Show simple item record

dc.contributor.creatorBiswas, Indranil
dc.contributor.creatorHoffmann, Norbert
dc.date.accessioned2013-06-27T13:37:06Z
dc.date.available2013-06-27T13:37:06Z
dc.date.issued2008
dc.identifier.citationBiswas, I. & Hoffmann, N. (2008), 'Some moduli stacks of symplectic bundles on a curve are rational ', Advances in Mathematics, Vol. 219(4), p 1150-1176.en
dc.identifier.urihttp://hdl.handle.net/10395/1975
dc.description.abstractLet C be a smooth projective curve of genus g ≥ 2 over a field k. Given a line bundle L on C, let Sympl2n,L be the moduli stack of vector bundles E of rank 2n on C endowed with a nowhere degenerate symplectic form b : E ⊗ E −→ L up to scalars. We prove that this stack is birational to BGm × As for some s if deg(E) = n · deg(L) is odd and C admits a rational point P ∈ C(k) as well as a line bundle ξ of degree 0 with ξ⊗2 􀀀∼= OC . It follows that the corresponding coarse moduli scheme of Ramanathan-stable symplectic bundles is rational in this case.en
dc.language.isoengen
dc.publisherElsevieren
dc.relation.ispartofseriesAdvances in Mathematics;219/4
dc.rights© Elsevier, The original publication of Biswas, I. & Hoffmann, N. (2008), 'Some moduli stacks of symplectic bundles on a curve are rational ', Advances in Mathematics, Vol. 219(4), p 1150-1176 is available at http://dx.doi.org/10.1016/j.aim.2008.06.001en
dc.subjectModuli stacken
dc.subjectSymplectic bundlesen
dc.titleSome moduli stacks of symplectic bundles on a curve are rational (Pre-published version)en
dc.typeArticleen
dc.type.supercollectionall_mic_researchen
dc.type.supercollectionmic_published_revieweden
dc.type.restrictionnoneen
dc.description.versionYesen
dc.identifier.doihttp://dx.doi.org/10.1016/j.aim.2008.06.001


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record