptional collection is not strong enough to make
use of it in order to find t-structures. One requires the exceptional collection
to have additional features as provided by the following definitions.

Definition 5.3.4. An exceptional collection E = (E0, . . . , En) is ”complete”
if it generates T R by shifts and extensions.

Definition 5.3.5. An exceptional collection E = (E0, . . . , En) is ”Ext”, if
for all i 6= j we have

Hom≤0(Ei, Ej) = 0.

It is our objective to investigate the construction of exceptional collections
on D↑ in this subsection. We want to investigate what happens going from
D to D↑. That is, we want to extend concepts that are related to exceptional
collections from D to D↑. We start by illustrating this with the easy obser-
vation, that for a semiorthogonal decomposition T R = 〈T R1, T R2〉 and an
exceptional collection E = (E0, . . . , En) in T Ra we obtain an exceptional col-
lection ia(E) = (ia(E0), . . . , ia(En)) where a ∈ {1, 2} and ia as in lemma 3.1.4.
This is due to the fact that ia is fully faithful and commutes with the shift
functor which implies that we obtain HomT R(ia(E), ia(F )) ∼= HomT Ra(E,F )
for any E,F ∈ T Ra.

It is essential, yet not surprising, that the exceptional collections ia(E)
do in general not meet any criterion that allows one to use them in order to
generate t-structures. It is evident, that an exceptional collection which can
be used to construct t-structures on T R will have to be the result of a con-
struction process that involves both T R1 and T R2. Based on this premise,
we will hence try to construct more interesting exceptional collections on
T R.

Lemma 5.3.6. Let T R = 〈T R1, T R2〉 be a semiorthogonal decomposition
of T R. Let E = (E0, . . . , En) be an exceptional collection in T R1 and F =
(F0, . . . , Fn) be an exceptional collection in T R2. Then

1. (i1E , i2F) is an exceptional collection in T R and
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2. if E and F are complete, then (i1E , i2F) is complete.

Proof. We will prove the fact that (i1E , i2F) is an exceptional collection in
T R before we prove the completeness.

1. Any object in (i1E , i2F) is exceptional because i1 and i2 are fully faith-
ful and commute with the shift functor. Hence, it only remains to
show that Hom•T R(i2(Fa), i1(Eb)) = 0 for any a, b ∈ {0, . . . , n}. Since
Eb ∈ T R1 and Fa ∈ T R2 and T R = 〈T R1, T R2〉 is a semiorthogonal
decomposition this follows by definition.

2. Since E is assumed to be complete, E generates T R1 and in the same
way F generates T R2. Moreover, for any G ∈ T R, there exists an

exact triangle i2(ρ2G) → G → i1(λ1G)
+→, which again derives from

the fact that T R = 〈T R1, T R2〉 is a semiorthogonal decomposition.
Hence, as G is an extension of two objects that can be generated by
i1E and by i2F via shifts and extensions, (i1E , i2F) is indeed complete.

In order to establish corollary 5.3.8 we will need the following observation:

Lemma 5.3.7. If for an n ∈ N we have that E = (E1, . . . , En) is an excep-
tional collection in a triangulated category T R, then E [c] = (E1[c], . . . , En[c])
is an exceptional collection in T R.

Proof. The fact that Hom(E,F ) ∼= Hom(E[c], F [c]) implies – on one hand –
that the condition on each object of E [c] given in definition 5.3.1 is fulfilled,
and – on the other – that the condition on the sequence given in definition
5.3.3 is fulfilled.

Corollary 5.3.8. Let T R = 〈T R1, T R2〉 be a semiorthogonal decomposition
of T R. Assume there is an equivalence of categories φ : T R1 → T R2 (as
in lemma 3.1.8). Let E = (E0, . . . , En) be a semiorthogonal decomposition in
T R1 and assume that there is an m ∈ Z such that for any A1 ∈ T R1 and
A2 ∈ T R2 we have that Homi

T R2(φ(A1), A2) ∼= Homi
T R(i1(A1), i2(A2)[m]).

For c ∈ Z<m we obtain

1. (i1E , i2φ(E)[c]) = (i1(E0), . . . , i1(En), i2φ(E0)[c], . . . , i2φ(En)[c]) is an
exceptional collection in T R,

2. if E is complete, then (i1E , i2φ(E)[c]) is complete and

3. if E is Ext, then (i1E , i2φ(E)[c])) is Ext.
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Proof. We will proceed in the order of the statements of the corollary. We
combine lemma 5.3.6 with lemma 5.3.7 to prove 1 and proceed similarly with
2.

The proof for 3 works as follows. In order to fulfil the definition for
the exceptional collection to be Ext given in 5.3.5, we only have to prove
that for an object F to the right of an object E in (i1E , i2φ(E)[c]) we get
Hom≤0(E,F ) = 0. The rest of the definition will be fulfilled by the fact that
(i1E , i2φ(E)[c]) is an exceptional collection.

The semiorthogonal decomposition E being Ext means that for any ob-
jects Ea, Eb ∈ {E0, . . . , En} and a < b, we have Hom≤0

T R1(Ea, Eb) = 0. Hence

Hom≤0
T R(i1(Ea), i1(Eb)) = Hom≤0

T R1(Ea, Eb) = 0

and a similar statement holds for the embedding i2. Moreover, if we have
d 6= e, then we obtain

Hom≤0
T R(i1(Ed), i2(φ(Ee)[c])) = Hom≤0

T R2(φ(Ed), φ(Ee)[c−m])

⊂ Hom≤0

T R2(φ(Ed), φ(Ee)) = 0.

Finally,

Hom≤0
T R(i1(Ed), i2(φ(Ed)[c])) = Hom≤0

T R2(φ(Ed), φ(Ed)[c−m])

∼= Hom≤0

T R2(φ(Ed), φ(Ed)[c−m]) ⊂ Hom<0
T R2(φ(Ed), φ(Ed)[c−m]) = 0.

Remark 5.3.9. Note that corollary 5.3.8 applies in the same manner for the
collection (i1(E)[−c], i2φ(E)), as all definitions agree with the shift functor.

Corollary 5.3.10. If D has a complete and Ext-exceptional collection, then
so does D↑.

Proof. If (E0, . . . , En) is complete and Ext-exceptional collection in D, then
we can – for instance – choose

((E0 → 0), . . . , (En → 0), (0→ E0), . . . , (0→ En)) ⊂ D↑

as an example of an exceptional collection that fulfils all the criteria of corol-
lary 5.3.8. In other words, we apply corollary 5.3.8 in the situation of D and
D↑, where φ(E → 0) = (0 → E) and choose c to be equal to 0. By corol-
lary 3.2.29 the condition Homi

T R2(φ(A1), A2) ∼= Homi
T R(i1(A1), i2(A2)[m])

for A1 ∈ T R1 and A2 ∈ T R2 is fulfilled in the case of D and D↑ with
m = 1.
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A result by Macŕı, given in [45] and in [46] now provides the use of
exceptional collections for the stability space.

Proposition 5.3.11. If D has a complete and Ext-exceptional collection
(E0, . . . , En) then there is an open, connected and simply connected (n+ 1)-
dimensional submanifold ΘE ⊂ pre Stab(D↑).

Proof. Since 5.3.10 provides that D↑ has a complete and Ext-exceptional
collection given that D has one, one can apply [45, Lemma 3.19].

Remark 5.3.12. Note that the support property was a feature not yet added
to the set of conditions of a stability condition and is hence disregarded in
[45] and in [46].

We can now conclude this subsection by providing a fact on the probably
most common example regarding the theory of exceptional collections.

Corollary 5.3.13. There is an open, connected and also simply connected
(2N + 2)-dimensional submanifold ΘE ⊂ pre Stab(Db((PN)↑)).

Proof. We can apply proposition 5.3.11 with regard to the exceptional col-
lection given by E = {O, . . . ,O(N)} (see [9] or [31]).

6 On the stability spaces of D↑↑ and Dn↑

The category D↑ can be considered as the derived category of a simple graph
obtained from A (not as graph obtained from D), looking like this: · → ·).
The question is natural, what one can say about the derived category of a
more advanced graph such as · → · → ·, for start, and subsequently about
one of the form

· → · · · → ·︸ ︷︷ ︸
n−arrows

.

In analogy to the naming of A↑ the category of holomorphic triples if A =
Coh(C) one can now – more generally – talk about ”holomorphic chains” of
length n.

Evidently even this is only the first step in a prospective goal to under-
stand the stability space of any given graph. This chapter investigates how
far the previous findings on D↑ can be generalised with regard to simple
graphs of the kind mentioned above.
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6.1 Gluing and recollement on D↑↑

Definition 6.1.1. In analogy to definition 2.1.12 we define A↑↑ to be the
category for which obj(A↑) is the set of all arrows

A→ B → C

between objects A,B,C ∈ A. For (A
f→ B

g→ C), (A′
f ′→ B′

g′→ C ′) ∈ obj(A↑)
denote by

Hom((A
f→ B

g→ C), (A′
f ′→ B′

g′→ C ′))

the set of all triples (φ, φ′, φ′′) of arrows such that the following diagram
commutes:

A
φ−−−→ A′yf yf ′

B
φ′−−−→ B′yg yg′

C
φ′′−−−→ C ′.

Lemma 6.1.2. The category A↑↑ is abelian.

Proof. Similar to the proof of proposition 2.2.1, where one now uses the
diagram

K(β)
f̃−−−→ K(β′)

g̃−−−→ K(β′′)yker(β)

yker(β′)

yker(β′′)

B
f−−−→ B′

f−−−→ B′′yβ yβ′ yβ′′
C

g−−−→ C ′
g−−−→ C ′′.

Remark 6.1.3. Alternatively we can use definition 2.1.11 with n = 2.

Definition 6.1.4. Define D↑↑ = Db(A↑↑).

We will now provide the generalisation of the theory developed in sections
3 and – with regard to recollement – in 4. Where our starting point then
was the natural split-up of D↑ into two copies of D we can now repeat this
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process in two different ways – either by considering three copies of D sitting
in D↑↑ or by regarding D↑↑ as a composit of a copy of D and one of D↑.

The first prospective is realised by the following definitions.

Definition 6.1.5. For an object A ∈ D and a morphism f1 ∈ D, define
embeddings i↑↑1 , i

↑↑
2 , i

↑↑
3 and ∆↑↑ as the (trivial) extensions of the functors

that restricted to A fulfil the equations

1.

i↑↑1 : D → D↑↑

i↑↑1 (A) = A→ 0→ 0

i↑↑1 (f1) = (f1, 0, 0),

2.

i↑↑2 : D → D↑↑

i↑↑2 (A) = 0→ A→ 0

i↑↑2 (f1) = (0, f1, 0),

3.

i↑↑3 : D → D↑↑

i↑↑3 (A) = 0→ 0→ A

i↑↑3 (f1) = (0, 0, f1),

4.

∆↑↑ : D → D↑↑

∆↑↑(A) = A
id→ A

id→ A

∆↑↑(f1) = (f1, f1, f1).

Definition 6.1.6. Define projections P ↑↑1 , P ↑↑2 and P ↑↑3 as the (trivial) ex-
tensions of the functors that restricted to A↑↑ fulfil the equations

1.

P ↑↑1 : D↑↑ → D
P ↑↑1 (A→ B → C) = A

P ↑↑1 (f1, f2, f3) = f1,
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2.

P ↑↑2 : D↑↑ → D
P ↑↑2 (A→ B → C) = B

P ↑↑2 (f1, f2, f3) = f2,

3.

P ↑↑3 : D↑↑ → D
P ↑↑3 (A→ B → C) = C

P ↑↑3 (f1, f2, f3) = f3.

The second perspective, however, is captured by the next definition.

Definition 6.1.7. Define embeddings i↑↑1,2, i
↑↑
2,3,∆

↑↑
1 and ∆↑↑2 as the (trivial)

extensions of the functors that restricted to A↑ fulfil the equations

1.

i↑↑1,2 : D↑ → D↑↑

i↑↑1,2(A→ B) = A→ B → 0

i↑↑1,2(f1, f2) = (f1, f2, 0),

2.

i↑↑2,3 : D↑ → D↑↑

i↑↑2,3(A→ B) = 0→ A→ B

i↑↑2,3(f1, f2) = (0, f1, f2),

3.

∆↑↑1 : D↑ → D↑↑

∆↑↑1 (A→ B) = A
id→ A→ B

∆↑↑1 (f1, f2) = (f1, f1, f2).

4.

∆↑↑2 : D↑ → D↑↑

∆↑↑2 (A→ B) = A→ B
id→ B

∆↑↑2 (f1) = (f1, f2, f2).
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At this point we can observe something awkward (which – in a more
hidden form – already manifested itself in the definition of i↑↑2 ). This is that
there is no functor i↑↑1,3 as the zero in the middle causes information-loss in
the object. We will instead define a new functor.

Definition 6.1.8. Define the embedding j↑↑1,3 as the (trivial) extension of the
functor that restricted to A↑ fulfils the equations

j↑↑1,3 : D → D↑↑

j↑↑1,3(A→ B) = A→ 0→ B

i↑↑1,3(f1, f2) = (f1, 0, f2).

Remark 6.1.9. Note that j↑↑1,3 has potential significance for further studies
however will not be used in the data provided in this subsection.

Definition 6.1.10. Define projections P ↑↑1,2, P
↑↑
1,3 and P ↑↑2,3 as the (trivial) ex-

tensions of the functors that restricted to A↑↑ fulfil the equations

1.

P ↑↑1,2 : D↑↑ → D↑

P ↑↑1,2(A→ B → C) = A→ B

P ↑↑1,2(f1, f2, f3) = (f1, f2),

2.

P ↑↑1,3 : D↑↑ → D↑

P ↑↑1,3(A→ B → C) = A
A→B→C−→ C

P ↑↑1,3(f1, f2, f3) = (f1, f3),

3.

P ↑↑2,3 : D↑↑ → D↑

P ↑↑2,3(A→ B → C) = B → C

P ↑↑2,3(f1, f2, f3) = (f2, f3).

With these functors established we must answer the question what the
analogy to the adjunction-chain K[1] a i2 a ρ2 a ∆ a λ1 a i1 a K of functors
between D and D↑ is.

Theorem 6.1.11. There are chains of adjoint functors
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1. between D and D↑↑:

i↑↑3 a P
↑↑
3 a ∆↑↑ a P ↑↑1 a i

↑↑
1

2. and between D↑ and D↑↑:

i↑↑2,3 a P
↑↑
2,3 a ∆↑↑1 a P

↑↑
1,3 a ∆↑↑2 a P

↑↑
1,2 a i

↑↑
1,2.

Proof. In analogy to lemmas 3.2.3 and 3.2.4 we obtain the adjunctions in the
abelian case. For example do we have

HomD(P ↑↑3

A
(A

d→ B
e→ C), D)

∼→ HomD↑↑((A
d→ B

e→ C,∆↑↑
A

(D))

given by f 7→ (f ◦ e ◦ d, f ◦ e, f). Additionally we use the exactness of these
functors obtained analogous to lemma 3.2.6.

We can achieve an extension of the chains provided in theorem 6.1.11 if
we – once again – use the theory of Serre functors.

Lemma 6.1.12. If D has a Serre functor then so has D↑↑.

Proof. Similar to proposition 3.2.22 we can see that D↑ = 〈i↑↑1,2(D), i↑↑3 (D↑)〉.
In analogy to lemma 4.2.12, we now observe that

i↑↑1,2(D↑) = i↑↑3 (D)⊥ = im(i3)⊥ = ker(P ↑↑3 ) = ⊥ im(∆↑↑) = ⊥(∆↑↑(D)).

Via the admissibility of ∆↑↑(D) granted by P ↑↑3 a ∆↑↑ a P ↑↑1 in combination
with lemma 4.2.1, we also obtain i↑↑1,2(D↑)⊥ = ∆↑↑(D) and can therefore

proceed analogously to lemma 4.2.16 to see that i↑↑1,2(D↑) is admissible. We

then repeat this argument with regard to i↑↑3 (D↑) using that

i↑↑3 (D) = ⊥i↑↑1,2(D↑) = ⊥ im(i↑↑1,2) = ker(P ↑↑1,2) = im(∆↑↑2 )⊥ = ∆↑↑2 (D↑)⊥.

Hence, the result is obtained by theorem A.1.15.

We can therefore extend theorem 6.1.11 and define new functors.

Lemma 6.1.13. If D has a Serre-functor, we obtain adjunctions

1. between D and D↑↑:

KP ↑↑2,3[1] a i↑↑3 a P
↑↑
3 a ∆↑↑ a P ↑↑1 a i

↑↑
1 a KP

↑↑
1,2 a i

↑↑
2 [1] a KP ↑↑2,3[−1]
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2. between D↑ and D↑↑:

K
↑↑
2 [1] a i↑↑2,3 a P

↑↑
2,3 a ∆↑↑1 a P

↑↑
1,3 a ∆↑↑2 a P

↑↑
1,2 a i

↑↑
1,2 a K

↑↑
1 ,

where K↑↑1 and K↑↑2 are given via the Serre-functor as K↑↑1 = SD↑ ◦P ↑↑1,2 ◦S−1
D↑↑

and K↑↑2 = S−1
D↑ ◦ P

↑↑
2,3[−1] ◦ SD↑↑.

Proof. To see how the adjunction KP ↑↑2,3[1] a i↑↑3 and the chain of adjunctions

of functors i↑↑1 a KP
↑↑
1,2 a i

↑↑
2 [1] a KP ↑↑2,3[−1] are obtained we will demonstrate

in the case of KP ↑↑1,2 a i
↑↑
2 [1]. We have

HomD(KP ↑↑1,2(X), Y ) = HomD↑(P
↑↑
1,2(X), i2[1](Y )) =

HomD↑↑(X, i
↑↑
1,2(i2[1](Y ))) = HomD↑↑(X, i

↑↑
2 [1](Y ))

where X ∈ D↑↑ and Y ∈ D.
We obtain K↑↑1 and K↑↑2 by theorem A.1.16.

Lemma 6.1.14. There are exact triangles

•
i↑↑2,3P

↑↑
2,3(X)→ X → i↑↑1 P

↑↑
1 (X)

+→

•
i↑↑1 KP

↑↑
1,2(X)→ X → ∆↑↑1 P

↑↑
2,3(X)

+→

•
∆↑↑1 P

↑↑
1,3(X)→ X → i↑↑2 KP

↑↑
1,2(X)[1]

+→

•
i↑↑2 KP

↑↑
2,3(X)→ X → ∆↑↑2 P

↑↑
1,3(X)

+→

•
∆↑↑2 P

↑↑
1,2(X)→ X → i↑↑3 KP

↑↑
2,3(X)[1]

+→

•
i↑↑3 P

↑↑
3 (X)→ X → i↑↑1,2P

↑↑
1,2(X)

+→

•
i↑↑1,2K

↑↑
1 (X)→ X → ∆↑↑P ↑↑3 (X)

+→

•
∆↑↑P ↑↑1 (X)→ X → i↑↑2,3K

↑↑
2 (X)[1]

+→
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in D↑↑.

Proof. For the exact triangles that include the functors K↑↑1 ,K
↑↑
2 , we obtain

the result similar (and generalising it) to lemma 4.2.26. In the cases of the
exact sequences where K is involved we deduce the existence of the exact
triangle from D↑. For instance is the triangle

i↑↑1 KP
↑↑
1,2(X)→ X → ∆↑↑1 P

↑↑
2,3(X)

+→

with X = (X1 → X2 → X3) provided by

i1(K(X1 → X2))→ (X1 → X2)→ ∆(X2)
+−→,

since

P ↑↑1,2(i↑↑1 KP
↑↑
1,2(X)→ X → ∆↑↑1 P

↑↑
2,3(X)

+→)

= i1(K(X1 → X2))→ (X1 → X2)→ ∆(X2)
+−→,

as illustrated by

K(X1 → X2) −−−→ X1 −−−→ X2y y y
0 −−−→ X2 −−−→ X2

+−−−→y y y
0 −−−→ X3 −−−→ X3.

The exact triangles

i↑↑2,3P
↑↑
2,3(X)→ X → i↑↑1 P

↑↑
1 (X)

+→ and i↑↑3 P
↑↑
3 (X)→ X → i↑↑1,2P

↑↑
1,2(X)

+→

finally, are already short exact sequences in C(A↑↑).

Remark 6.1.15. Lemma 6.1.14 also allows us to provide a less abstract de-
scription of the functors K↑↑1 ,K

↑↑
2 : D↑↑ → D↑. To understand K↑↑1 we con-

sider the exact triangle

i↑↑1,2K
↑↑
1 (X)→ X

ξ−→ ∆↑↑P ↑↑3 (X)
+→
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for X = (X1
f−→ X2

g−→ X3). The morphism ξ is then given by the chain map

X1
g◦f−−−→ X3

f

y yidX3

X2
g−−−→ X3

g

y yidX3

X3 −−−→
idX3

X3.

This yields the description of the functor’s action on objects as K↑↑1 (X) ∼=
Cone(g ◦ f)[−1]→ Cone(g)[−1].

To understand K↑↑2 we consider the exact triangle

∆↑↑P ↑↑1 (X)→ X → i↑↑2,3K
↑↑
2 (X)[1]

+→

for X = (X1
f−→ X2

g−→ X3). Similar to the case of K↑↑1 , that we have just
investigated, this yields the description of the functors action on objects as
K
↑↑
2 (X) ∼= Cone(f)[−1] → Cone(g ◦ f)[−1]. Another way to see this is by

considering the following identities on the functors that we introduced.

λ1 ◦K↑↑2 = K ◦ P ↑↑1,2, ρ2 ◦K↑↑2 = K ◦ P ↑↑1,3,K ◦K
↑↑
2 = K ◦ P ↑↑2,3[−1],

λ1 ◦K↑↑1 = K ◦ P ↑↑1,3, ρ2 ◦K↑↑1 = K ◦ P ↑2,3,K ◦K
↑↑
1 = K ◦ P ↑↑1,2

(6.1)

The following lemma shows that we obtain a ”circle” of semiorthogonal
decompositions like we did in the situation of D↑.

Lemma 6.1.16. We obtain semiorthogonal decompositions

1. 〈i↑↑1 (D), i↑↑2,3(D↑)〉

2. 〈i↑↑2,3(D↑),∆↑↑(D)〉

3. 〈∆↑↑(D), i↑↑1,2(D↑)〉

4. 〈i↑↑1,2(D↑), i↑↑3 (D)〉

5. 〈i↑↑3 (D),∆↑↑2 (D↑)〉

6. 〈∆↑↑2 (D↑), i↑↑2 (D)〉

7. 〈i↑↑2 (D),∆↑↑1 (D↑)〉



239

8. 〈∆↑↑1 (D↑), i↑↑1 (D)〉

on D↑↑.

Proof. We obtain the necessary exact triangles from lemma 6.1.14. The
vanishing of the homomorphisms can be deduced in a very similar manner to
that in which it was done for D↑. Consider, for example, A ∈ D↑ and B ∈ D.
By lemma 6.1.13 we obtain

HomD↑↑(i
↑↑
2,3(A), i↑↑1 (B)) = HomD↑(A,P

↑↑
2,3(i↑↑1 (B))) = HomD↑(A, 0) = 0.

We sum up this subsection by stating the relation between gluing- and
recollement-data on D↑↑ with regard to the semiorthogonal decompositions
we have found.

Remark 6.1.17. Note that via the new style functor j↑↑1,3 it is possible to
compute two more semiorthogonal decompositions, these are

•

〈∆↑↑1,2(D), j↑↑1,3(D ×D)〉

and

•

〈j↑↑1,3(D ×D),∆↑↑2,3(D)〉

with ∆↑↑1,2 and ∆↑↑2,3 to be defined in remark 6.1.20.

Corollary 6.1.18. If D has a Serre-functor, CP-gluing-data on D↑↑ given by
a semiorthogonal decomposition of the kind provided in lemma 6.1.16 extends
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to recollement-data. The corresponding recollement-datas are:

I : Y = i↑↑1 (D);X = i↑↑2,3(D↑)); i∗ = P ↑↑1 , i∗ = i! = i↑↑1 ,

i! = K ◦ P ↑↑1,2, j! = i↑↑2,3, j
∗ = j! = P ↑↑2,3, j∗ = ∆↑↑1

II : Y = i↑↑2,3(D↑);X = ∆↑↑(D)); i∗ = K↑↑2 [1], i∗ = i! = i↑↑2,3,

i! = P ↑↑2,3, j! = ∆↑↑, j∗ = j! = P ↑↑1 , j∗ = i↑↑1

III : Y = ∆↑↑(D);X = i↑↑1,2(D↑)); i∗ = P ↑↑3 , i∗ = i! = ∆↑↑,

i! = P ↑↑1 , j! = i↑↑1,2, j
∗ = j! = K↑↑1 , j∗ = SD↑↑ ◦ i↑↑1,2 ◦ SD↑

IV : Y = i↑↑1,2(D);X = i↑↑3 (D↑)); i∗ = P ↑↑1,2, i∗ = i! = i↑↑1,2,

i! = K↑↑1 , j! = i↑↑3 , j
∗ = j! = P ↑↑3 , j∗ = ∆↑↑

V : Y = i↑↑3 (D);X = ∆↑↑2 (D↑)); i∗ = K ◦ P ↑↑2,3[1], i∗ = i! = i↑↑3 ,

i! = P ↑↑3 , j! = ∆↑↑2 , j
∗ = j! = P ↑↑1,2, j∗ = i↑↑1,2

V I : Y = ∆↑↑2 (D↑);X = i↑↑2 (D)); i∗ = P ↑↑1,3, i∗ = i! = ∆↑↑2 ,

i! = P ↑↑1,2, j! = i2,
↑↑ , j∗ = j! = K ◦ P ↑↑2,3[−1], j∗ = i↑↑3 [2]

V II : Y = i↑↑2 (D);X = ∆↑↑1 (D↑)); i∗ = K ◦ P ↑↑1,2[−1], i∗ = i! = i↑↑2 ,

i! = K ◦ P ↑↑2,3, j! = ∆↑↑1 , j
∗ = j! = P ↑↑1,3, j∗ = ∆↑↑2

V III : Y = ∆↑↑1 (D↑);X = i↑↑1 (D)); i∗ = P ↑↑2,3, i∗ = i! = ∆↑↑1 ,

i! = P ↑↑1,3, j! = i↑↑1 , j
∗ = j! = K ◦ P ↑↑1,2, j∗ = i↑↑2 [1]

(6.2)
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resulting in t-structures:

I : D≤0 = {Z ∈ D↑↑ | P ↑↑2,3(Z) ∈ D≤0
1 , P ↑↑1 (Z) ∈ D≤0

2 },
D≥1 = {Z ∈ D↑↑ | P ↑↑2,3(Z) ∈ D≥1

1 ,K ◦ P ↑↑1,2(Z) ∈ D≥1
2 }

II : D≤0 = {Z ∈ D↑↑ | P ↑↑1 (Z) ∈ D≤0
2 ,K↑↑2 [1](Z) ∈ D≤0

2 },
D≥1 = {Z ∈ D↑↑ | P ↑↑1 (Z) ∈ D≥1

2 ,K ◦ P ↑↑2,3(Z) ∈ D≥1
1 }

III : D≤0 = {Z ∈ D↑↑ | K↑↑1 ∈ D
≤0
1 , P ↑↑3 (Z) ∈ D≤0

2 },
D≥1 = {Z ∈ D↑↑ | K↑↑1 ∈ D

≥1
1 , P ↑↑1 (Z) ∈ D≥1

2 }

IV : D≤0 = {Z ∈ D↑↑ | P ↑↑3 (Z) ∈ D≤0
2 , P ↑↑1,2(Z) ∈ D≤0

1 },
D≥1 = {Z ∈ D↑↑ | P ↑↑3 (Z) ∈ D≥1

2 ,K↑↑1 ∈ D
≥1
1 }

V : D≤0 = {Z ∈ D↑↑ | P ↑↑1,2(Z) ∈ D≤0
1 ,K ◦ P ↑↑2,3[1](Z) ∈ D≤0

2 },
D≥1 = {Z ∈ D↑↑ | P ↑↑1,2(Z) ∈ D≥1

1 , P ↑↑3 (Z) ∈ D≥1
2 }

V I : D≤0 = {Z ∈ D↑↑ | K ◦ P ↑↑2,3[1](Z) ∈ D≤0
2 , P ↑↑1,3(Z) ∈ D≤0

1 },
D≥1 = {Z ∈ D↑↑ | K ◦ P ↑↑2,3[1](Z) ∈ D≥1

2 , P ↑↑1,2(Z) ∈ D≥1
1 }

V II : D≤0 = {Z ∈ D↑↑ | P ↑↑1,3(Z) ∈ D≤0
1 ,K ◦ P ↑↑1,2[−1](Z) ∈ D≤0

2 },
D≥1 = {Z ∈ D↑↑ | P ↑↑1,3(Z) ∈ D≥1

1 ,K ◦ P ↑↑2,3(Z) ∈ D≥1
2 }

V III : D≤0 = {Z ∈ D↑↑ | K ◦ P ↑↑1,2(Z) ∈ D≤0
2 , P ↑↑2,3(Z) ∈ D≤0

1 },
D≥1 = {Z ∈ D↑↑ | K ◦ P ↑↑1,2(Z) ∈ D≥1

2 ,K ◦ P ↑↑1,3(Z) ∈ D≥1
1 }

(6.3)

where (D≤0
1 ,D≥1

1 ) is a t-structure on D↑ and (D≤0
2 ,D≥1

2 ) is a t-structure on
D.

Proof. On the bases of theorem 6.1.12 this follows mostly from lemma 6.1.13
and lemma 6.1.14.

In order to find stability conditions we will now investigate the criterion
for hearts of the previously constructed t-structures on D↑↑ to be CP-glued.
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Lemma 6.1.19. For hearts of bounded t-structures H1 = Pµ(α, α+ 1], H2 =
Pµ(β, β + 1], H3 = Pµ(γ, γ + 1] on D, we obtain hearts of t-structures

1. If α ≥ β ≥ γ then

{X ∈ D↑↑ | P ↑↑1 (X) ∈ H1, λ1(P ↑↑2,3(X)) ∈ H2, ρ2(P ↑↑2,3(X)) ∈ H3},

is a heart of a bounded t-structure on D↑↑ obtained by CP-gluing.

2. If α ≥ γ + 1, β ≥ γ + 1 then

{X ∈ D↑↑ | P ↑↑1 (X) ∈ H1,K[1](P ↑↑2,3(X)) ∈ H2, λ1(P ↑↑2,3(X)) ∈ H3},

is a heart of a bounded t-structure on D↑↑ obtained by CP-gluing.

3. If α ≥ β ≥ γ + 1 then

{X ∈ D↑↑ | P ↑↑1 (X) ∈ H1, ρ2(P ↑↑2,3(X)) ∈ H2,K(P ↑↑2,3(X)) ∈ H3},

is a heart of a bounded t-structure on D↑↑ obtained by CP-gluing.

4. If α ≥ β ≥ γ + 1 then

{X ∈ D↑↑ | K(P ↑↑1,2(X)) ∈ H1,K(P ↑↑1,3[1](X)) ∈ H2, P
↑↑
1 (X) ∈ H3},

is a heart of a bounded t-structure on D↑↑ obtained by CP-gluing.

5. If α ≥ β + 1 ≥ γ + 2 then

{X ∈ D↑↑ | K(P ↑↑2,3[1](X)) ∈ H1,K(P ↑↑1,2[1](X)) ∈ H2, P
↑↑
1 (X) ∈ H3}

is a heart of a bounded t-structure on D↑↑ obtained by CP-gluing.

6. If α ≥ β + 1 ≥ γ + 1 then

{X ∈ D↑↑ | K(P ↑↑1,3[1](X)) ∈ H1,K(P ↑↑2,3(X)) ∈ H2, P
↑↑
1 (X) ∈ H3},

is a heart of a bounded t-structure on D↑↑ obtained by CP-gluing.

7. If α ≥ β + 1 ≥ γ + 1 then

{X ∈ D↑↑ | P ↑↑3 (X) ∈ H1,K(P ↑↑1,3(X)) ∈ H2,K(P ↑↑2,3(X)) ∈ H3},

is a heart of a bounded t-structure on D↑↑ obtained by CP-gluing.
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8. If α ≥ β ≥ γ + 1 then

{X ∈ D↑↑ | P ↑↑3 (X) ∈ H1,K[1](P ↑↑1,2(X)) ∈ H2,K(P ↑↑1,3(X)) ∈ H3},

is a heart of a bounded t-structure on D↑↑ obtained by CP-gluing.

9. If α ≥ β + 1 ≥ γ + 2 then

{X ∈ D↑↑ | P ↑↑3 (X) ∈ H1,K(P ↑↑2,3(X)) ∈ H2,K(P ↑↑1,2(X)) ∈ H3},

is a heart of a bounded t-structure on D↑↑ obtained by CP-gluing.

10. If α ≥ β + 1 ≥ γ + 1 then

{X ∈ D↑↑ | K[1](P ↑↑1,2(X)) ∈ H1, λ1(P ↑↑1,2(X)) ∈ H2, P
↑↑
3 (X) ∈ H3},

is a heart of a bounded t-structure on D↑↑ obtained by CP-gluing.

11. If α ≥ β + 1, α ≥ γ then

{X ∈ D↑↑ | ρ2(P ↑↑1,2(X)) ∈ H1,K(P ↑↑1,2(X)) ∈ H2, P
↑↑
3 (X) ∈ H3},

is a heart of a bounded t-structure on D↑↑ obtained by CP-gluing.

12. If α ≥ β + 1 ≥ γ + 2 then

{X ∈ D↑↑ | KP ↑↑2,3[1](X) ∈ H1, ρ2(P ↑↑1,2(X)) ∈ H2,K(P ↑↑1,2(X)) ∈ H3},

is a heart of a bounded t-structure on D↑↑ obtained by CP-gluing.

Proof. This uses arguments analogous to those needed to prove corollary
3.2.31, one uses lemma 3.1.5 and the key is the vanishing of the homomor-
phisms. The condition on α, β and γ guarantees that the heart H(i,j) is
obtained by CP-gluing on D↑ in the first place. Let H(i,j) be the heart of
the t-structure obtained by recollement from t-structures with hearts Hi, Hj,
where (i, j) ∈ {(1, 2), (2, 3)} on D↑. In other words, Hij is defined as either

• Hij = {E ∈ D↑ | λ1(E) ∈ Hi, ρ2(E) ∈ Hj}, or

• Hij = {E ∈ D↑ | K[1](E) ∈ Hi, λ1(E) ∈ Hj}, or

• Hij = {E ∈ D↑ | ρ2(E) ∈ Hi,K(E) ∈ Hj}.

For the semiorthogonal decomposition
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1. 〈i↑↑1 (D), i↑↑2,3(D↑)〉 we obtain that the heart of the corresponding recolle-
ment t-structure if obtained by gluing has the form

{X ∈ D↑↑ | P ↑↑1 (X) ∈ H1, P
↑↑
2,3(X) ∈ H(2,3)},

2. 〈i↑↑2,3(D↑),∆↑↑(D)〉 we obtain that the heart of the corresponding rec-
ollement t-structure if obtained by gluing has the form

{X ∈ D↑↑ | K↑↑2 [1](X) ∈ H(1,2), P
↑↑
1 (X) ∈ H3},

3. 〈∆↑↑(D), i↑↑1,2(D↑)〉 we obtain that the heart of the corresponding rec-
ollement t-structure if obtained by gluing has the form

{X ∈ D↑↑ | P ↑↑3 (X) ∈ H1,K
↑↑
1 (X) ∈ H(2,3)},

4. 〈i↑↑1,2(D↑), i↑↑3 (D)〉 we obtain that the heart of the corresponding recolle-
ment t-structure if obtained by gluing has the form

{X ∈ D↑↑ | P ↑↑1,2(X) ∈ H(1,2), P
↑↑
3 (X) ∈ H3},

5. 〈i↑↑3 (D),∆↑↑2 (D↑)〉 we obtain that the heart of the corresponding rec-
ollement t-structure if obtained by gluing has the form

{X ∈ D↑↑ | KP ↑↑2,3[1](X) ∈ H1, P
↑↑
1,2(X) ∈ H(2,3)},

6. 〈∆↑↑2 (D↑), i↑↑2 (D)〉 we obtain that the heart of the corresponding rec-
ollement t-structure if obtained by gluing has the form

{X ∈ D↑↑ | P ↑↑1,3(X) ∈ H(1,2),KP
↑↑
2,3(X) ∈ H3},

7. 〈i↑↑2 (D),∆↑↑1 (D↑)〉 we obtain that the heart of the corresponding rec-
ollement t-structure if obtained by gluing has the form

{X ∈ D↑↑ | KP ↑↑1,2[−1](X) ∈ H1, P
↑↑
1,3(X) ∈ H(2,3)},

8. 〈∆↑↑1 (D↑), i↑↑1 (D)〉 we obtain that the heart of the corresponding rec-
ollement t-structure if obtained by gluing has the form

{X ∈ D↑↑ | P ↑↑(2,3)(X) ∈ H(1,2),KP
↑↑
1,2(X) ∈ H3}.
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To see that the vanishing-condition regarding the homomorphisms holds take
– for example – the heart

{X ∈ D↑↑ | P ↑↑1 (X) ∈ H1, λ1(P ↑↑2,3(X)) ∈ H2, ρ2(P ↑↑2,3(X)) ∈ H3},

that, if α ≥ β, is obtained by CP-gluing via the semiorthogonal decomposi-
tion 〈i↑↑1 (D), i↑↑2,3(D↑)〉. By lemma 3.1.5, we have to prove

Hom≤0(i↑↑1 (X), i↑↑2,3(Y )) = 0 (6.4)

for any X ∈ H1 and Y ∈ H(2,3). Consider the exact triangle

i2(ρ2(Y ))→ Y → i1(λ1(Y ))
+−→ .

Now α ≥ β ensures

Hom≤0(i↑↑1 (X), i↑↑2,3(i2(ρ2(Y )))) = 0

as well as
Hom≤0(i↑↑1 (X), i↑↑2,3(i1(λ1(Y )))) = 0

and hence (6.4) holds.
The 8 types of hearts above for H(i,j) result in 24 types of hearts of t-

structures in total as there are three ways of gluing H(i,j). However, 12 of
the types of hearts that we obtain turn out to be simple re-writes of others –
denoting by x.y the type of heart glued via the semiorthogonal decomposition
number x on D↑↑ (in the order in which they appear in the lemma) and the
semiorthogonal decomposition number y onD↑ (for (Dy,D⊥y )) via which H(i,j)

is glued, we obtain

1.1 = 4.1

1.2 = 5.1

1.3 = 6.1

2.1 = 7.2

2.2 = 5.2

2.3 = 6.2

3.1 = 6.3

3.2 = 7.3

3.3 = 8.3

4.2 = 7.1

4.3 = 8.1

5.3 = 8.2
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such that we are indeed left with the 12 types of hearts of t-structures de-
scribed – however in the cases of 5.1, 6.2, 7.3 and 8.1 the hearts H1, H2 and
H3 are in a different order and hence suitable adjustments to the inequalities
on α, β and γ have to be made.

Additionally, note that using the identities (6.1) of remark 6.1.15 on some
of the (less convenient) functors we have

{X ∈ D↑↑ | K(P ↑↑1,2(X)) ∈ H1, ρ2(K↑↑2 [1](X)) ∈ H2, P
↑↑
1 (X) ∈ H3}

= {X ∈ D↑↑ | K(P ↑↑1,2(X)) ∈ H1,K(P ↑↑1,3[1](X)) ∈ H2, P
↑↑
1 (X) ∈ H3},

{X ∈ D↑↑ | K(P ↑↑2,3[1](X)) ∈ H1,K(P ↑↑1,2[1](X)) ∈ H2, P
↑↑
1 (X) ∈ H3}

= {X ∈ D↑↑ | K[1](K↑↑2 [1](X)) ∈ H1, λ1(K↑↑2 [1](X)) ∈ H2, P
↑↑
1 (X) ∈ H3},

{X ∈ D↑↑ | K(P ↑↑1,3[1](X)) ∈ H1,K(P ↑↑2,3(X)) ∈ H2, P
↑↑
1 (X) ∈ H3},

= {X ∈ D↑↑ | ρ2(K↑↑2 [1](X)) ∈ H1,K(K↑↑2 [1](X)) ∈ H2, P
↑↑
1 (X) ∈ H3},

{X ∈ D↑↑ | P ↑↑3 (X) ∈ H1,K(P ↑↑1,3(X)) ∈ H2,K(P ↑↑2,3(X)) ∈ H3},
= {X ∈ D↑↑ | P ↑↑3 (X) ∈ H1, λ1(K↑↑1 (X)) ∈ H2, ρ2(K↑↑1 (X)) ∈ H3},

{X ∈ D↑↑ | P ↑↑3 (X) ∈ H1,K[1](P ↑↑1,2(X)) ∈ H2,K(P ↑↑1,3(X)) ∈ H3},
= {X ∈ D↑↑ | P ↑↑3 (X) ∈ H1,K[1](K↑↑1 (X)) ∈ H2, λ1(K↑↑1 (X)) ∈ H3},

{X ∈ D↑↑ | P ↑↑3 (X) ∈ H1,K(P ↑↑2,3(X)) ∈ H2,K(P ↑↑1,2(X)) ∈ H3},
= {X ∈ D↑↑ | P ↑↑3 (X) ∈ H1, ρ2(K↑↑1 (X)) ∈ H2,K(K↑↑1 (X)) ∈ H3}.

Remark 6.1.20. The semiorthogonal decompositions with three embedded
subcategories used to directly obtain the hearts of lemma 6.1.19 (triggering
remark 2.1.7) are

1. 〈i↑↑1 (D), 〈i↑↑2 (D), i↑↑3 (D)〉 for

{X ∈ D↑↑ | P ↑↑1 (X) ∈ H1, λ1(P ↑↑2,3(X)) ∈ H2, ρ2(P ↑↑2,3(X)) ∈ H3},

2. 〈i↑↑1 (D), i↑↑3 (D),∆↑↑2,3(D)〉 for

{X ∈ D↑↑ | P ↑↑1 (X) ∈ H1,K[1](P ↑↑2,3(X)) ∈ H2, λ1(P ↑↑2,3(X)) ∈ H3},

3. 〈i↑↑1 (D),∆↑↑2,3(D), i↑↑2 (D)〉 for

{X ∈ D↑↑ | P ↑↑1 (X) ∈ H1, ρ2(P ↑↑2,3(X)) ∈ H2,K(P ↑↑2,3(X)) ∈ H3},
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4. 〈i↑↑2 (D), i↑↑3 (D),∆↑↑(D)〉 for

{X ∈ D↑↑ | K(P ↑↑1,2(X)) ∈ H1,K(P ↑↑1,3[1](X)) ∈ H2, P
↑↑
1 (X) ∈ H3},

5. 〈i↑↑3 (D),∆↑↑2,3(D),∆↑↑(D)〉 for

{X ∈ D↑↑ | K(P ↑↑2,3[1](X)) ∈ H1,K(P ↑↑1,2[1](X)) ∈ H2, P
↑↑
1 (X) ∈ H3}

6. 〈∆↑↑2,3(D), i↑↑2 (D),∆↑↑(D)〉 for

{X ∈ D↑↑ | K(P ↑↑1,3[1](X)) ∈ H1,K(P ↑↑2,3(X)) ∈ H2, P
↑↑
1 (X) ∈ H3},

7. 〈∆↑↑(D), i↑↑1 (D), i↑↑2 (D)〉 for

{X ∈ D↑↑ | P ↑↑3 (X) ∈ H1,K(P ↑↑1,3(X)) ∈ H2,K(P ↑↑2,3(X)) ∈ H3},

8. 〈∆↑↑(D), i↑↑2 (D),∆↑↑1,2(D)〉 for

{X ∈ D↑↑ | P ↑↑3 (X) ∈ H1,K[1](P ↑↑1,2(X)) ∈ H2,K(P ↑↑1,3(X)) ∈ H3},

9. 〈∆↑↑(D),∆↑↑1,2(D), i↑↑1 (D)〉 for

{X ∈ D↑↑ | P ↑↑3 (X) ∈ H1,K(P ↑↑2,3(X)) ∈ H2,K(P ↑↑1,2(X)) ∈ H3},

10. 〈i↑↑2 (D),∆↑↑1,2(D), i↑↑1 (D)〉 for

{X ∈ D↑↑ | K[1](P ↑↑1,2(X)) ∈ H1, λ1(P ↑↑1,2(X)) ∈ H2, P
↑↑
3 (X) ∈ H3},

11. 〈∆↑↑1,2(D), i↑↑1 (D), i↑↑3 (D)〉 for

{X ∈ D↑↑ | ρ2(P ↑↑1,2(X)) ∈ H1,K(P ↑↑1,2(X)) ∈ H2, P
↑↑
3 (X) ∈ H3},

12. 〈i↑↑3 (D),∆↑↑(D), i↑↑1 (D〉 for

{X ∈ D↑↑ | KP ↑↑2,3[1](X) ∈ H1, ρ2(P ↑↑1,2(X)) ∈ H2,K(P ↑↑1,2(X)) ∈ H3},

where for A ∈ D we define the functors ∆↑↑1,2 and ∆↑↑2,3 as

∆1,2(A) := A
idA−−→ A→ 0

∆2,3(A) := 0→ A
idA−−→ A.
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Lemma 6.1.21. For stability conditions σ1 = (Z1, H1), σ2 = (Z2, H2), and
σ3 = (Z3, H3) on D with hearts of t-structures H1 = Pµ(α, α + 1], H2 =
Pµ(β, β + 1], H3 = Pµ(γ, γ+ 1] let Z(i,j) be the group homomorphism induced
by Zi, Zj, (i, j) ∈ {(1, 2), (2, 3)} in the sense of [21, (2.5)].

1. The heart

{X ∈ D↑↑ | P ↑↑1 (X) ∈ H1, λ1(P ↑↑2,3(X)) ∈ H2, ρ2(P ↑↑2,3(X)) ∈ H3},

together with the stability function induced by Z1, Z2 and Z3 in the sense
of [21, (2.5)] is a pre-stability condition if α ≥ β + 1 ≥ γ + 2,

2. the heart

{X ∈ D↑↑ | P ↑↑1 (X) ∈ H1, ρ2(P ↑↑2,3(X)) ∈ H2,K[1](P ↑↑2,3(X)) ∈ H3},

together with the stability function induced by Z1, Z2 and Z3 in the sense
of [21, (2.5)] is a pre-stability condition if if α ≥ γ + 2, β ≥ γ + 2,

3. the heart

{X ∈ D↑↑ | P ↑↑1 (X) ∈ H1,K(P ↑↑2,3(X)) ∈ H2, λ1(P ↑↑2,3(X)) ∈ H3},

together with the stability function induced by Z1, Z2 and Z3 in the sense
of [21, (2.5)] is a pre-stability condition if α ≥ β + 1 ≥ γ + 3,

4. the heart

{X ∈ D↑↑ | K(P ↑↑1,2(X)) ∈ H1,K(P ↑↑1,3[1](X)) ∈ H2, P
↑↑
1 (X) ∈ H3},

together with the stability function induced by Z1, Z2 and Z3 in the sense
of [21, (2.5)] is a pre-stability condition if α ≥ β + 1 ≥ γ + 3,

5. the heart

{X ∈ D↑↑ | K(P ↑↑2,3[1](X)) ∈ H1,K(P ↑↑1,2[1](X)) ∈ H2, P
↑↑
1 (X) ∈ H3}

together with the stability function induced by Z1, Z2 and Z3 in the sense
of [21, (2.5)] is a pre-stability condition if α ≥ β + 2 ≥ γ + 4,

6. the heart

{X ∈ D↑↑ | K(P ↑↑1,3[1](X)) ∈ H1,K(P ↑↑2,3(X)) ∈ H2, P
↑↑
1 (X) ∈ H3},

together with the stability function induced by Z1, Z2 and Z3 in the sense
of [21, (2.5)] is a pre-stability condition if α ≥ β + 2 ≥ γ + 4,
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7. the heart

{X ∈ D↑↑ | P ↑↑3 (X) ∈ H1,K(P ↑↑1,3(X)) ∈ H2,K(P ↑↑2,3(X)) ∈ H3},

together with the stability function induced by Z1, Z2 and Z3 in the sense
of [21, (2.5)] is a pre-stability condition if α ≥ β + 2 ≥ γ + 3,

8. the heart

{X ∈ D↑↑ | P ↑↑3 (X) ∈ H1,K[1](P ↑↑1,2(X)) ∈ H2,K(P ↑↑1,3(X)) ∈ H3},

together with the stability function induced by Z1, Z2 and Z3 in the sense
of [21, (2.5)] is a pre-stability condition if α ≥ β + 1 ≥ γ + 3,

9. the heart

{X ∈ D↑↑ | P ↑↑3 (X) ∈ H1,K(P ↑↑2,3(X)) ∈ H2,K(P ↑↑1,2(X)) ∈ H3},

together with the stability function induced by Z1, Z2 and Z3 in the sense
of [21, (2.5)] is a pre-stability condition if α ≥ β + 2 ≥ γ + 4,

10. the heart

{X ∈ D↑↑ | ρ2(P ↑↑1,2(X)) ∈ H1,K[1](P ↑↑1,2(X)) ∈ H2, P
↑↑
3 (X) ∈ H3},

together with the stability function induced by Z1, Z2 and Z3 in the sense
of [21, (2.5)] is a pre-stability condition if α ≥ β + 2 ≥ γ + 3,

11. the heart

{X ∈ D↑↑ | K(P ↑↑1,2(X)) ∈ H1, λ1(P ↑↑1,2(X)) ∈ H2, P
↑↑
3 (X) ∈ H3},

together with the stability function induced by Z1, Z2 and Z3 in the sense
of [21, (2.5)] is a pre-stability condition if α ≥ β + 2, α ≥ γ + 1,

12. the heart

{X ∈ D↑↑ | KP ↑↑2,3[1](X) ∈ H1, ρ2(P ↑↑1,2(X)) ∈ H2,K(P ↑↑1,2(X)) ∈ H3},

together with the stability function induced by Z1, Z2 and Z3 in the sense
of [21, (2.5)] is a pre-stability condition if α ≥ β + 2 ≥ γ + 4.

Proof. Similar to proposition 3.2.37 we see this from [21, Proposition 3.5]
after applying lemma 6.1.19.

In order to construct stability conditions and – hence – to prove proposi-
tion 6.1.24 we generalise lemma 4.9.1 for the two natural choices.



250

Lemma 6.1.22. Let A = Coh(C) where C is a smooth projective curve.
For stability conditions σ1 = (Z1, H1), σ2 = (Z2, H2), and σ3 = (Z3, H3) on
D with hearts of t-structures H1 = Pµ(α, α + 1], H2 = Pµ(β, β + 1], H3 =
Pµ(γ, γ + 1] let H(i,j) be the heart of the t-structure obtained by recollement
from t-structures with hearts Hi, Hj and Z(i,j) be the group homomorphism
induced by Zi, Z, j, (i, j) ∈ {(1, 2), (2, 3)} in the sense of [21, (2.5)].

• The pair

H = {X ∈ D↑↑ | P ↑↑1 (X) ∈ H1, P
↑↑
2,3(X) ∈ H(2,3)}

together with the stability function induced by Z1, Z2 and Z3 in the sense
of [21, (2.5)] is a stability condition if α ≥ β + 1 ≥ γ + 2.

• The pair

H = {X ∈ D↑↑ | P ↑↑1,2(X) ∈ H(1,2), P
↑↑
3 (X) ∈ H3}

together with the stability function induced by Z1, Z2 and Z3 in the sense
of [21, (2.5)] is a stability condition if α ≥ β + 1 ≥ γ + 2.

Proof. We can generalise lemma 4.9.1 where now

Z(1,2)(X) = Z(P ↑↑1,2(X)) and Z(2,3)(X) = Z(P ↑↑2,3(X)) (6.5)

and we use the analogous quadratic forms

Q : N (D↑↑)⊗R→ R as

Q(v) = =(Z1(v))=(Z(2,3)(v)) + <(Z1(v))<(Z(2,3)(v))

and

Q : N (D↑↑)⊗R→ R as

Q(v) = =(Z(1,2)(v))=(Z3(v)) + <(Z(1,2)(v))<(Z3(v))

(6.6)

together with the fact that our condition on the hearts grants that for any
object E = E1

ϕ1−→ E2
ϕ2−→ E3 in H and hence – in particular – for a σ-

semistable one, the morphisms ϕ1 and ϕ2 are zero.

Remark 6.1.23. The construction of lemma 6.1.22 can be adapted for the
other six semiorthogonal decompositions with their respective hearts of lemma
6.1.22, for suitable changes of the functors in (6.5). It is however our intent
to prove proposition 6.1.24, for which lemma 6.1.22 is perfectly accurate in
the presented form.

Proposition 6.1.24. Let A = Coh(C) where C is a smooth projective curve.
The space Stab(D↑↑) is non-empty.

Proof. This follows from lemma 6.1.22.
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6.2 Generalisation of the Jealousy Lemma to D↑↑

Since, as section 6.1 reveals, one has both gluing- and recollement-data avail-
able on the category D↑↑, it is natural to ask the question if there is a version
of the Jealousy Lemma (theorem 4.4.6). Unfortunately, the situation is more
complex since one has to embed D↑ into D↑↑ as part of the semiorthogonal
decomposition that provides the basis for the gluing- and recollement data.
Since the stability-manifold of D↑ is a lot more difficult then that of D, one
cannot hope to obtain such clear results. As part of the proof of the Jeal-
ousy Lemma we will also provide a description of the recollement data that,
under the condition of D having a Serre-functor, one obtains. This is done
in (6.2). Subsequently we will then also describe the t-structures that one
obtains from this recollement data – this is done in (6.3).

Following the notation introduced as part of corollary 4.3.17, we introduce
the next definition.

Definition 6.2.1. Let t-structures on D and D↑↑ be given by

(D≤0,D≥1) = (Pµ(α,∞),Pµ(−∞, α]),

(D≤0
y,β,γ,D

≥1
y,β,γ), y ∈ {1, 2, 3},

(6.7)

with (D≤0
y,β,γ,D

≥1
y,β,γ) as in definition 4.3.18. Define (D≤0

x,α,(β,γ),D
≥1
x,α,(β,γ)), x ∈

{1, . . . , 8} to be the t-structure that is obtained by recollement based on
the semiorthogonal decomposition ”number x” of lemma 6.1.16 from the t-
structures in (6.7).

Remark 6.2.2. Note that the previous definition abuses terminology since
semiorthogonal decompositions appear in a CP-gluing context and not as
part of that of a recollement. However – as we have seen before – under
favourable conditions, CP-gluing data can be extended to recollement data.

Notation 6.2.3. Denote by Hx,α,(β,γ) the heart of (D≤0
x,α,(β,γ),D

≥1
x,α,(β,γ)), x ∈

{1, . . . , 8}.

Lemma 6.2.4. If there is a stability condition σ with heart Hx,α,(β,γ), then
Hx,β,γ is obtained by gluing.

Proof. By theorem 4.4.6 Hx,β,γ carries no stability condition if β < γ.

We have the jealous-lemma for D↑↑.

Proposition 6.2.5. If there is a stability condition σ with heart H1,α,(β,γ)

obtained via recollement from hearts H ∈ D and H1,β,γ ⊂ D↑, then H1,α,(β,γ)

is obtained by CP-gluing.
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Proof. We will outline the main building-blocks for the generalisation of the-
orem 4.4.6. First, note that by lemma 6.2.4 we may assume β ≥ γ. We need
to see that α << β triggers another gluing-situation, generalising proposi-
tion 4.3.21. To demonstrate how this generalisation works, we use the list
of recollements provided in (6.2) and hence that of recollement t-structures
provided in (6.3). This shows how proposition 4.3.21 is generalised – we
group I with II (note that in the same manner III with IV and so on can
be grouped together) and use that the D≤0 of the respective first t-structure
together with the D≥1 of the second provide CP-gluing data.

Hence, we can now generalise the proof for theorem 4.4.6. At first, we
need a version of lemma 4.4.2. In this case, we need to prove i↑↑1 (P(α, α+1]) ⊂
H1,α,(β,γ), i

↑↑
2 (P(β, β + 1]) ⊂ H1,α,(β,γ) and ∆ ◦ i1(P(β, β + 1]) ⊂ H1,α,(β,γ).

To prove i↑↑1 (P(α, α + 1]) ⊂ H1,α,(β,γ), note that P ↑↑2,3 ◦ i
↑↑
1 (P(α, α + 1]) =

0 ∈ H1,α,(β,γ). Moreover P ↑↑1 ◦ i
↑↑
1 (P(α, α + 1]) = P(α, α + 1] ⊂ P(α,∞) and

K ◦ P ↑↑1,2 ◦ i
↑↑
1 (P(α, α + 1]) = K ◦ i1(P(α, α + 1])) = P(α, α + 1] ⊂ P(α,∞).

To prove i↑↑2 (P(β, β + 1]) ⊂ H1,α,(β,γ), note that P ↑↑1 ◦ i
↑↑
2 (P(β, β + 1]) =

0 ∈ H1,α,(β,γ). Moreover P ↑↑2,3 ◦ i
↑↑
2 (P(β, β + 1]) = i2(P(β, β + 1]) ⊂ H1,β,γ

given by the fact that H1,β,γ is obtained by CP-gluing. Finally, we also

have K ◦ P ↑↑1,2 ◦ i
↑↑
2 (P(β, β + 1]) = K ◦ i2(P(β, β + 1])) = P(β, β + 1][−1] =

P(β − 1, β] ⊂ P(−∞, α + 1] provided by the fact that β ≤ α + 1.

To prove ∆1◦i1(P(β, β+1]) ⊂ H1,α,(β,γ), note thatK◦P ↑↑1,2◦∆1◦i1(P(β, β+

1]) = K◦∆(P(β, β+1]) = 0 ⊂ H1,α,(β,γ). Moreover P ↑↑1 ◦∆1◦i1(P(β, β+1]) =

P(β, β + 1] ⊂ P(β,∞). Finally P ↑↑2,3 ◦∆1 ◦ i1(P(β, β + 1]) = i1P(β, β + 1] ⊂
H1,β,γ given by the fact that H1,β,γ is obtained by CP-gluing.

We can now generalise lemma 4.4.4. Let Z be the stability function given
by σ. We consider the imaginary part of Z which is given by

=(Z(X)) = D1(deg(P1(X))) +D2(deg(P2(X))) +D3(deg(P3(X)))

+C1(rank(P1(X))) + C2(rank(P2(X))) + C3(rank(P3(X)))

for X ∈ Hx,α,(β,γ). We obtain

=(Z(X))|i↑↑1 (P(α,α+1]) = =(Z(i↑↑1 (X1)))

= D1(deg(X1)) + C1(rank(X1)),

=(Z(X))|i↑↑2 (P(β,β+1]) = =(Z(i2(X1)))

= D2(deg(X1)) + C2(rank(X1)),

=(Z(X))|∆◦i1(P(β,β+1]) = =(Z(∆(X1)))

= (D1 +D2)(deg(X1)) + (C1 + C2)(rank(X1))
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for any X1 in either P(α, α + 1]) or P(β, β + 1]). We now use the same
argument as in lemma 4.4.4 to finish the proof.

6.3 Further generalisations: The category Dn↑

We will now provide a generalisation of some of the findings of the previous
chapters to the situation of n arrows. The category Dn↑ that we will now
introduce can be thought of as the derived category of a certain quiver (see
[23] for details) with vertices in obj(A) and edges in mor(A).

Definition 6.3.1. Define Dn↑, n ∈ N to be the derived category of An↑ (see
definition 2.1.11).

Definition 6.3.2. Let t, n ∈ N, t < n. Define in↑j1,...,jt : Dt↑ → Dn↑ in analogy
to definition 6.1.7 part 1, 2 and 3 to be the embedding into components
j1, . . . , jt.

Furthermore define ∆n↑
a,b : Dt↑ → Dn↑, a, b ∈ N, a < b by the equation

∆n↑
a,b(A1 → · · · → Aa

f−→ Aa+1 → · · · → At)

= (A1 → · · · → Aa−1 → A1 → B1 → · · · → Bb−a
f−→ Aa+1 → · · · → At),

where B1 → · · · → Bb−a = Aa
idAa→ · · · idAa→ Aa,

with the morphisms defined accordingly via the morphisms obtained from
restricting the functors to the respective abelian categories.

Furthermore define P n↑
j1,...,jt

: Dn↑ → Du↑, t ≤ u < n, in analogy to defi-
nition 6.1.10 to be the projection onto the components j1, . . . , jt. Both for
in↑j1,...,jt and P n↑

j1,...,jt
morphisms between neighbouring objects that after the

embedding or the projection are still neighbouring one another are being
kept whilst all others are being deleted (similar to the case of j↑↑1,3 versus i↑↑1,2
and i↑↑2,3 in definition 6.1.7).

Remark 6.3.3. Note that for convenience we will always refer to ∆n↑
1,v : Dt↑ →

Dn↑(v+u = n) as ∆n↑. Note furthermore, that with this notation established,
we identify λ1 with P ↑1 and ρ2 with P ↑2 .

Generalising our observations made for the cases of D,D↑ and D↑↑, the
following lemma shows how to find the component that all adjunction chains
between given categories Dt↑ and Dn↑ have in common.
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Lemma 6.3.4. Let t, n ∈ N, t < n,m < n. We have the following chain of
adjoint functors:

in↑n−(t−1),...,n a P
n↑
n−(t−1),...,n a ∆n↑

1,n−(t−1) a

· · · a ∆n↑
t−m,n−m a P

n↑
1,...,t−m,n+1−m,...,n a . . .
a ∆n↑

t,n a P1,...,t a in↑1,...,t

between Dt↑ and Dn↑.

Proof. The idea is the same as in lemma 3.2.3. It – once again – suffices
to execute our proof on the abelian level. To prove that the adjunction
in↑n−(t−1),...,n a P

n↑
n−(t−1),...,n holds we use the isomorphism

(0, . . . , 0, fn−(t−1), . . . , fn) 7→ (fn−(t−1), . . . , fn)

where fi : Ai → Bi, to obtain

HomAn↑(0→ · · · → An−(t−1) → · · · → An, B1 → Bn)
∼= HomAt↑(An−(t−1) → · · · → An, Bn−(t−1) → Bn).

The other adjunctions are obtained similarly.

Corollary 6.3.5. In particular this implies

∆n↑ a P n↑
n a in↑n and

∆n↑
n−1,n a P

n↑
1,...,n−1 a i

n↑
1,...,n−1

Proof. This is a straightforward implication of lemma 6.3.4.

We are now able to prove an important consequence, namely, that a
category, that extends the definition of D↑ to a chain of any given length n
will always inherit a Serre-functor from the category D that one starts with.

Proposition 6.3.6. If D has a Serre functor then so has Dn↑.

Proof. We generalise the proof of lemma 6.1.12 where we use the equations

in↑1,...,n−1(D(n−1)↑) = in↑n (D)⊥ = im(in↑n )⊥

= ker(P n↑
n ) = ⊥ im(∆n↑) = ⊥∆n↑(D)

and

in↑n (D) = ⊥in↑1,...,n−1(D(n−1)↑) = ⊥ im(in↑1,...,n−1)

= ker(P n↑
1,...,n−1) = im(∆n↑

n−1)⊥ = ∆n↑
n−1(Dn↑)⊥,

that we are able to establish with the aid of corollary 6.3.5. This allows us
to proceed in the very same way as we did in 6.1.12 and therefore finishes
the proof.
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In line with the main topic of interest of this thesis we would like to
establish that stability conditions on Dn↑ can be constructed. As previously
done in this subsection, the basic concepts can be generalised to the case of
Dn↑.

Proposition 6.3.7. Let A = Coh(C) where C is a smooth projective curve.
The space Stab(Dn↑) is non-empty.

Proof. We can generalise lemma 6.1.22 via induction in order to obtain a
σ ∈ Stab(Dn↑). Using the quadratic form analogous to (6.6) and investigating
the σ-semistable object

E = E1
ϕ1−→ E2

ϕ2−→ . . .
ϕn−→ En+1 ∈ H.

The heart H on Dn↑ can be glued from hearts

H1 = Pµ(α1, α1 + 1] . . . Hn+1 = Pµ(αn+1, αn+1 + 1]

like in lemma 6.1.19 but with the stronger restrictions

α1 ≥ α2 + 1 ≥ · · · ≥ αn+1 + n

of the kind of lemma 6.1.21, using stability functions Z1, . . . Zn+1 on the
respective hearts such that we obtain that σ is obtained by CP-gluing the
stability conditions

σ1 = (H1, Z1), . . . σn+1 = (Hn+1, Zn+1)

inductively.

A Appendix

A.1 Serre functors

Serre functors were first introduced by Bondal and Kapranov in [12]. The
proper definition, however, as it is given in definition A.1.8 can be found
in [13]. Serre functors serve as a generalisation of the well known concept
of Serre duality – we refer to Hartshorne, [34, Section III, subsection 7] for
details. Serre functors are an important tool in homological algebra. They
can be used to compute new functors out of given ones and have – therefore
– very useful applications in relation to recollements. Bondal and Kapranov
provided a – crucial – theorem (A.1.15) regarding Serre functors in [12]. In
the following we will prepare its introduction by providing the following vital
terminology that will allow us to formulate the main theorem (A.1.15) of this
section.
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Definition A.1.1. The right orthogonal of a full subcategory B of an addi-
tive category A, denoted B⊥ is the full subcategory given by

B⊥ = {C ∈ A | Hom(B,C) = 0 for all B ∈ B}.

Definition A.1.2. The left orthogonal of a full subcategory C of an additive
category A, denoted ⊥C is the full subcategory given by

⊥C = {B ∈ A | Hom(B,C) = 0 for all C ∈ C}.

We can now provide the following – important – definitions.

Definition A.1.3. A strictly full triangulated subcategory T̃ R of a trian-
gulated category T R is right-admissible if for any X ∈ T R there is an exact
triangle

T̃ → X → C
+→

where T̃ ∈ T̃ R and C ∈ T̃ R
⊥

.

In analogy to this we obtain the next definition.

Definition A.1.4. A strictly full triangulated subcategory T̃ R of a trian-
gulated category T R is left-admissible if for any X ∈ T R there is an exact
triangle

D → X → T̃
+→

where T̃ ∈ T̃ R and D ∈ ⊥T̃ R.

And hence,

Definition A.1.5. A triangulated subcategory T R′ of a triangulated cate-
gory T R is admissible if it is right-admissible and left-admissible.

The next lemma brings different terminology together.

Lemma A.1.6. Every right- (left-) admissible triangulated subcategory A of
a category B provides a semiorthogonal decomposition given by B = 〈A⊥,A〉
(B = 〈A, ⊥A〉).

Proof. Apply definition 2.1.6.

Definition A.1.7. A category A is called ”k-linear” if for any A,B ∈ A,
the set Hom(A,B) has the structure of a k-vector space and if additionally
composition of morphisms is k-bilinear.
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Definition A.1.8. Let k be a field and A be a k-linear category with finite-
dimensional Hom-sets. A ”Serre functor” S : A → A is an additive equiva-
lence of categories that has bi-functorial isomorphisms

φA,B : HomA(A,B)
∼=→ HomA(B, S(A))∗

of k-vector spaces for any two objects A and B in A.

Remark A.1.9. Note that by [12, Proposition 3.4 b], Serre functors are unique
up to functor isomorphisms. To see this, consider Serre functors S, S ′ and
bi-functorial isomorphisms

φA,B : HomA(A,B)
∼=→ HomA(B, S(A))∗

and
φ′A,B : HomA(A,B)

∼=→ HomA(B, S ′(A))∗

of k-vector spaces for any two objects A and B in A. We obtain

φ′A,B ◦ φ−1
A,B : HomA(B, S(A))∗

∼=→ HomA(B, S ′(A))∗, (A.1)

which means that S(A) ∼= S ′(A) for any A ∈ A. Moreover, letting B = S(A)
in (A.1), we obtain

φ′A,S(A) ◦ φ−1
A,S(A) : HomA(S(A), S(A))∗

∼=→ HomA(S(A), S ′(A))∗,

when – on the other hand – letting B = S(A′) and A = A′ in (A.1) provides
us with

φ′A′,S(A′) ◦ φ−1
A′,S(A′) : HomA(S(A′), S(A′))∗

∼=→ HomA(S(A′), S ′(A′))∗.

Hence, the diagram

S(A)
∼=−−−→ S ′(A)

S(f)

y S′(f)

y
S(A′)

∼=−−−→ S ′(A′)

commutes for any f ∈ Hom(A,A′) proving that we also obtain S(f) ∼= S ′(f).

We will now provide a couple of important tools that will serve to prove
the main theorem of this section (A.1.15) which is due to Bondal and Kapra-
nov. In order to do so, we require the following lemma also due to Bondal
and Kapranov.
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Lemma A.1.10. A category A has a Serre functor if and only if HomA(X,−)∗

and HomA(−, X)∗ are representable for any X ∈ A.

Proof. See [12, Proposition 3.4 a].

Additionally we require the next lemma, which is as well provided by
Bondal and Kapranov ([12, Lemma 2.4 a]). In order to prepare it, we provide
the following definition.

Definition A.1.11. For a category A and an object X ∈ A, we define

hX(A) = HomA(A,X).

Lemma A.1.12. For a category A, h : A → Sets a contravariant functor
and X ∈ A, there is a natural identification of the set of natural transforma-
tions hX → h with h(X).

Proof. To prove this, fix an element δ ∈ h(X). For an object A ∈ A and a
morphism f ∈ hX(A) = HomA(A,X), a natural transformation Φδ : hX → h
is now given by Φδ

A(f) = h(f)(δ). If we – on the other hand – now consider
a given natural transform Φ : hX → h, we obtain the required δ ∈ h(X) as
ΦX(idX).

Hence, we also have the following corollary.

Corollary A.1.13. Let A be a triangulated category, X̃ ∈ A, h : A → Sets
a contravariant cohomological functor and assume that

B → A→ C
+→

is an exact triangle. The exact sequences

. . . h(C)→ h(A)→ h(B)→ . . .

and
. . . hX̃(C)→ hX̃(A)→ hX̃(B)→ . . .

are embedded in a commutative diagram

. . . −−−→ h(C) −−−→ h(A) −−−→ h(B) −−−→ . . .

ΦδC

x ΦδA

x ΦδB

x
. . . −−−→ hX̃(C) −−−→ hX̃(A) −−−→ hX̃(B) −−−→ . . .

(A.2)

for any δ ∈ h(X̃) and Φδ : hX̃ → h a natural transformation constructed in
the way it was outlined in the proof of lemma A.1.12.
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Proof. By lemma A.1.12, Φδ is a natural transformation. Additionally the
functors h and hX̃ are cohomological functors.

Finally, we require the following.

Lemma A.1.14. For vector spaces V1, V2, V3, V4, V
′

1 , V
′

2 , V
′

3 , V
′

4 , let

V1
c←−−− V2

b←−−− V3
a←−−− V4

α1

x α2

x α3

x α4

x
V ′1

c′←−−− V ′2
b′←−−− V ′3

a′←−−− V ′4

be a commutative diagram with exact rows. Assume that α1 is a monomor-
phism and α4 an epimorphism. Assume additionally that there is a J ∈ V3

and an I ∈ V ′2 , such that α2(I) = b(J). Then there is a δ ∈ V ′3 such that
b′(δ) = I and α3(δ) = J .

Proof. Let K ∈ V2 be the image of I under α2 and of J under b. The
latter implies, that due to the exactness of the rows, K ∈ im(b), which gives
c(K) = 0 and therefore, using the commutativity of the diagram,

α1(c′(I)) = c(α2(I)) = c(K) = 0.

Since α1 is a monomorphism this means that c′(I) = 0 and hence – due to
exactness – that there exists a δ′ ∈ V ′3 such that b′(δ′) = I. Therefore

b(α3(δ′)) = α2(b′(δ′)) = K

holds. Hence, if we let J ′ be the image of δ′ under α3, we obtain b(J ′) = K.
This implies that

b(J ′ − J) = b(J ′)− b(J) = K −K = 0.

Therefore J ′ − J ∈ ker(b) and hence J ′ − J ∈ im(a). This means that there
is a d ∈ V4 such that a(d) = J ′ − J . Since α4 is an epimorphism, we obtain
a preimage d′ of d under α4 such that a(α4(d′)) = J ′ − J and hence

α3(a′(d′)) = a(α4(d′)) = J ′ − J.

Now, define β = a′(d) then

b′(β) = b′(a′(d′)) = 0.

Now let δ = δ′ − β. On one hand we now obtain

b′(δ) = b′(δ′ − β) = b′(δ′)− b′(β) = b′(δ′)− 0 = b′(δ′) = I
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and on the other

α3(δ) = α3(δ′ − β) = α3(δ′)− α3(β) = J ′ − (J ′ − J) = J.

This – hence – is the δ we were looking to find and the proof is finished.

As it was our aim, we can now provide the following theorem from [12].
Since the proof given by Bondal and Kapranov in [12] omits certain details
we will, for the convenience of the reader, now provide a fully worked out
version of the proof.

Theorem A.1.15. Let A be a triangulated category. Assume B ⊂ A to be
an admissible subcategory and define C = B⊥. Assume furthermore that C is
admissible and that B and C have Serre functors. Then the category A also
has a Serre functor.

Proof. Let h = HomA(X,−)∗ for X ∈ A. We will construct a representing
object for h in order to apply lemma A.1.10. First, consider the exact triangle

R→ X
β→ B

+→

with R ∈ ⊥B and B ∈ B, that we obtain from the fact that B is admissible
and hence in particular left-admissible. For any B1 ∈ B, the application
of Hom(−, B1), combined with the fact that Hom(R,B1) = 0 by definition
A.1.4 we obtain

HomA(X,B1)
∼=← HomA(B,B1)

which, since B ⊂ A is a full subcategory provides us with

h(B1) = HomA(X,B1)∗
∼=→ HomA(B,B1)∗

= HomB(B,B1)∗ = HomB(B1, SB(B))
(A.3)

where SB is the Serre functor on B (note that by remark A.1.9 Serre functors
are essentially unique).

Similarly, consider the exact triangle

B′ → X → C ′
+→

where B′ ∈ B and C ′ ∈ C. Since C = B⊥ we can use definition A.1.3 to
obtain

h(C1) = HomA(X,C1)∗
∼=→ HomA(C ′, C1)∗

= HomC(C
′, C1)∗ = HomC(C1, SC(C

′))
(A.4)
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for C1 ∈ C in a similar manner as before.

We now define E = SB(B) ∈ B ⊂ A and – as before – use that C was
assumed to be admissible to embed E into the exact triangle

C ′′
γ→ E → L

+→ (A.5)

where C ′′ ∈ C and L ∈ C⊥. Now – again as before – we obtain

HomC(C,C
′′)

γ◦−∼=→ HomA(C,E)

for all C ∈ C. Applying h to γ now supplies us with

h(C ′′) h(E)
h(γ)

oo

which – by substituting C ′′ for C1 in equation (A.4) extends to

h(C ′′)

∼=

��

h(E)
h(γ)

oo

HomC(C
′′, SC(C

′))

such that – using (A.3) this time, letting B1 = E – we obtain

h(C ′′)

∼=

��

h(E)
h(γ)

oo

∼=

��

HomC(C
′′, SC(C

′)) HomB(E,E).

Hence the identity idE ∈ HomB(E,E) has an image v ∈ HomC(C
′′, SC(C

′))
and therefore, using the exact triangle (A.5) and defining F ′′ = Cone(v), we
obtain the diagram
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SC(C
′)

+

66

C ′′

v
66

γ

  

F ′′[−1]

77

E

##
L

+

$$ .

Next, we compose γ with the arrow F ′′[−1]→ C ′′ to get an arrow F ′′[−1]→
E. We let X̃ be the object and u the arrow that – together – define the cone
of F ′′[−1]→ E, obtain

SC(C
′)

+

66

C ′′

v
66

γ

��

F ′′[−1]

77

// E

""

u // X̃
+ //

L
+

##

and – using the octahedral axiom – finally acquire arrows X̃ → L and ε such
that the following is a commutative diagram of exact triangles.
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SC(C
′)

+

66

ε

��

C ′′

v
66

γ

��

F ′′[−1]

77

// E

""

u // X̃
+ //

��

L
+

##

+

��

We have at this point constructed the representing object X̃ for the functor
h. It will subsequently be our objective to prove that X̃ does indeed repre-
sent the functor h. First, we will provide an important consequence of the
octahedral diagram. We use – similar as above – the exact triangle

E
u→ X̃ → F ′′

+→

and combine it with the fact that F ′′ = Cone(v), which, since C was assumed
to be triangulated and since C ′′, SC(C

′) ∈ C implies F ′′ ∈ C. We acquire

HomB(B̂, E) = HomA(B̂, E) ∼= HomA(B̂, X̃) (A.6)

for an arbitrary B̂ ∈ B. Since B be has a Serre functor, we additionally
obtain

h(B̂)
∼=→ HomB(B̂, E) (A.7)

by (A.3) and hence

h(B̂)
∼=→ HomB(B̂, E) = HomA(B̂, E) ∼= HomA(B̂, X̃). (A.8)

Taking the inverses of the isomorphisms in (A.8), we define a natural trans-
formation ϕ : HomA(−, −̃)→ h(E) between functors defined in B. Since the

isomorphism in (A.6) was obtained by applying HomA(B̂,−), it is natural.
So is the isomorphism obtained by (A.7), to see this we examine (A.3) and ob-

tain that the isomorphism HomA(X,B1)∗
∼=→ HomA(B,B1)∗ being obtained

from the application of the functor HomA(−, B1) and the dualising-functor
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is natural. So is HomB(B,B1)∗ = HomB(B1, SB(B)), by definition A.1.8.
Hence ϕ is a natural transformation. In the same manner, use

SC(C
′)

ε→ X̃ → L
+→

to obtain a natural transformation ψ : HomA(−, X̃)
∼=→ h(−). Now, we define

hX̃ = HomA(−, X̃) and are able to complete our previous diagram via

h(C ′′)

∼=

��

h(E)
h(γ)

oo

∼=

��

HomC(C
′′, SC(C

′))

∼=ε◦−

��

HomB(E,E)

∼=u◦−

��

hX̃(C ′′) hX̃(E)

to

h(C ′′)

∼=

��

h(E)
h(γ)

oo

∼=

��

HomC(C
′′, SC(C

′))

∼=ε◦−

��

HomB(E,E)

∼=u◦−

��

hX̃(C ′′)

ψC′′

==

hX̃(E).

ϕE

aa

We have – however – previously introduced u as the preimage of idE via
the upper half of the diagram. Considering the images u ◦ idE = u and ε ◦ v
under the respective maps u ◦− and ε ◦−, the diagram provides us with the
equation

h(γ)(ϕE(u)) = ψC′′(ε ◦ v). (A.9)

We can now proceed with our actual objective – which was, of course, to
prove that X̃ is indeed the representing object for h. To this end, consider
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an arbitrary object A ∈ A. Again using the admissibility property we can
embed it into an exact triangle

B → A→ C
+→

where B ∈ B and C ∈ C. Using the functors h and hX̃ we now obtain exact
sequences

· · · → h(C)→ h(A)→ h(B)→ . . .

and
· · · → hX̃(C)→ hX̃(A)→ hX̃(B)→ . . .

respectively that by corollary A.1.13 are embedded in the commutative dia-
gram

. . . −−−→ h(C) −−−→ h(A) −−−→ h(B) −−−→ . . .

ΦδC

x ΦδA

x ΦδB

x
. . . −−−→ hX̃(C) −−−→ hX̃(A) −−−→ hX̃(B) −−−→ . . .

for any δ ∈ h(X̃). It is – hence – sufficient to prove that there is a δ ∈ h(X)
such that Φδ

B = ϕB and at the same time Φδ
C = ψC . We claim that the

first is implied if ϕE(u) = h(u)(δ) and the latter if ψSC(C′)(ε) = h(ε)(δ).
To see this consider the construction of Φδ outlined in lemma A.1.12, we
deduce immediately that what we need to prove is ϕB(f) = h(f)(δ) for

f ∈ HomA(B, X̃) = hX̃(B). Consider the isomorphism

HomB(B,E)
u◦−∼=→ HomA(B, X̃)

obtained by the usual argument. Hence, there is a preimage g ∈ HomB(B,E)
of f such that f = u ◦ g. We now consider the commutative diagram

hX̃(B)
ϕB−−−→ h(B)

h
X̃

(g)

x h(g)

x
hX̃(E)

ϕE−−−→ h(E)

given by the natural transformation ϕ. Since u ∈ hX̃(E) we now obtain
ϕB((hX̃(g))(u)) = h(g)(ϕE(u)). Using our assumption that ϕE(u) = h(u)(δ)
this provides us with

Φδ
B(f) = h(f)(δ) = h(u ◦ g)(δ)

= h(g)h(u)(δ) = h(g)(ϕE(u)) = ϕB((hX̃(g))(u)) = ϕB(u ◦ g) = ϕB(f).
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Similarly ψSC(C′)(ε) = h(ε)(δ) implies Φδ
C = ψC .

Now, we use the following commutative ”square” of the octahedral dia-
gram

SC(C
′)

ε

��

C ′′

v
66

γ

��

E u // X̃ ,

to obtain the – commutative – diagram

h(C ′′)
h(v)←−−− h(SC(C

′))

h(γ)

x h(ε)

x
h(E)

h(u)←−−− h(X̃).

(A.10)

We have ϕE(u) ∈ h(E) and ψSC(C′)(ε) ∈ h(SC(C
′)) and know – from the

fact that ψ is a natural transformation – that ψC′′(ε ◦ v) = h(v)(ψSC(C′)(ε)).
Combining this with equation (A.9), we obtain

h(γ)(ϕE(u)) = ψC′′(ε ◦ v) = h(v)(ψSC(C′)(ε)). (A.11)

Given the commutativity of the previous diagram, this makes it possible to
look for a δ ∈ h(X̃) such that h(u)(δ) = ϕE(u) and h(ε)(δ) = ψSC(C′)(ε). The
octahedral diagram in particular supplies us with

SC(C
′)

+

66

ε

��

C ′′

v
66

γ

��

F ′′[−1]

77

// E
u // X̃

+ // ,

which we will now rewrite as a morphism of exact triangles in the following
manner
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F ′′[−1] −−−→ C ′′
v−−−→ SC(C

′) −−−→ F ′′∥∥∥ γ

y ε

y ∥∥∥
F ′′[−1] −−−→ E

u−−−→ X̃ −−−→ F ′′.

Hence, by applying h, we can embed diagram (A.10) into the diagram

h(F ′′[−1]) ←−−− h(C ′′)
h(v)←−−− h(SC(C

′)) ←−−− h(F ′′)∥∥∥ h(γ)

x h(ε)

x ∥∥∥
h(F ′′[−1]) ←−−− h(E)

h(u)←−−− h(X̃) ←−−− h(F ′′).

with exact rows. Lemma A.1.14, for the fact that the left equality in the
diagram is – in particular – a mono- and the right an epimorphism, now
provides us, together with equation (A.11), with the required δ. Hence,
diagram (A.2) that we previously obtained via corollary A.1.13 now becomes

h(B[1]) −−−→ h(C) −−−→ h(A) −−−→ h(B) −−−→ h(C[−1])

ϕB[1]

x ψC

x ΦδA

x ϕB

x ψC[−1]

x
hX̃(B[1]) −−−→ hX̃(C) −−−→ hX̃(A) −−−→ hX̃(B) −−−→ h(C[−1])

in which ψC , ϕB, ψC[−1] and ϕB[1] are isomorphisms, due to the fact that
B ∈ B, C ∈ C and – since B and C are triangulated subcategories – also
B[1] ∈ B and C[−1] ∈ C. By the 5-lemma, this implies that Φδ

A is an
isomorphism – and hence that h is representable.

One now simply dualises the very same techniques that were used to prove
the representability of h to show that the covariant functor Hom(−, X)∗ is
representable. From the exact triangle

C ′′ → X → L
+→

with C ′′ ∈ C and L ∈ C⊥ we obtain

HomC(S
−1
C (C ′′), C1)

∼=→ HomA(C1, X)

for any C1 ∈ C. Similarly we obtain S−1
B (B′) from

B′ → X → C ′
+→

where B′ ∈ B and C ′ ∈ C. Letting E = S−1
C (C ′′) we obtain

R→ E → B
+→
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with R ∈ C and B ∈ B. We get a morphism in Hom(S−1
B (B′), B) as the image

of idE ∈ HomC(E,E) and finally construct X̃ by the octahedral diagram

SB(B′)−1

vv

+

OO

B

xx

+

]]

F ′′
+

oo

+

��

E

__

oo X̃oo

OO

R

dd OO

where F ′′ is the cone of the mapping SB(B′)−1 → B.
We – hence – have constructed representing objects for both h = Hom(X,−)∗

and for Hom(−, X)∗. By lemma A.1.10, the proof is now finished.

Theorem A.1.15, however, provides a statement on the existence, yet
not on the use of Serre functors. Their usefulness and hence with it the
usefulness of theorem A.1.15 in general and in particular in our situation will
be provided by the following well known theorem which is a straightforward
implication of A.1.15.

Theorem A.1.16. Let A be a triangulated category that has a Serre functor
S. Assume F a G is an adjoint pair of functors F : A → A and G : A → A.
Then G a SFS−1 and S−1GS a F .

Proof. The first claimed adjunction of the functors is proved by the equation

Hom(X,SFS−1(Y )) = Hom(S−1(X), FS−1(Y ) = Hom(FS−1(Y ), X)∗

= Hom(S−1(Y ), G(X))∗ = (Hom(G(X), Y )∗)∗ = Hom(G(X), Y ).

The other adjunction is proven similarly.

A.2 Iwasawa decomposition

It is a useful fact that matrices in GL+
2 (R) can be split in a convenient way

that – in particular – allows one to see a possible involved rotation.
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Definition A.2.1. We define the following matrices

Kφ =

(
cos(φ) − sin(φ)
sin(φ) cos(φ)

)
,

Aa =

(
a 0
0 1

a

)
and

Nx =

(
1 x
0 1

)
for φ ∈ [0, 2π), x ∈ R and a ∈ R>0.

From [36] we obtain the following lemma.

Lemma A.2.2. For every T ∈ GL+
2 (R) there are φ ∈ R, k, a ∈ R>0 and

x ∈ R such that
T = kKφAaNx.

Proof. See [36, Section 16.3].
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[14] S. Bradlow and O. Garćıa-Prada, Stable triples, equivariant bundles and
dimensional reduction, Math. Ann., 304(1) (1996), 225–252.
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