dc.contributor.creator | Biswas, Indranil | |
dc.contributor.creator | Hoffmann, Norbert | |
dc.date.accessioned | 2013-06-27T13:37:06Z | |
dc.date.available | 2013-06-27T13:37:06Z | |
dc.date.issued | 2008 | |
dc.identifier.citation | Biswas, I. & Hoffmann, N. (2008), 'Some moduli stacks of symplectic bundles on a curve are rational ', Advances in Mathematics, Vol. 219(4), p 1150-1176. | en |
dc.identifier.uri | http://hdl.handle.net/10395/1975 | |
dc.description.abstract | Let C be a smooth projective curve of genus g ≥ 2 over a field k. Given a line bundle L on C, let Sympl2n,L be the moduli stack of vector bundles E of rank 2n on C endowed with a nowhere degenerate symplectic form b : E ⊗ E −→ L up to scalars. We prove that this stack is birational to BGm × As for some s if deg(E) = n · deg(L) is odd and C admits a rational point P ∈ C(k) as well as a line bundle ξ of degree 0 with ξ⊗2 ∼= OC . It follows that the corresponding coarse moduli scheme of Ramanathan-stable symplectic bundles is rational in this case. | en |
dc.language.iso | eng | en |
dc.publisher | Elsevier | en |
dc.relation.ispartofseries | Advances in Mathematics;219/4 | |
dc.rights | © Elsevier, The original publication of Biswas, I. & Hoffmann, N. (2008), 'Some moduli stacks of symplectic bundles on a curve are rational ', Advances in Mathematics, Vol. 219(4), p 1150-1176 is available at http://dx.doi.org/10.1016/j.aim.2008.06.001 | en |
dc.subject | Moduli stack | en |
dc.subject | Symplectic bundles | en |
dc.title | Some moduli stacks of symplectic bundles on a curve are rational (Pre-published version) | en |
dc.type | Article | en |
dc.type.supercollection | all_mic_research | en |
dc.type.supercollection | mic_published_reviewed | en |
dc.type.restriction | none | en |
dc.description.version | Yes | en |
dc.identifier.doi | http://dx.doi.org/10.1016/j.aim.2008.06.001 | |